
Distance Metrics and Algorithms for Task Space Path Optimization

Rachel M. Holladay1 and Siddhartha S. Srinivasa1

Abstract— We propose a method for generating a config-
uration space path that closely follows a desired task space
path despite the presence of obstacles. We formalize close-
ness via two path metrics based on the discrete Hausdorff
and Fréchet distances. Armed with these metrics, we can
cast our problem as a trajectory optimization problem. We
also present two techniques to assist our optimizer in the
case of local minima by further constraining the trajectory.
Finally, we leverage shape matching analysis, the Procrustes
metric, to compare with respect to only their shape.

I. INTRODUCTION

To create more capable robots in the home, we
need our robots to be adaptable and able to quickly
and easily learn new skills. In robotics a popular ma-
chine learning paradigm is teaching via demonstration,
where someone teaches a robot a skill by showing the
robot how to perform that skill [1]. By this, the robot
programmers are freed from having to program specific
tasks. Instead, the robot’s collaborators can provide the
required and desired skill set. This shifts the problem
from programming specific tasks to programming the
ability to teach and learn tasks.

This work focuses on skills where the robot needs
to recreate some desired motion in the task space.
For example, in Fig.1 a user provides a demonstration
to the robot. We now want the robot to be able to
recreate the reference path, shown on the right. While
our motions are in task space, our robot plans in its
configuration space. Therefore our goal is to generate
a configuration space path that achieves a desired task
space motion.

The naı̈ve approach for creating the desired task
space motion would be to replay the recorded demon-
stration. However, this would prevent us from gener-
alizing the motion and would fail given any clutter in
the scene. Therefore by optimizing in full configura-
tion space, we leverage its general ability to execute
collision-free planning in various environments [2].

A prior approach is to use randomized planners
that plan in joint space but use task space constraints
to drive sampling and project actions [3–5]. These
methods produce feasible trajectories that adhere to the
constraints but are often sub-optimal. Incoporating task
and joint space constraints has also been approached
as a finite time nonlinear control problem [6]. Alterna-
tively, some have generated the mapping from human

1Rachel M. Holladay and Siddhartha S. Srinivasa are
with the Robotics Institute, Carnegie Mellon University.
rmh@andrew.cmu.edu, siddh@cs.cmu.edu

Fig. 1: On the left hand side, a user demonstrates a task space
trajectory that is visualized on the right. Our goal is to enable the
robot to be able to recreate the shape of the provided demonstration
in the general setting.

motion to robot motion, allowing the robot to recreate
the human’s trajectories [7]. Instead, we wish to draw
upon work in trajectory optimization to generate opti-
mal paths that follow a task space path [8–10].

Our key insight is that we can recreate task space
demonstrations by optimizing a configuration space
path with respect to a cost function defining the distance
between the demonstration and the task space motion
achieved by the path. By formalizing a cost function
we are able to frame our problem as a trajectory
optimization problem. We compare two common shape
matching metrics, the Hausdorff and the Fréchet dis-
tance.

We therefore make the following contributions:
1. Formulation as Optimization Problem. Using

common distance metrics we formulate task space
planning as a trajectory optimization problem.

2. Matching Algorithms. Trajectory optimization is
succeptible to local minimum. This can lead the op-
timizer to generate paths that do not match the task
space demonstration. To account for this we offer two
methods, splitting and stapling. These methods guide
the optimization to the correct basin of attraction by
identifying critical points in the task space demonstra-
tion that serve as hard constraints to the optimizer.

3. EM-inspired Procrustes Analysis. Finally, often
the demonstration does not have to have strong bind-
ings to the particular task space location. Rather the

Fig. 2: Simply replaying recorded demon-
strations, fails in new environments. Our
planner is able to plan around obstacles.

r

Fig. 3: The one way (orange) and two way
(green) Hausdorff distances are constrained to
be in the safe zone while the Fréchet distance
(blue) forces us to pass through the safe zone
in order.

H
F

jH

iH

jF

iF

Fig. 4: The negative analytical gradient of
the Fréchet and Hausdorff distance steps to
decrease the distance.

demonstration is meant to provide a general task space
shape that the robot should produce, i.e. tracing out
the letter ’A’. We provide an optimization method for
recreating only the shape.

Fig.2 shows an instance where our planner succeeds
when the naı̈ve solution of replaying the trajectory
would fail. The demonstration, shown in black, was
gathered in a blank environment. The starting position
of this trajectory is shown as the translucent robot
arm. In the new environment that includes a table,
this trajectory collides with the table and is therefore
infeasible. By planning with the task space motion, we
are able to avoid the table and successfully reproduce
the desired motion, shown in orange.

In enabling the robot to learn skills, we have only
considered skills that are encoded as unique paths in
task space. We therefore cannot capture skills that rely
on sensory feedback or dynamic interaction.

II. PROBLEM STATEMENT

We work with a robot manipulator endowed with
a configuration space q ∈ C. We map configurations
to the task space x ∈ SE(3) via forward kinematics
x = FK(q). We are given a reference path either in
configuration space ξ̄q : [0, 1] → C or in task space
ξ̄x : [0, 1] → SE(3). We will drop the path subscript
wherever they can be used interchangeably. In general,
we will only assume we have access to ξ̄x.

Our goal is to produce the closest path that matches
the reference path subject to constraints on the system:

ξ∗ = arg min
ξ∈Ξ
||ξ − ξ̄|| s.t. constraints (1)

Two aspects of (1) are critical: (1) the distance metric
used for estimating the closeness of curves, and (2) the
constraints the robot faces in a new situation.

A. Distance Metrics

Our goal is to produce a path that is close to our
reference path. One natural way to quantify closeness
is to require that each point on our path be close to a
corresponding point on the reference path.

For example, consider the reference path shown in
black in Fig.3. We can place an r-disc ball around each
point in our path and union these balls together to
create a safe zone, as shown. If each point on our path
is within some r distance to our reference path, then
our path is contained within our safe zone. This metric
corresponds to the one-way Hausdorff distance.
One-Way Hausdorff Distance. The Hausdorff distance
is a method for measuring how far apart two subsets
of metric space are [11]. Given that an adversary picks
a point on one shape, the Hausdorff distance is the
longest distance you would be forced to travel to get
to any point on the other shape. Although originally
formulated as metric for shapes, the one-way Haus-
dorff distance can also be applied to curves, point sets
and objects [12–14]. Hence for paths we can formalize
the one way Hausdorff distance as:

H(ξx, ξ̄x) = sup
y∈ξ

inf
ȳ∈ξ̄

d(y, ȳ) (2)

where, for d, we form a metric in SE(3) via the
Cartesian product of the Euclidean metric for R3 and
the standard great circle solid angle metric for SO(3).
In practice, we compute the discrete Hausdorff distance
using a set of waypoints sampled from the path.

When we consider the Hausdorff distance for paths,
if every point on the path was to find its closest
neighbor on the reference path, the Hausdorff distance
is the longest neighbor to neighbor distance.

Therefore, if our path and our reference path have a
Hausdorff distance less then r, then our path is entirely
contained with our r-disc safe zone. We can see that for
the orange path in Fig.3, each point is forced to travel
at least r distance from its closest point on the black
reference path.

By constraining our path to be within some thresh-
old, r, according to the one-way Hausdorff distance,
we are insuring that our path is within the reference
path’s r-disc safe zone. While our orange path in Fig.3
lies within the safe zone, it fails to capture the exact
flow of the reference path, shortcutting the center loop.

One way to insure that the path better matches the
reference path is to, in addition to requiring each point

on the path be close to a point on the reference point,
also require that each point on the reference path is
close to a point on the path. This corresponds to the
two way Hausdorff distance for paths. In Fig.3 the two
way Hausdorff distance is shown in green. While the
reference path (in black) and the two way Hausdorff
path (in green) are close to each other, the path fails to
capture the true shape, instead traversing through the
loop in the reverse order.

To follow our reference path, we want to constrain
our path to pass through our r-disc balls in order. This
requirement motivates using the Fréchet distance.
Fréchet Distance. The Fréchet distance captures the
difference in flow between two curves [15]. The Fréchet
distance is commonly explained through an analogy,
where a dog is walking along ξ at speed parameter-
ization α and its owner is walking along ξ̄ at speed
parameterization β [16]. The two are connected via a
leash. The Fréchet distance is the shortest possible leash
via some distance metric d such that there exists a pa-
rameterization α and β so that the two stay connected
and move monotonically. More formally:

F (ξx, ξ̄x) = inf
α,β

max
t∈[0,1]

{
d
(
ξx(α(t)), ξ̄x(β(t))

)}
(3)

where d is defined as before. In practice, we sample dis-
crete waypoints on the paths and compute the discrete
Fréchet distance via dynamic programming [17, 18].

We can see with the blue path in Fig.3 that the
Fréchet’s monotoncity requirement forces it to follow
each of the balls in order, thus capturing the flow of the
reference path. Therefore, the one-way Hausdorff dis-
tance captures constraining our result to be contained
within our safe zone. In contrast the Fréchet distance
captures following the r-discs of the safe zone in order.

B. Gradient Interpretation
The gradient of the one-way Hausdorff or Fréchet

distances push us into the safe zone or ordered safe
zone, respectively. Let’s say we have a path and refer-
ence path with a discrete number of fixed waypoints.
Then, the analytical negative gradient of either distance
metric is the unit magnitude pointing towards the
furtherest point on the reference path.

Consider the reference path in black in Fig.4 and the
candidate path in red. Given a Hausdorff or Fréchet
distance of P , there must exist a point i on the ref-
erence path and j on the path such that d(i, j) = P .
This pair represents our point of maximum violation,
which we will assume is unique. As seen in Fig.4, the
two distance metrics may select different (i, j) pairs.
However, for both, the distance is determined by their
maximum violation.

Since the point at maximum deviation determines
the distance, the gradient of the distance metric with
respect to the candidate path is equivalent to the the
gradient at just our maximum deviation point.

By taking a step in the negative direction of this
gradient, shown as the black arrow in Fig.4, we move
our point of maximum violation closer to the reference
path, thus decreasing our distance. Hence in Fig.4,
gradient applied to each distance metric’s (i, j) would
decrease their P .

C. Constraints

We would like to address a broad range of con-
straints encountered in manipulation, including colli-
sions with obstacles and other links of the robot, joint
limits, and other dynamics. Here, we use the power of
existing trajectory optimization algorithms, specifically
TrajOpt [10] which handles a broad range of constraints
types. Our goal is to formulate our distance metrics in
a format compatible with these algorithms and harness
their power.

III. A PRELIMINARY EXPERIMENT

We conducted a preliminary experiment to explore
the problem. We first gather demonstrations of trajecto-
ries on a robot that serve as our reference paths. Then
we use the distance metrics discussed in Sec. II-A as
cost functions that penalize the trajectory for being far
from the goal in addition to constraints that prevent
self-collision and respect joint limits.

Clearly, the demonstrated path is one (of possibly
many) global minimum for the optimization. But we
are interested in its basin of attraction. Specifically, we
explore how well a completely uninformed initializa-
tion, like a straight line from start to goal, can bend and
twist itself to get to the reference path. By solving this
problem, instead of relying on the demonstrated path
ξ̄q , we can more generally recreate shapes. This general
problem proves to be surprisingly challenging.

A. Gathering Demonstrations

In order to gather demonstrations from our robot
HERB, we placed it in gravity compensation mode
such that an operator could move the arms freely to
create the desired motion [19]. We recorded joint angles
at 100Hz. that serve as waypoints for the reference
path ξ̄q . This was then converted to ξ̄x using inverse
kinematics, since our distane metrics operate in task
space and we want to only rely on having ξ̄x in the
general case.

B. Initial Results

We created a set of 24 demonstrations, some of which
are shown in black in Fig.5. We then optimize using the
Hausdorff or Fréchet metric as the cost function. We
used TrajOpt’s default stopping criteria and computed
distances with respect to the end effector position, not
the full arm pose.

Fig.5 shows each original demonstration in black,
the the Fréchet optimization in blue and the Haus-
dorff optimization in orange. Each bar below compares

Fig. 5: The demonstration is shown in black. The path optimized according to the Hausdorff and Fréchet metrics are in orange and blue,
respectively. The bars below show the difference between the Fréchet error of the two optimized paths.

the difference in Fréchet error between the Fréchet
optimization and Hausdorff optimization. We elected
to compare using the Fréchet error since the Fréchet
metric restricts us to follow the curves of the reference
path.

In Fig.5, we see three categories. The first three
columns show paths where the error for the Fréchet
and Hausdorff optimization are the same, hence their
difference is zero. In the first of these two columns, both
optimization produce the nearly same path. In the third
column the path begin and end at the same location.
Thus the empty path is at a local minimum.

The fourth and fifth column show paths where the
Fréchet optimization produced a higher Fréchet error.
In these cases the Hausdorff optimization produced
paths that were closer to the reference paths, which
were generally monotone. In the sixth column, the
Hausdorff paths have a higher error, and the Fréchet
paths better corresponded to the shape of the path.

In Fig.6, we show planning time as a function of
the number of iterations that the optimizer runs. Each
point represents a demonstration where corresponding
demonstrations optimized with the Fréchet and Haus-
dorff metric are connected via a grey line segment.
We see two trends. First, planning time increases with
more iterations of TrajOpt, which is expected. Second,
it generally takes longer to optimize according to the
Fréchet metric, even when there are less iterations
required. This is to be expected as the Fréchet metric,
computed used dynamic programming, is generally
more time consuming.

While the paths in Fig.5 capture the shape to an
extent, they often fail to capture the shape entirely.
Our optimization process does not drive our cost to
zero in part because these demonstrations are difficult

0 2 4 6 8 10 12 14 16

Iterations of TrajOpt

0.4

0.6

0.8

1.0

1.2

1.4

1.6
P

la
n
n
in

g
T

im
e

(s
ec

o
n
d
s)

Fréchet
Hausdorff

Fig. 6: Each point represents a demonstration and corresponding
demonstrations optimized with each metric are connected via a
grey segment. The Fréchet optimizations trend to take longer and
planning time increases with the number of iterations.

for an optimizer to achieve. Many times, the optimizer
falls into a local minimum that is different from our
demonstration due to self-collisions or joint limits.

In order to produce more accurate demonstrations
we therefore assist TrajOpt via two methods: split and
staple. Both of these methods add more constraints to
to our problem, thus moving our basin of attraction to
new locations.

IV. OPTIMIZING IN JOINT SPACE

In order to provide assistance to our optimizer we
present two techniques, splitting and stapling, that
further constrain the path. Splitting segments the path
in a predefined way, while stapling segments through a
more intelligent method. We begin by examining both
in the robot’s joint space since it serves as an easier
problem. This assumes we have access to ξ̄q . We later
relax this to only having ξ̄x, and use our insights from

2 3 4 5 6 7

Number of Splits

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F

ré
ch

et
E

rr
o
r

Fréchet
Hausdorff

(a) Splitting: Error

0.0 0.1 0.2 0.3 0.4 0.5

Threshold

0

1

2

3

4

5

6

7

N
u
m

b
er

o
f

S
p
li
ts

Fréchet
Hausdorff

(b) Stapling: Segment Count

1 2 3 4 5 6 7

Number of Segments

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ré

ch
et

E
rr

o
r

Splitting
Stapling

(c) Comparing Segments for Error

0 1 2 3 4 5 6 7

Planning Time (seconds)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ré

ch
et

E
rr

o
r

Splitting
Stapling

(d) Comparing Time for Error

Fig. 7: In joint space, as we increase the number of splits, the error decreases (a). Likewise, if we decrease the violation threshold when stapling,
the number of segments increases (b). Comparing, stapling achieves a given Fréchet error in fewer segments (c) but a higher planning time
(d) then splitting.

Algorithm 1 SplitJoint

1: Given: Reference Path ξ̄q , metric m, split count k
2: Initialize: ξ = ∅
3: procedure FOR I=0:K
4: ts = i

k
5: te = i+1

k
6: ξi = PLANTO(ξ̄q(ts), ξ̄q(te),m)
7: ξq = COMBINETRAJS(ξq, ξi)
8: return ξq

optimizing in joint space to generalize the to the more
difficult problem of optimizing in task space.

A. Split Method

To move our basin of attraction, and therefore ease
our problem, we split our path in k segments and
optimize on each segment.

The algorithm for the general k is given in Algorithm
1. We loop through k calculating the starting and end
configurations (Line 4, Line 5). We then plan between
these two segments (Line 6) and combine sequentially
(Line 7).

As we can see in Fig.7a, the more pieces we segment
the path into, the lower our Fréchet error. This is
expected since with more segments, more constraints
are imposed on the optimizer.

For each path we could select a k that balances
between cost and computation time. And in fact, we
will see this tradeoff later in Sec. IV-C. However, it is
unclear how to choose this k in the general case. Instead
we want our optimization method to select some k and
place the partitions where they are most needed. This
intuition inspires the stapling method, described in the
following section.

B. Staple Method

Instead of picking some k which splits our path into
evenly spaced segments, we want to concentrate on
points in our path that need extra help from the op-
timizer. Therefore, we present the Stapling Algorithm,
in joint space, in Algorithm 2, that dynamically selects
the points of the path to staple.

Algorithm 2 StapleJoint

1: Given: Reference Path ξ̄q , metric m, threshold ε,
start point ts, end point te

2: Initialize: ts = 0, te = 1
3: ξq = PLANTO(ξ̄(ts), ξ̄q(te),m)
4: vt, ti = FINDMAXVIOLATION(ξ̄q, ξq,m)
5: if vt > ε then
6: ξaq = STAPLEJOINT(ξ̄q, ts, ti,m)
7: ξbq = STAPLEJOINT(ξ̄q, ti, te,m)
8: return COMBINETRAJS(ξaq , ξbq)
9: else

10: return ξq

Using either the Hausdorff or Fréchet metric we
begin with a path optimized to that metric m, like
those created in Sec. III-B (Line 3). For either metric,
Hausdorff or Fréchet, we then find the point of of the
path that errors furthest from our reference path: the
point of maximum violation (Line 4).

Since the Fréchet distance is the minimum length
leash, as described in Sec. II-A, we find the location that
forces that distance and declare that to be our point of
maximum violation. For the Hausdorff distance, this
maximum point is the furthest you could be forced to
travel to go from one curve to another.

We then staple that point of maximum violation to
the reference path, similarly to the splitting method,
and recurse on the two pieces: the reference path from
the start to the staple point and the reference path from
the staple point to the end. We repeat this iteratively
until the maximum violation is below some threshold
(Line 5-Line 10).

As we vary the threshold of what violation is con-
sidered acceptable, we see in Fig.7b, the number of
segments increases. While it does segment the path
like the splitting algorithm, the key difference is that
stapling places the segments intelligently.

C. Splitting versus Stapling

The splitting algorithm evenly spaces its allocated
split count, ignoring the path’s shape. In contrast, the
stapling algorithm, by finding the point of maximum

Fig. 8: In joint space: splitting with k = 6 (left) compared to stapling
ε = 0.2 (right).

violation, staples down the path at the point that is
most useful to adhering to the threshold. Thus, as
shown in Fig.7c, for some given target Fréchet error,
the stapling method required fewer segments.

However, as illustrated in Fig.7d, the splitting al-
gorithm can generally achieve a lower Fréchet error
than the stapling algorithm in the same time allotment.
The recursive nature of the stapling algorithm leads it
have to repeat optimizations in trying to satisfying the
violation threshold. In contrast, the splitting algorithm
handles each segment once.

Fig.8 shows how stapling and splitting improve our
performance, compared to the same path in Fig.5.

D. Limitations

Optimizing in joint space presents a fundamental
limitation. Since we rely on indexing into the path, we
must have a joint space representation, ξ̄q . This restricts
us to using the original demonstration, preventing us
from generalizing the motion to translate or rotate in
task space. To generalize our motion, we advance to
optimizing in the task space, using only ξ̄x.

V. OPTIMIZING IN TASK SPACE

While we previously explored the splitting and sta-
pling algorithms in joint space, we now lift those
algorithms to task space. Since our robot has a redun-
dant manipulator, there are multiple inverse kinematic
solutions to a given point in task space. Therefore, we
solve for these inverse kinematic solutions and plan
to this set. We detail the changes this consideration
implies for both splitting and stapling.

A. Split and Staple Methods

Splitting: We describe the splitting method in task
space in Algorithm 3. In contrast to splitting in joint
space, where we plan to a specific configuration, in task
space we compute the inverse kinematic solutions for
that point in task space (Line 2 and Line 6) and plan
to that set.

Once we compute the path for the first segment, the
ending configuration of the first segment determines
the configuration for the beginning of the next segment
(Line 9).

Algorithm 3 SplitTask

1: Given: Reference Path ξ̄q , metric m, split count k
2: Initialize: Qs = SAMPLEIK(ξ̄x(0))
3: Initialize: ξq = ∅
4: procedure FOR I=0:K
5: te = i+1

k
6: Qe = SAMPLEIK(ξ̄x(te))
7: ξi = PLANTO(Qs, Qe,m)
8: ξq = COMBINETRAJS(ξq, ξi)
9: Qs = {ξq(1)}

10: return ξq

Algorithm 4 StapleTask

1: Given: Reference Path ξ̄q , metric m, threshold ε,
start set Qs, goal set Qq

2: Initialize: Qs = SAMPLEIK(ξ̄x(0))
3: Initialize: Qe = SAMPLEIK(ξ̄x(1))
4: ξq = PLANTO(Qs, Qe,m)
5: vi, pi = FINDMAXVIOLATION(ξ̄x, ξq,m)
6: if vi > ε then
7: Q̂g = SAMPLEIK(ξ̄x(pi))
8: ξaq = STAPLETASK(ξ̄x, Qs, Q̂g,m)
9: Q̂s = {ξaq (1)}

10: ξbq = STAPLETASK(ξ̄x, Q̂s, Qg,m)
11: return COMBINETRAJS(ξaq), ξbq
12: else
13: return ξq

Similarly to in joint space, as the number of splits
increases, the Fréchet error decreases, as seen in Fig.9a.

Stapling: The stapling method in task space in Al-
gorithm 4. Here, as in splitting in task space, we must
compute the inverse kinematics set to plan to (Line 2,
Line 3, Line 7). Again, before continuing to the next
segment, we need to start where the last segment left
off (Line 9).

As we decrease our threshold, we increase the num-
ber of splits required, visualized in Fig.9b.

B. Splitting versus Stapling
As seen in Fig.9c, for a given number of segments,

stapling has, on average, a smaller Fréchet error. This is
explainable by the fact that stapling intelligently selects
where to segment the path, while splitting selects its
segments blindly.

Like in joint space, splitting achieves a lower Fréchet
error given a time allotment as seen in Fig.9d. However
both take longer then their joint space counterparts
since we must compute the inverse kinematic solution
set and plan to a configuration in that set, as opposed
to planning to one configuration.

We can now easily generate a path that follows a
new task space path formed by warping the original
reference path. For example, in Fig.10, we can translate

2 3 4 5 6 7

Number of Splits

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F
ré

ch
et

E
rr

o
r

Fréchet
Hausdorff

(a) Splitting: Error

0.0 0.1 0.2 0.3 0.4 0.5

Threshold

0

1

2

3

4

5

6

7

N
u
m

b
er

o
f

S
p
li
ts

Fréchet
Hausdorff

(b) Stapling: Segment Count

1 2 3 4 5 6 7

Number of Segments

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
ré

ch
et

E
rr

o
r

Splitting
Stapling

(c) Comparing Segments for Error

0 2 4 6 8 10 12 14 16 18

Planning Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F
ré

ch
et

E
rr

o
r

Splitting
Stapling

(d) Comparing Time for Error

Fig. 9: In task space, as we increase the number of splits, the error decreases (a). Likewise, if we decrease the violation threshold when
stapling, the number of segments increases (b). Across splitting and stapling, more segments leads to a decreased Fréchet error (c) For an
allowance of planning time, splitting achieves a lower Fréchet error (d).

Fig. 10: The original reference path is given in black and the blue
path is translated 10 cm.

our original task space path by 10 cm and use our
optimization to generate a new path.

However, even this places the burden on the user to
determine where to place the path. Instead, we would
like to be able to recreate the shape of the path at any
location.

VI. PROCRUSTES ANALYSIS

So far we have required that our reference path have
specific bindings to poses in workspace. Often, you
may want to specify only a general shape and allow
the robot to find any path that follows the shape path.
For example, you may want to draw a circle, with no
particular preference for where in task space the circle
is drawn.

In essence, we wish to focus on the path’s shape, ig-
noring any translations or rotations. To achieve this we
draw upon the Procrustes metric from shape analysis
[20–22]. The Procrustes distance metric first attempts
to optimally superimpose two curves on top of each
other before assessing the distance between them. By
superimposing the two curves, the relative differences
in placement are ignored.

A. Algorithm
To evaluate a cost within our optimization loop,

we iteratively perform an expectation-maximization
inspired algorithm (Algorithm 5). This algorithm com-
pares the output of the optimizer at iteration i, ξiq to
the reference path ξ̄x.

First we use either the Fréchet or Hausdorff metric
to compute the correspondence between the path’s

Algorithm 5 ProcrustesConstraint

1: Given: Initial Path ξiq , demonstration ξ̄x, metric m
2: p0 = CORRESPOND(ξiq, ξ̄s,m)
3: procedure WHILE NOT MATCHES:
4: ξiq = PROCRUSTES(ξiq, ξ̄s)
5: pn = CORRESPOND(ξiq, ξ̄s,m)
6: matches = (p0 == pn)
7: p0 = pn
8: return ξq

waypoints (Line 2). Since the discrete Fréchet distance
computes the shortest leash between each of the points
on our line we can map points on one line to their
partners on the other line. Likewise for the Hausdorff
metric we can find the point on curve that each corre-
sponding point travels to. Next we compute the scaled
Procrustes analysis on each of the curves, which moves
ξiq to be as close as possible to ξ̄x (Line 4).

We use our distance metric to recompute the cor-
respondences (Line 5). If we have converged to an
optimal transform, then these correspondences will
have not changed within the loop. Otherwise we repeat
the process. Upon converging, we have now moved the
two paths to be as close as possible. We use metric m to
evaluate the distance between the two paths and return
this to the optimizer as the cost of ξiq .

The process is similar in style to that described in
[23], although using different metrics.

Since our stapling and splitting algorithms rely on
binding to task space, we cannot apply these methods
to our current Procrutes constraint formulation.

VII. DISCUSSION

We present a method for recreating paths by opti-
mizing new instances to be close the reference path
according to commonly used distance metrics. We
present a splitting and stapling method for improving
performance. Additionally, we show how Procrustes
analysis can be used to optimizing only according to
the demonstration’s shape.

A. Limitations and Future Work

We can still move move one step further in concen-
trating on recreating a shape. Imagine that someone
is trying to show the robot how to draw the letter
’A’. This person may have a distribution of ’A’ that
they consider an acceptable representation. Therefore,
in learning this skill, we want to optimize not be close
to a single demonstration, but close to the distribution
of demonstrations. We believe we could use an alterna-
tive metric, the Mahalanobis distance metric [24], often
used in handwriting matching, that would allow us to
measure distances with respect to a distribution [25].

We hope to pursue this exciting line of future work
to better enable our robots to learn complex skills.

ACKNOWLEDGMENT

This material is based upon work supported by ONR
BAA 13-0001 and CRA-W’s CREU and CMU’s SRC
URO’s undergraduate research grants. We would like
to thank the members of the Personal Robotics Lab for
helpful discussion and advice. We would especially like
to thank Jennifer King and Christopher Dellin for their
comments on drafts of this work.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A
survey of robot learning from demonstration,” RAS, vol. 57,
no. 5, pp. 469–483, 2009.

[2] G. Ye and R. Alterovitz, “Demonstration-guided motion plan-
ning,” in ISRR, vol. 5, 2011.

[3] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Ma-
nipulation planning on constraint manifolds,” in IEEE ICRA,
pp. 625–632, IEEE, 2009.

[4] M. Stilman, “Global manipulation planning in robot joint space
with task constraints,” Robotics, IEEE Transactions on, vol. 26,
no. 3, pp. 576–584, 2010.

[5] Z. Yao and K. Gupta, “Path planning with general end-effector
constraints: Using task space to guide configuration space
search,” in IEEE/RSJ IROS, pp. 1875–1880, IEEE, 2005.

[6] S. Seereeram and J. T. Wen, “A global approach to path planning
for redundant manipulators,” IEEE TRA, vol. 11, no. 1, pp. 152–
160, 1995.

[7] G. Maeda, M. Ewerton, D. Koert, and J. Peters, “Acquiring and
generalizing the embodiment mapping from human observa-
tions to robot skills,” IEEE Robotics and Automation Letters, vol. 1,
no. 2, pp. 784–791, 2016.

[8] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion plan-
ning,” in IEEE ICRA, pp. 489–494, IEEE, 2009.

[9] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and
S. Schaal, “Stomp: Stochastic trajectory optimization for motion
planning,” in IEEE ICRA, pp. 4569–4574, IEEE, 2011.

[10] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequen-
tial convex optimization.,” in RSS, vol. 9, pp. 1–10, Citeseer,
2013.

[11] F. Hausdorff and E. Brieskorn, Felix Hausdorff-Gesammelte Werke
Band III: Mengenlehre (1927, 1935) Deskripte Mengenlehre und
Topologie, vol. 3. Springer Science & Business Media, 2008.

[12] M.-P. Dubuisson and A. K. Jain, “A modified hausdorff distance
for object matching,” in ICPR, vol. 1, pp. 566–568, IEEE, 1994.

[13] D. P. Huttenlocher and K. Kedem, “Computing the minimum
hausdorff distance for point sets under translation,” in Annual
symposium on Computational geometry, pp. 340–349, ACM, 1990.

[14] E. Belogay, C. Cabrelli, U. Molter, and R. Shonkwiler, “Cal-
culating the hausdorff distance between curves,” Information
Processing Letters, vol. 64, no. 1, pp. 17–22, 1997.

[15] M. M. Fréchet, “Sur quelques points du calcul fonctionnel,”
Rendiconti del Circolo Matematico di Palermo (1884-1940), vol. 22,
no. 1, pp. 1–72, 1906.

[16] E. W. Chambers, E. C. De Verdiere, J. Erickson, S. Lazard,
F. Lazarus, and S. Thite, “Homotopic fréchet distance between
curves or, walking your dog in the woods in polynomial time,”
Computational Geometry, vol. 43, no. 3, pp. 295–311, 2010.

[17] H. Alt and M. Godau, “Computing the fréchet distance between
two polygonal curves,” International Journal of Computational
Geometry & Applications, vol. 5, no. 01n02, pp. 75–91, 1995.

[18] T. Eiter and H. Mannila, “Computing discrete fréchet distance,”
tech. rep., Citeseer, 1994.

[19] N. Ulrich and V. Kumar, “Passive mechanical gravity compen-
sation for robot manipulators,” in IEEE ICRA, pp. 1536–1541,
IEEE, 1991.

[20] J. C. Gower, “Generalized procrustes analysis,” Psychometrika,
vol. 40, no. 1, pp. 33–51, 1975.

[21] C. Goodall, “Procrustes methods in the statistical analysis of
shape,” Journal of the Royal Statistical Society. Series B (Method-
ological), pp. 285–339, 1991.

[22] P. H. Schönemann, “A generalized solution of the orthogonal
procrustes problem,” Psychometrika, vol. 31, no. 1, pp. 1–10, 1966.

[23] T. Benseghir, G. Malandain, and R. Vaillant, “Iterative closest
curve: a framework for curvilinear structure registration ap-
plication to 2d/3d coronary arteries registration,” in Medical
Image Computing and Computer-Assisted Intervention, pp. 179–186,
Springer, 2013.

[24] P. C. Mahalanobis, “On the generalized distance in statistics,”
Proceedings of the National Institute of Sciences (Calcutta), vol. 2,
pp. 49–55, 1936.

[25] N. Kato, M. Suzuki, S. I. Omachi, H. Aso, and Y. Nemoto,
“A handwritten character recognition system using directional
element feature and asymmetric mahalanobis distance,” IEEE
TPAMI, vol. 21, no. 3, pp. 258–262, 1999.

	I Introduction
	II Problem Statement
	II-A Distance Metrics
	II-B Gradient Interpretation
	II-C Constraints

	III A Preliminary Experiment
	III-A Gathering Demonstrations
	III-B Initial Results

	IV Optimizing in Joint Space
	IV-A Split Method
	IV-B Staple Method
	IV-C Splitting versus Stapling
	IV-D Limitations

	V Optimizing in Task Space
	V-A Split and Staple Methods
	V-B Splitting versus Stapling

	VI Procrustes Analysis
	VI-A Algorithm

	VII Discussion
	VII-A Limitations and Future Work

