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Abstract

We present the Robot Gesture Library (RoGuE), a
motion-planning approach to generating gestures. Ges-
tures improve robot communication skills, strengthen-
ing robots as partners in a collaborative setting. Previous
work maps from environment scenario to gesture selec-
tion. This work maps from gesture selection to gesture
execution. We create a flexible and common language
by parameterizing gestures as task-space constraints on
robot trajectories and goals. This allows us to leverage
powerful motion planners and to generalize across en-
vironments and robot morphologies. We demonstrate
RoGuE on four robots: HREB, ADA, CURI and the
PR2.

1 Introduction

To create robots that seamlessly collaborate with people, we
propose a motion-planning based method for generating ges-
tures. Gesture augment robots’ communication skills, thus
improving the robot’s ability to work jointly with humans in
their environment (Breazeal et al. 2005; McNeill 1992). This
work maps existing gesture terminology, which is generally
qualitative, to precise mathematical definitions as task space
constraints.

By augmenting our robots with nonverbal communica-
tion methods, specifically gestures, we can improve their
communication skills. In human-human collaborations, ges-
tures are frequently used for explanations, teaching and
problem solving (Lozano and Tversky 2006; Tang 1991;
Reynolds and Reeve 2001; Garber and Goldin-Meadow
2002). Robots have used gestures to improve their persua-
siveness and understandability while also improving the ef-
ficiency and perceived workload of their human collaborator
(Chidambaram, Chiang, and Mutlu 2012; Lohse et al. 2014).

While gestures improve a robot’s skills as a partner, their
use also positively impacts people’s perception of the robot.
Robots that use gestures are viewed as more active, likable
and competent (Salem et al. 2013; 2011). Gesturing robots
are more engaging in game play, storytelling and over long-
term interactions (Carter et al. 2014; Huang and Mutlu 2014;
Kim et al. 2013).

As detailed in Sec. 2.1 there is no standardized classifi-
cation for gestures. Each taxonomy describes gestures in a
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Figure 1: Robots HERB, ADA, CURI and PR2 using RoGuE
(Robot Gesture Engine) to point at the fuze bottle.

qualitative manner, as a method for expressing intent and
emotion. Previous robot gestures systems, further detailed
in Sec. 2.2, often concentrate on transforming ideas, such as
inputted text, into speech and gestures.

These gesture systems, some of which use canned ges-
tures, are difficult to use in cluttered environment with
object-centric motions. It is critical to consider the environ-
ment when executing a gesture. Even given a gesture-object
pair, the gesture execution might vary due to occlusions and
obstructions in the environment. Additionally, many previ-
ous gesture systems are tuned to a specific platform, limiting
their generalization across morphologies.

Our key insight is that many gestures can be translated
into task-space constraints on the trajectory and the goal,
which serves as a common language for gesture expression.
This is intuitive to express, and consumable by our powerful
motion planning algorithms that plan in clutter. This also
enables generalization across robot morphologies, since the
robot kinematics are handled by the robot’s planner, not the
gesture system.

Our key contribution is a planning engine, RoGuE (Robot
Gesture Engine), that allows a user to easily specify task-
space constraints for gestures. Specifically we formalize
gestures as instances of Task Space Regions (TSR), a gen-
eral constraint representation framework (Berenson, Srini-
vasa, and Kuffner 2011). This engine has already been de-
ployed to several robot morphologies, specifically HERB,
ADA, CURI and the PR2, seen in Fig.1. The source code for



RoGuE is publicly available and detailed in Sec. 6.

RoGuE is presented as a set of gesture primitives that
parametrize the mapping from gestures to motion planning.
We do not explicitly assume a higher-level system that au-
tonomously call these gesture primitives.

We begin by presenting an extensive view of related work
followed by the motivation and implementation for each
gesture. We conclude with a description of each robot plat-
form using RoGuE and a brief discussion.

2 Related Work

In creating a taxonomy of collaborative gestures we begin
by examining existing classifications and previous gesture
systems.

2.1 Gestures Classification

Despite extensive work in gestures, there is no existing com-
mon taxonomy or even standardized set of definitions (Wex-
elblat 1998). Kendon presents a historical view of termi-
nology, demonstrating the lack of agreement, in addition to
adding his own classification (Kendon 2004).

Karam examines forty years of gesture usage in human-
computer interaction research and established five major cat-
egories of gestures (Karam and others 2005). Other method-
ological gestures classifications name a similar set of five
categories (Nehaniv et al. 2005).

Our primary focus is gestures that assist in collaboration
and there has been prior work with a similar focus. Clark cat-
egorizes coordination gestures into two groups: directing-to
and placing-for (Clark 2005). Sauppe presents a series of
gestures focused on deictic gestures that a robot would use
to communicate information to a human partner (Sauppé and
Mutlu 2014). Sauppe’s taxonomy includes: pointing, pre-
senting, touching, exhibiting, sweeping and grouping. We
implemented four of these, omitting touching and grouping.

2.2 Gesture Systems

Several gesture systems, unlike our own, integrate body
and facial features with a verbal system, generating the
voice and gesture automatically based on a textual input
(Tojo et al. 2000; Kim et al. 2007; Okuno et al. 2009;
Salem et al. 2009). BEAT, Behavior Expression Animation
Toolkit, is an early system that allows animators to input text
and outputs synchronized nonverbal behaviors and synthe-
sized speech (Cassell, Vilhjalmsson, and Bickmore 2004).

Some approach gesture generation as a learning problem,
either learning via direct imitation or through Gaussian Mix-
ture Models (Hattori et al. 2005; Calinon and Billard 2007).
These method focus on being data-driven or knowledge-
based as they learn from large quantities of human examples
(Kipp et al. 2007; Kopp and Wachsmuth 2000).

Alternatively, gestures are framed as constrained in-
verse kinematics problem, either concentrating on smooth
joint acceleration or on synchronizing head and eye move-
ment (Bremner et al. 2009; Marjanovic, Scassellati, and
Williamson 1996).

Other gesture system focus on collaboration and em-
bodiment or attention direction(Fang, Doering, and Chai
2015; Sugiyama et al. 2005). Regardless of the system,

its clear that gestures are an important part of an en-
gaging robot’s skill set (Severinson-Eklundh, Green, and
Hiittenrauch 2003; Sidner, Lee, and Lesh 2003).

3 Library of Collaborative Gestures

As mentioned in Sec. 2.1, in creating our list we were in-
spired by Sauppe’s work (Sauppé and Mutlu 2014). Zhang
studies a teaching scenario and found that only five ges-
tures made up 80% of the gestures used and of this, pointing
dominated use (Zhang et al. 2010). Motivated by both these
works we focus on four key features: pointing, presenting,
exhibiting and sweeping. We further define and motivate the
choice of each of these gestures.

3.1 Pointing and Presenting

Across language and culture we use pointing to refer to ob-
jects on a daily basis (Kita 2003). Simple deictic gestures
ground spatial references more simply than complex refer-
ential description (Kirk, Rodden, and Fraser 2007). Robots
can, as effectively as human agents, use pointing as a refer-
ential cue to direct human attention (Li et al. 2015).

Previous pointing systems focus on understandability, ei-
ther by simulating cognition regions or optimizing for a leg-
ibility (Hato et al. 2010; Holladay, Dragan, and Srinivasa
2014). Pointing in collaborative virtual environments con-
centrates on improving pointing quality by verifying that the
information was understood correctly (Wong and Gutwin
2010). Pointing is also viewed as a social gesture that should
balance social appropriateness and understandability (Liu et
al. 2013).

The natural human end effector shape when pointing is
to close all but the index finger (Gokturk and Sibert 1999;
Cipolla and Hollinghurst 1996) which serves as the pointer.
Kendon formally describes this position as ’Index Finger
Extended Prone’. We adhere to this style as closely as the
robot’s morphology will allow. Presenting achieves a sim-
ilar goal, but is done with, as Kendon describes, an ’Open
Hand Neutral’ and Open Hand Supine’ hand position.

3.2 Exhibiting

While pointing and presenting can refer to an object or spa-
tial region, exhibiting is a gesture used to show off an object.
Exhibiting involves holding an object and bringing emphasis
to it by lifting it into view. Specifically, exhibiting deliberat-
ing displays the object to an audience (Clark 2005). Exhibit-
ing and pointing are often used in conjunction in teaching
scenarios (Lozano and Tversky 2006).

3.3 Sweeping

A sweeping gesture involves making a long, continuous
curve over the objects or spatial area being referred to.
Sweeping is a common technique used by teachers, where
they sweep across various areas to communicate abstract
ideas or regions (Alibali, Flevares, and Goldin-Meadow
1997).

4 Gesture Formulation as TSRs

Each of the main four gestures are implemented with a base
of a task space region, described below. The implementa-



tion for each, as described, is nearly identical for each of the
robots listed in Sec. 5, with minimal changes made neces-
sary by each robot’s morphology.

The gestures pointing, presenting and sweeping can ref-
erence either a point in space or an object while exhibiting
can only be applied to an object, since something must be
physically grasped. For ease, we will define R as the spa-
tial region or object being referred to. Within our RoGuE
framework, R can be an object pose, a 4x4 transform or a
3-D coordinate in space.

4.1 Task Space Region

A task space region (TSR) is a constraint representation pro-
posed in (Berenson, Srinivasa, and Kuffner 2011) and a sum-
mary is given here. We consider the pose of a robot’s end
effector as a point in three-dimensional space, SE(3). There-
fore we can describe end effector constraint sets as subsets
of our space, SE(3).

A TSR is composed of three components: 1", T." , B,,.
T}’ describes the reference transform for the TSR, given the
world coordinates in the TSR’s frame. T)* is the offset trans-
form that gives the end effector’s pose in the world coordi-
nates. Finally, B,, is a 6x2 matrix that bounds the coordi-
nates of the world. The first three rows declare the allowable
translations in our constrained world in terms of x, y, z. The
last three rows give the allowable rotation, in roll pitch yaw
notion. Hence our B,,, which describes the end effector’s
constraints, is of the form:

T
Tmin Ymin Zmin wmin emin ¢min (] )

xmax ymax Zmax wmax emax ¢max

For more detailed description of TSRs please refer to
(Berenson, Srinivasa, and Kuffner 2011). Each of the main
four gestures is composed of one or more TSRs and some
wrapping motions. In describing each gesture below, we will
first describe the necessary TSR(s) followed by the actions
taken.

4.2 Pointing

Our pointing TSR is composed of two TSRs chained to-
gether. The details of TSR chains can be found in (Berenson
et al. 2009). The first TSR uses a 7" that aligns the z axis
of the robot’s end effector with RR. T7," varies from robot to
robot. We next want to construct our B,,. With respect to
rotation, R can be pointed at from any angle. This creates a
sphere of pointing configuration where each configuration is
a point on the surface of the sphere with the robot’s z-axis,
or the axis coming out of the palm, aligned with . We con-
strain the pointing to not come from below the object, thus
yielding a hemisphere, centered at the object, of pointing
configurations. The corresponding B,, is therefore:
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While this creates a hemisphere, a pointing configuration
is not constrained to be some minimum or maximum dis-
tance from the object. This translates into an allowable range
in our z-axis, the axis coming out of the end effector’s palm,

Figure 2: Pointing. The leftside shows many of the infinite solu-
tions to pointing. The rightside shows the execution of one.

(a) No other objects occlude the bottle, thus this point is occlusion
free.

(b) Other objects occlude the bottle such that only 27% of the bot-
tle is visible from this angle.

Figure 3: Demonstrating how the offscreen render tool can be used
to measure occlusion. For both scenes the robot is pointing at the
bottle shown in blue.

in the hand frame. We achieve this with a second TSR that
is chained to the intial rotation TSR.

We have an allowable range in our z-axis. Therefore, our
pointing region as defined by the TSR is a hemisphere cen-
tered on the object of varying radius. This visualized TSR
can be seen in Fig.2.

In order to execute a point we plan to a solution of the
TSR and change our robot’s end effector’s preshape to what
is closest to the Index Finger Point. This also varies from
robot to robot, depending on the robot’s end effector.

Accounting for Occlusion

As described in (Holladay, Dragan, and Srinivasa 2014)
we want to ensure that our pointing configuration not only
refers to the desired R but also does not refer to any other
candidate R. Stating this another way, we do not want R
to be occluded by other candidate items. The intuitive idea
is that you cannot point at a bottle if there is a cup in the
way, since it would look as though you were pointing at the
cup instead. We use a tool, offscreen render 1 to measure
occlusion.

A demonstration of its use can be seen in Fig.3. In this

"https://github.com/personalrobotics/
offscreen_render



Figure 4: Presenting. The leftside shows a visualization of the TSR
solutions. In the rightside, the robot has picked one solution and
executed it.

case there is a simple scene with a glass, plate and a bot-
tle that the robot wants to point at. There are many different
ways to achieve this point and here we show two perspec-
tives from two different end effector locations that point at
the bottle, Fig.3a and Fig.3b.

In the first column we see the robot’s visualization of the
scene. The target object, the bottle, is in blue, while the other
clutter objects, the plate and glass, are in green. Next, seen in
second column, we remove the clutter, effectively measuring
how much the clutter blocks the bottle. The third column
shows how much of the bottle we would see if the clutter did
not exist in the scene. We can then take a ratio, in terms of
pixels, of the second column with respect to the third column
to see what percentage of the bottle is viewable given the
clutter.

For the pointing configuration shown in Fig.3a, the bottle
is entirely viewable, which represents a good pointing con-
figuration. In the pointing configuration shown in Fig.3b, the
clutter occludes the bottle significantly, such that only 27%
is viewable. Thus we would prefer the pointing configura-
tion of Fig.3a over that of Fig.3b since more of the bottle is
visible.

The published RoGuE implementation, as detailed in Sec.
6 does not include occlusion checking, however, we have
plans to incorporate it in the coming future, with more de-
tails in Sec. 7.1.

4.3 Presenting

Presenting is a much more constrained gesture than pointing.
While we can refer to R from any angle, we constrain our
gesture to be level with the object and within a fixed radius.
Thus our B,, is
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This visualized TSR can be seen in Fig.4. Once again we
execute presenting by planning to a solution of the TSR and
changing the preshape to the Open Hand Neutral pose.

4.4 Exhibiting

Exhibiting involves grasping the reference object, lifting it
to be displayed and placing the object back down. There-
fore, first the object is grasped using any grasp primitive, in

Figure 5: Exhibiting. The robot grasps the object, lifts it up for
display and places it back down.

Figure 6: Sweeping. The robot starts on one end of the reference,
moving its downward facing falm to the other end of the area.

our case a grasp TSR. We then use the lift TSR, which con-
strains the motion to have epsilon rotation in any direction
while allowing it to translate upwards to the desired height.
The system then pauses for the desired wait time before per-
forming the lift action in reverse, therefore placing the ob-
ject back at its original location. This process can be seen
in Fig.5. Optionally, the system can un-grasp the object and
return its end effector the pose it was in before the exhibiting
gesture occurred.

4.5 Sweeping

Sweeping is motioning from one area across to another area
in a smooth curve. We first plan our end effector to hover
over the starting position of the curve. We then modify our
hand to a preshape that faces the end effector’s palm down-
wards.

Next we want to translate to the end of the curve smoothly
along a plane. We execute this via two TSRs that are chained
together. We define one TSR above the end position, allow-
ing for epsilon movement in the x, y, z and pitch. This con-
strains our curve to end at the end of our bounding curve.
Our second TSR constrains our movement, allowing us to
translate in the x and y plane to our end location and giving
some leeway by allowing epsilon movement in all other di-
rections. By executing these TSRs we smoothly curve from
the starting position to the ending position, thus sweeping
out our region. This is displayed in Fig.6.

4.6 Additional Gestures

In addition to the four key gestures described above,
on some of the robot platforms described in Sec. 5 we
implement nodding and waving.

Wave: We created a pre-programmed wave. We first
record a wave trajectory and then execute it by playing this



(b) Noding Yes, by shaking up and down

trajectory back. While this is not customizable, we have find
people react very positively to this simple motion.

Nod: Nodding is useful in collaborative settings (Lee et
al. 2004). We provide the ability to nod yes, by servoing the
head up and down, and to nod no, by servoing the head side
to side as seen in Fig.8a and Fig.8b.

5 Systems Deployed

RoGuE was deployed onto four robots, listed below. The de-
tails of each robot are given. At the time of this publication,
the authors only have physical access to HERB and ADA,
thus the gestures for CURI and the PR2 were tested only in
simulation. All of the robot can be seen in Fig.1, pointing at
a fuze bottle.

HERB HERB (Home Exploring Robot Bulter) is a bi-
manual mobile manipulator with two Barrett WAMs, each
with 7-degrees of freedom (Srinivasa et al. 2012). HERB’s
Barrett hands have three fingers, one of which is a thumb,
allowing for the canonical index out-stretched pointing con-
figuration. While HERB does not specifically look like a hu-
man, the arm and head configuration is human-like.

ADA ADA (Assistive Dexterous Arm) is a Kinova MICO?
6-degree of freedom commercial wheelchair mounted or
workstation-mounted arm with an actuated gripper. ADA’s
gripper has only two fingers so the pointing configuration
consists of the two fingers closed together. Since ADA is a
free standing arm there is little anthropomorphism.

CURI Curi is a humanoid mobile robot with two 7-degree
of freedom arms, an omnidirectional mobile base, and a so-
cially expressive head. Curi has human-like hands and there-
fore can also point through the outstretched index finger con-
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figuration. Curi’s head and hands are particularly human-
like.

PR2 The PR2 is a bi-manual mobile robot with two 7-
degree of freedom arms and gripper hands (Bohren et al.
2011). Like ADA, the PR2 has only two fingers and there-
fore points with the fingers closed. The PR2 is similar to
HERB in that it is not a humanoid but has a human-like con-
figuration.

6 Source Code and Reproducibility

RoGuE is composed largely of two components, the TSR
Library and Action Library. The TSR library holds all the
TSRs that are then used by the Action Library, which ex-
ecutes the gestures. Between the robots the files are nearly
identical, with minor morphology differences, such as dif-
ferent wrist to palm distance offsets.

For example, below is a comparison of the simplified
source code for the present gesture on HERB and ADA. The
focus is the location of the object being presented. The only
difference is that HERB and ADA have different hand pre-
shapes.

def Present_HERB (robot,
present_tsr = robot.tsrlibrary(’present’,
robot .PlanToTSR (present_tsr)
preshape =

focus, arm):

focus, arm)

{fingerl=1, finger2=1,
finger3=1, spread=3.14}

robot .arm.hand.MoveHand (preshape)

def Present_ADA (robot,
present_tsr = robot.tsrlibrary(’present’,
robot .PlanToTSR (present_tsr)
preshape =

focus, arm):

focus, arm)
{fingerl=0.9, finger2=0.9}
robot .arm.hand.MoveHand (preshape)

Referenced are the TSR? and Action Library? for HERB.

7 Discussion

We presented RoGuE, the Robot Gesture Engine, for execut-
ing several collaborative gestures across multiple robot plat-
forms. Gestures are an invaluable communicate tool for our
robots as they become engaging and communicative part-
ners.

While existing systems map from situation to gesture se-
lection we focused on the specifics of executing those ges-
tures on robotic systems.

We formalized a set of collaborative gestures and
parametrized them as task space constraints on the trajec-
tory and goal location. This insight allowed us to use power-
ful existing motion planners that generalize across environ-
ments, as seen in Fig.9, and robots, as seen in Fig.1.

https://github.com/personalrobotics/
herbpy/blob/master/src/herbpy/tsr/generic.py

*https://github.com/personalrobotics/
herbpy/blob/master/src/herbpy/action/rogue.
py



Figure 9: Four pointing scenarios with varying clutter. In each case
HERB the robot is pointing at the fuze bottle.

7.1 Future Work

The gestures and their implementations serve as primitives
that can be used as stand-alone features or as components to
a more complicated robot communication system. We have
not incorporated these gestures in conjunction with head
motion or speech. Taken all together speech, gestures, head
movement and gaze should be synchronized. Hence the ges-
tures system would have to account for timing.

In the current implementation of RoGuE, the motion plan-
ner randomly samples from the TSR. Instead of picking a
random configuration, we want to bias our planner to pick-
ing pointing configurations that are more clear and natural.
As discussed towards the end of Sec. 4.2, we can score our
pointing configuration based on occlusion, therefore picking
a configuration that minimizes occlusion.

RoGuE serves as a starting point for formalizing gestures
as motion. Continuing this line of work we can step closer
towards effective, communicative robot partners.
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