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Abstract— When navigating to a goal in an uncertain envi-
ronment, a robot must simultaneously navigate the exploration-
exploitation tradeoff: should it aim to gain information and
reduce uncertainty, or should it simply brave the unknown?
We formalize this as the Bayesian dynamic motion plan-
ning problem, and we analyze how several strategies from
the literature balance these concerns via determinization and
planning. Within the framework of determinization in the
face of uncertainty, we shift the burden of exploration to
determinization rather than planning. Dynamic Replanning
with Posterior Sampling (DRPS) is very efficient: each iteration
consists of a single posterior update and a shortest path query.
Relative to comparative baselines across seven datasets of 2D
planning problems, DRPS has a higher percentage of success,
traverses lower or comparable total distances, and accelerates
total planning time by 4-7×. Across a dataset of larger 7D
Baxter manipulator planning problems, DRPS reduces total
distance by 40% and total planning time by 18×.

I. INTRODUCTION

We focus on the problem of motion planning under uncer-
tainty, where a robot must navigate to a goal without exact
knowledge of obstacles in the environment. Because envi-
ronments contain structure (e.g., obstacles are not randomly
placed, configuration-space edge collisions are correlated via
the workspace), a robot can leverage its observations to infer
regions that are blocked by obstacles. We formalize this task
as a Bayesian motion planning problem, where the robot’s
understanding of its uncertain environment is captured by a
posterior distribution conditioned on its past observations.
Thus, its behavior must adapt to its current position and
posterior distribution over environments.

This general Bayesian dynamic motion planning problem
can be described as a partially observable Markov decision
process (POMDP). Solving for the optimal policy tree is
computationally intractable: beginning from the start state
vs and prior distribution over environments P (ϕ), an offline
policy tree of depth D for Bayesian motion planning contains
O(2D|V |D) nodes due to the “curse of history.” Rather
than preparing a response for all possible action-observation
sequences, online POMDP methods interleave planning and
execution only for the current information state [1]. This
approach is critical for scaling to large POMDPs [2–4].

POMDP algorithms are designed to address uncertainty
across a variety of sources, including the robot’s state and the
transition and reward functions. However, factored POMDP
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models provide structure to uncertainty that can be lever-
aged to plan more efficiently [5–7]. In Bayesian dynamic
motion planning, uncertainty originates only from the robot’s
ignorance about the environment; the transition and reward
function are deterministic given the environment, and the
robot’s state is fully observable.

We unify several online algorithms for dynamic motion
planning under uncertainty within the framework of deter-
minization in the face of uncertainty (Fig. 1). Determinization
is a successful and well-studied heuristic that takes advantage
of structure in probabilistic planning problems [3, 8, 9].
Algorithms alternate between constructing a deterministic
estimate of the uncertain environment (determinization) and
computing a path through the approximation (planning).
Executing this initial solution acquires more information,
thereby improving the next deterministic approximation.

We analyze popular D*-based optimistic approaches
[10, 11] and uncertainty-aware Bayesian methods [12, 13]
through this lens. Our key insight is:

The determinization strategy is critical for effi-
ciently balancing exploration with exploitation.

If the deterministic approximation preserves too many pos-
sible paths, planning must expend additional effort to avoid
over-exploration. Conversely, if determinization prunes too
many exploration options, planning cannot retroactively cor-
rect for this imbalance. We reinterpret posterior sampling
(also known as Thompson sampling [14]) as a determiniza-
tion strategy that effectively navigates this tradeoff. Posterior
sampling achieves excellent empirical and theoretical perfor-
mance in multi-armed bandits, reinforcement learning, model
predictive control, and motion planning [15–17].

Dynamic Replanning with Posterior Sampling samples
an environment from the posterior distribution and follows
the optimal solution in that environment. Random sampling
from the posterior judiciously explores the space of plausible
environments, and each solution thus explores the space of
plausible paths. We make the following contributions:

• We define the Bayesian dynamic motion planning prob-
lem, and characterize how existing algorithms navigate
the exploration-exploitation tradeoff.

• We introduce Dynamic Replanning with Posterior Sam-
pling (DRPS), an algorithm that shifts the burden of
exploration to determinization rather than planning.

• We demonstrate that DRPS outperforms relevant base-
lines for a wide variety of 2D and 7D motion planning
problems, with a lower or comparable total distance
traveled and significant gains in computation time. This
is especially prominent on larger 7D planning problems.
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Fig. 1: Determinization in the face of uncertainty is a popular framework for solving challenging Bayesian dynamic motion planning problems. The
probabilistic problem (left) reflects uncertainty about obstacles (gray). In this framework, algorithms construct a deterministic estimate of the uncertain
environment by removing edges from the graph (red) and assuming the remaining edges are collision-free. Because uncertainty was eliminated by
determinization, planning becomes more tractable. To navigate the exploration-exploitation tradeoff, HSPD explicitly plans an exploration path (orange)
and exploitation path (blue) and follows the shorter of the two. DRPS shifts the burden of exploration to determinization, which simplifies each iteration
of planning to a single shortest path query and yields significant performance gains.

II. RELATED WORK
A. Bayesian Motion Planning and Reinforcement Learning

In the general Bayesian reinforcement learning (BRL)
problem, the reward and transition functions of a Markov
decision process are uncertain [5]. BRL algorithms typically
target the objective of Bayesian regret, which aims to bound
the cumulative difference in expected reward between the
optimal and learned policies. UCRL2 determinizes the BRL
problem with optimism in the face of uncertainty by fol-
lowing the optimal policy for an optimistic MDP given its
observations thus far [18]. PSRL determinizes the BRL prob-
lem with posterior sampling by following the optimal policy
for a sampled plausible MDP [15, 16, 19]. In practice, PSRL
seems to outperform optimistic algorithms; Osband and Van
Roy hypothesize that current algorithms perform unnecessary
exploration as a consequence of excessive optimism [20].

A growing thread of work views lazy motion planning
through a Bayesian lens. Because collision checking is com-
putationally expensive, Bayesian algorithms can leverage the
posterior to infer many edge collision statuses. The Bayesian
active learning problem of decision region determination is
equivalent to feasible path planning, and a combination of of-
fline DIRECT [21] with online BISECT [22] achieves state-
of-the-art performance [23]. PSMP views anytime motion
planning as an instance of Bayesian reinforcement learning
and draws an equivalence between anytime search perfor-
mance and the objective of Bayesian regret [17]. Because
uncertainty stems from computational limitations rather than
sensor limitations in these problems, algorithms can reduce
uncertainty anywhere in the configuration space with the
same cost. This is not true for the dynamic setting we
consider in this paper, where the robot must physically move
to reduce uncertainty.

B. Dynamic Replanning Under Uncertainty

Variants of D* and D* Lite have been widely deployed in
uncertain environments [10, 11, 24]. As edge costs change
(e.g., when new obstacles are perceived), the search tree

is repaired to dramatically reduce replanning time while
remaining functionally equivalent to replanning from scratch
with A*. D*-based algorithms determinize optimistically in
the face of uncertainty; space is assumed to be collision-free
until the robot perceives obstacles. In uncluttered scenarios
where this assumption is generally warranted, exploiting the
optimistic path is an excellent heuristic that sidesteps most
of the computational expense of modeling uncertainty (e.g.,
updating the Bayesian posterior). The surprising effective-
ness of this simple approach highlights a key feature of
the Bayesian dynamic motion planning problem: acquiring
information and reducing uncertainty is relatively easy.

The Canadian Traveler’s Problem describes a similar
scenario, where edge blockages are discovered only upon
arriving at an incident node. Planning a path that achieves
a fixed suboptimality ratio to the shortest path is intractable
[25]. Similarly, in dynamic motion planning problems, uncer-
tainty is a consequence of sensor limitations. Edge blockages
can be perceived only when the robot is physically nearby.
Fortunately, in many real-world examples, there is correlation
between edge blockages. Though just the nearby blockages
can be perceived, those measurements enable the planner to
infer other plausible blockages. Stochastic variants of the
Canadian Traveler’s Problem have been proposed, where
edge costs are estimated independently [26, 27], modeled
by a Gaussian Process [28], or modeled using a black-box
Bayesian posterior [13]. The Blindfolded Traveler’s Problem
is a specific Bayesian dynamic motion planning problem,
where the only source of information is contact feedback
and correlations are described with an approximate posterior
[29]. While these Bayesian problems remain theoretically
intractable to solve optimally, approximate algorithms, such
as Hedged Shortest Path under Determinization (HSPD), can
achieve high-quality solutions that navigate the exploration-
exploitation tradeoff [13]. DRPS is designed to solve this
class of Bayesian motion planning problems.

As with POMDPs, Bayesian dynamic motion planning
problems can be solved either offline or online. In the Reac-



tive Planning Problem, a complete policy must be computed
offline under uncertainty about which edges are blocked.
Mutual information policies that trade off exploration and
exploitation produce effective approximate solutions to this
problem [30]. The Learned Reactive Planning Problem ex-
tends this to a lifelong setting by allowing the policy to adapt
to previously observed obstacles across multiple episodes of
navigation [31]. Algorithms for both versions of the Reactive
Planning Problem rely on a fixed set of possible edge
subsets, which can be filtered as edge statuses are observed.
HSPD and DRPS permit more flexible distributions over
environments and edges.

III. BAYESIAN DYNAMIC MOTION PLANNING

Given start xs and goal xg in the configuration space
X , Bayesian dynamic motion planning seeks to minimize
the expected total distance traveled under the distribution
of environments P (ϕ). The robot is endowed with a model
of the environment uncertainty, formalized as a posterior
distribution over environments P (ϕ|ψt), where ψt contains
the history of observations through the current time.

This work focuses on the Bayesian dynamic motion
planning (BDMP) problem for roadmaps. A roadmap is a
graph G with vertices V and possible edges E. Some edges
will not be traversable due to collisions with the unknown
environment ϕ, which must be explored. Each edge has
known weight w : E → R+ and unknown collision status
ϕ : E → {0, 1}, where ϕ(e) = 1 means e is collision-free
in environment ϕ. A path ξ is a sequence of edges, with a
total distance traveled of w(ξ) =

∑
e∈ξ w(e). In general, it

may contain repeated edges if the planner retraces its steps.
The online algorithms we analyze in the following section

determinize the unknown environment based on the current
posterior P (ϕ|ψt) and propose a path ξ̂t+1 based on that
determinization. However, following the proposed path may
result in a collision; ξt+1 refers to the prefix of ξ̂t+1 that
was actually attempted, which may truncate edges after a
collision. Similar to the Blindfolded Traveler’s Problem [29],
the robot returns to the source of the edge after discovering
a collision. The concatenated path across the entire dynamic
motion planning episode is ξ1:T = (ξ1, · · · , ξT ), with a total
distance traveled of w(ξ1:T ) =

∑
t w(ξt).

Due to environment uncertainty in this dynamic setting,
the initial plan is unlikely to be collision-free. Thus, replan-
ning is required to navigate to the goal. However, time is of
the essence; because replanning is interleaved with execution,
a slow algorithm will cause the robot to stop. An online
BDMP algorithm should efficiently navigate the exploration-
exploitation tradeoff to propose new paths that reduce uncer-
tainty while minimizing the expected total distance traveled.

BDMP is closely related to the Blindfolded Traveler’s
Problem (BTP) [29] and the Bayesian Canadian Traveler’s
Problem (BCTP) [13]. However, the BTP focuses on approx-
imate posterior distributions derived from contact feedback,
while the BCTP and BDMP assume that the posterior dis-
tribution is given. The BCTP automatically reveals all edge
collision statuses upon reaching an incident vertex, while the

Algorithm 1 Determinization for Online BDMP

Require: Graph G, Posterior P (ϕ|ψt)
1: while goal not reached do
2: Determinize BDMP based on P (ϕ|ψt)
3: Plan path ξ̂t+1 in determinized Ĝ
4: Follow path until collision or end is reached
5: Update ψt+1 with observations

BTP and BDMP require the planner to explicitly choose an
edge to sense for collisions. (D*-based algorithms support
a more general form of edge blockages, which may be
discovered anywhere in the graph. In practice, however, edge
blockages are often discovered within a radius of the robot’s
position.) Together, these slight differences will help charac-
terize how the proposed algorithms balance exploration and
exploitation without confounding factors, i.e., with posterior
approximation error (for BTP) or with varying amounts of
information gained based on graph connectivity (for BCTP).

IV. DETERMINIZATION FOR ONLINE BDMP

Algorithm 1 summarizes the framework of determinization
in the face of uncertainty, which unifies several algorithms
for online BDMP (Fig. 1). Algorithm 2 characterizes how
these algorithms choose to determinize. Given a posterior
distribution that describes each edge’s probability of colli-
sion, the determinization strategy approximates each edge
as either blocked or collision-free. In the resulting roadmap,
the statuses of each edge are known; Algorithm 3 describes
algorithms for planning through the determinized roadmap.

A. Balancing Exploration and Exploitation

1) D*: D* plans the shortest path from the current vertex
to the goal on an optimistic determinization of the roadmap.
The surprising effectiveness and popularity of this strategy
demonstrates that even “pure” exploitation in BDMP results
in additional information. This strategy is complete: if there
exists a feasible path to the goal, D* will eventually discover
it. However, D* may optimistically try many paths before
it succeeds. We compare against this baseline due to its
popularity and to clarify the difference between optimistic
and Bayes-aware algorithms for dynamic motion planning.

2) HSPD: Hedged Shortest Path under Determinization
plans on the maximum-likelihood-observation determiniza-
tion [12]: only edges that are more likely to be collision-free
are preserved (i.e., P (ϕ(e) = 1|ψt) ≥ 0.5). The shortest path
from the current vertex to the goal on this determinization is
deemed the “exploitation” path ξ∗. The exploitation path may
be longer than the true shortest path or may not exist at all,
depending on which edges the determinized roadmap is able
to preserve. However, following this path and discovering
a collision proves that the determinization was inconsistent
with the true unknown environment, reducing the space of
possible environments by a factor of 2.

HSPD also computes a second “exploration” path ξψ , via
ORIENTEER. Assuming that following the path would yield
the maximum-likelihood collision-free observations, ξψ is



the shortest path that gathers enough information to reduce
the space of possible environments by a factor of 2. Although
each edge preserved by this determinization is more likely
than not to be collision-free, traversing that path still accumu-
lates a reduction in the space of possible environments that
corresponds to how likely the path was to be in collision.
Computing the exact reduction requires a posterior update
along every edge of the exploration path, with additional
posterior updates to consider alternative exploration paths.

HSPD hedges between ξ∗ and ξψ by following the shorter
of the two paths. Following ξ∗ to completion means that
the goal has been reached. Following either ξ∗ or ξψ into
a collision means that the maximum-likelihood-observation
determinization was inconsistent, reducing the space of
possible environments by a factor of 2. Following ξψ to
completion also reduces the space of possible environments
by a factor of 2 by construction. Since each iteration shrinks
the possible environment space by at least half, HSPD
reaches the goal within a logarithmic number of iterations.
Qualitatively, HSPD follows the exploration path until it
becomes too costly to achieve the desired 2× uncertainty
reduction (i.e., the exploitation path to the goal becomes
shorter). On a small grid-based Bayesian Canadian Traveler’s
Problem, HSPD finds that an additional hyperparameter that
artificially stretches the length of ξψ is critical to reduce
hedging-induced over-exploration.

3) DRPS: Dynamic Replanning with Posterior Sampling
determinizes according to a random sample from the current
posterior distribution. Posterior sampling explores the space
of currently plausible environments; as the posterior concen-
trates around the true environment, environments sampled
from the posterior concentrate in the same way. Then, DRPS
plans the shortest path from the current vertex to the goal in
the sampled environment.

Ideally, a BDMP algorithm would explore the space of
optimal paths rather than the space of environments—the
objective is to minimize the total distance traversed, not to
reduce uncertainty. For example, an algorithm focused on
reducing environment uncertainty may continue to explore
even after all plausible environments share the same optimal
path. Though directly exploring the combinatorially large
space of optimal paths is challenging, DRPS accomplishes
this by sampling an environment and planning the opti-
mal path in that environment. This procedure means that
DRPS explores the space of plausible optimal paths ξ̂t+1 ∼
P (ξ∗|ψt), a strategy that balances exploration in path space
using the same posterior distribution that reflects its current
uncertainty. Thus, DRPS naturally avoids over-exploration
without additional hyperparameters.

B. Posterior Queries and Updates

HSPD and DRPS assume different interfaces to the poste-
rior distribution. HSPD requires the marginal posterior distri-
bution P (ϕ(e) = 1|ψt) ∝

∫
ϕ
P (ϕ(e) = 1|ϕ)P (ϕ|ψt), which

must be normalized to perform the MAXLIKELIHOOD de-
terminization. However, computing the partition function to
normalize this distribution is intractable for many posteriors

Algorithm 2 Determinization Strategies

1: procedure OPTIMISTIC(G,P (ϕ|ψt))
2: Ê = {e ∈ E | P (ϕ(e) = 1|ψt) > 0}
3: return V, Ê

4: procedure MAXLIKELIHOOD(G,P (ϕ|ψt))
5: Ê = {e ∈ E | P (ϕ(e) = 1|ψt) ≥ 0.5}
6: return V, Ê

7: procedure POSTERIORSAMPLE(G,P (ϕ|ψt))
8: ϕ̂ ∼ P (ϕ|ψt)
9: Ê = ϕ̂(E)

10: return V, Ê

Algorithm 3 Planning Strategies

1: procedure SHORTESTPATH(v, vg, Ĝ)
2: return A*(v, vg, Ĝ)
3: procedure HEDGEDSHORTEST(v, vg, Ĝ, P (ϕ|ψt))
4: ξ∗ ← SHORTESTPATH(v, vg, Ĝ)
5: ξψ ← ORIENTEER(v, Ĝ, P (ϕ|ψt))
6: return shorter of ξ∗, ξψ

of interest. In contrast, DRPS requires only that the posterior
distribution is sampleable: ϕ ∼ P (ϕ|ψt). Posterior sampling
ensures that only statistically plausible environments are
sampled, while algorithms that consider marginal collision
probabilities effectively take a weighted average across all
plausible environments.

Both HSPD and DRPS require the posterior to be updated
at the end of each iteration (Algorithm 1, Line 5). This is only
partially true for D*, which does not require a full posterior
update as long as newly-discovered edge blockages are re-
flected in the determinization. Additionally, HSPD performs
several posterior updates as part of the ORIENTEER step to
estimate the amount of information gained by following each
hypothesized exploration subpath. This is more efficient than
solving the original BDMP because each posterior update
assumes the determinized maximum-likelihood observations
[12], but each update can still be computationally expensive
for complex posterior distributions. By shifting the burden
of exploration to the posterior sampling determinization
strategy, DRPS can plan on the determinized roadmap using
a naı̈ve shortest path algorithm like A*. DRPS avoids further
posterior updates because it does not need to consider
different exploration paths in the planning step.

V. EXPERIMENTAL RESULTS

We implement the three baseline algorithms (D*, HSPD,
and DRPS), Bayesian dynamic motion planning environ-
ments, and posterior distribution with Python and NumPy.
HSPD and DRPS share the same posterior implementation,
although querying the marginal posterior distribution ver-
sus sampling from the posterior distribution is necessarily
slightly different. The code has been reasonably optimized
for performance while preserving the modularity necessary



Fig. 2: Snapshots of DRPS and D* planning progress through the same environment. Regions with higher probability of collision are colored with darker
shades of gray. Evaluated edges are found to either be in collision (red) or collision-free (green).

(a) DRPS samples an environment from the posterior and plans the shortest path to the goal (blue). The path traverses through a region of uncertainty and
eventually results in a collision (red). It determinizes again and plans a new path, which makes progress but results in another collision. However, this
exploration has concentrated the posterior around the true environment; the next iteration of posterior sampling and planning reaches the goal.

(b) D* optimistically determinizes the posterior and plans the shortest path to the goal (blue). Due to this optimism, D* continues to plan paths through
the middle region, resulting in frequent collisions. However, it eventually reaches the goal.

Fig. 3: Example problem from the 7-DOF Baxter manipulator dataset, where
the right arm must move from below the table to above.

to evaluate different algorithms. We evaluate the algorithms
on a 3.6-GHz Intel Core i7 processor with 64 GB of memory.

We evaluate planning performance on a wide variety
of 2-DOF point robot environments [22] and cluttered 7-
DOF Baxter manipulator environments (Fig. 3) [17]. The
seven smaller point robot experiments let us comprehensively
evaluate how these algorithms differ and qualitatively inspect
their behavior (Fig. 2, Fig. 5). The Baxter experiments are
important for demonstrating the efficacy of our approach in
higher-dimensional planning problems with larger roadmaps.
We evaluate the algorithms on 200 problems per dataset,
for a total of 1600 problems. The roadmaps for the point
robot problems range in size from 100-200 vertices and
2000-5000 edges, while the roadmap for the Baxter problems
contains 5000 vertices and 140000 edges. Following HSPD,
we randomly generate BDMP problems based on a dataset
of possible template environments. HSPD has not been pre-
viously evaluated on these challenging environments (both
in 2D and 7D); for more challenging problems, we find that
HSPD can fail as a consequence of its maximum-likelihood-
observation determinization strategy.

Fig. 4(a) and Fig. 4(b) visualize the performance of DRPS
relative to D* and HSPD, respectively, on the key metrics of

total planning time expended and total distance traveled. We
summarize this data quantitatively in Table I, which includes
additional information about the number of iterations to
solve each problem. DRPS travels less distance than D*
and typically requires less planning time to reach the goal.
This demonstrates the value of taking a Bayesian, rather
than an optimistic, approach to dynamic motion planning.
We see especially significant gains in the Maze 2D and the
Baxter environments, where the D* optimistic assumption is
frequently violated, requiring many iterations of replanning.
Fig. 2 visualizes snapshots as DRPS and D* solve the same
Bayesian dynamic motion planning problem. D* expends
significant travel distance trying to pass through regions that
are already unlikely to be collision-free.

On most 2D problems, we find that DRPS travels a
comparable distance to HSPD while spending less compu-
tation time. While HSPD occasionally failed to solve some
problems in other datasets, it especially struggled to solve
problems in the MovingWall dataset. We visualize snapshots
of its progress in Fig. 5(b), which shows that the maximum-
likelihood-observation determinization is too strict: edges
that are crucial for connecting to the goal are eliminated
because they are likely to be in collision. However, both
exploration and exploitation paths are planned on this poor
approximation to the BDMP; when edges are eliminated by
determinization, HSPD cannot plan either path. Furthermore,
HSPD’s existing exploration parameter cannot help it recover
from this scenario. This suggests that maximum-likelihood-
observation determinization may be unsuitable for motion
planning settings that are likely to be in collision.

We observed the largest improvement from HSPD to
DRPS on the 7D Baxter environment, both in planning
time and distance traveled. We also measured the number



Fig. 4: Pairwise performance comparisons, where each column represents a planning dataset (rightmost is the 7D Baxter dataset). Each point represents
a BDMP problem, and its (x, y)-coordinates correspond to the planning time or distance traveled by (DRPS, baseline), with 0 in the bottom left corner.
Point are colored based on the better-performing algorithm, either DRPS (blue) or the baseline. The farther a point is above the line y = x (dashed), the
more DRPS outperforms the baseline according to that metric on the corresponding BDMP problem.
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(a) Pairwise comparisons with D* (gray). DRPS dominates D* in both planning time and distance traveled on most planning problems. DRPS performance
is clustered narrowly along the x-axis, demonstrating relatively consistent planning time and distance traveled across problems within each dataset.
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(b) Pairwise comparisons with HSPD (orange). Planning failures are labeled with an x; HSPD fails on nearly all planning problems in the MovingWall
dataset (column 4). See Fig. 5 (bottom) for an illustrative example. DRPS consistently outperforms HSPD in terms of planning time. The even spread of
points about y = x for the 2D dataset distance plots shows that the two algorithms achieve comparable performance in this simpler setting. However,
the distance plot for the 7D Baxter dataset (bottom right) shows that DRPS consistently travels shorter distances in this more difficult setting. (Fig. 4(b)
visualizes the same DRPS data as Fig. 4(a), but zoomed in to compare DRPS and HSPD more effectively.)

of iterations required by each algorithm, to assess whether
the root cause of the difference in planning time was due to
the individual expense of each iteration or the accumulated
cost of a larger number of iterations. We find that both
are true: an iteration of HSPD takes 5× longer than an
iteration of DRPS, and HSPD requires about 4× the number
of iterations to reach the goal configuration. The relative
difference in time spent on each iteration is likely due to
the HEDGEDSHORTEST planning algorithm, which requires
many posterior updates to plan an exploration path. The
relative difference in iterations is likely because HSPD
explores more than necessary. Fig. 5(a) shows that HSPD
may incur additional travel distance as it continues to explore
and reduce uncertainty. We conclude that BDMP algorithms
must be accurately tuned for exploration. Otherwise, explic-
itly navigating the exploration-exploitation tradeoff during
planning will incur additional computational expense without
a corresponding improvement in distance traveled.

VI. DISCUSSION

Dynamic Replanning with Posterior Sampling is an effi-
cient determinization-based strategy that carefully considers
when and how expensive computations with the Bayesian
posterior are performed. We analyze how other algorithms
within this framework navigate the exploration-exploitation
tradeoff inherent to BDMP. Experimentally, shifting the

burden of exploration from planning to determinization
significantly reduces total planning time—from 4-7× on
2D planning problems to 18× on 7D Baxter manipulator
problems. This is generally accompanied by a small improve-
ment in total distance traveled for 2D problems and a 40%
improvement in 7D problems.

From a practitioner’s standpoint, the main task is defin-
ing the posterior distribution for BDMP. We believe this
is an open representation learning problem: how should
one estimate and infer uncertain environments? As long
as that distribution supports random sampling, DRPS is
simple to implement and free of tuning parameters that
manually control the exploration-exploitation tradeoff. Thus,
developing generative posterior models of the robot’s envi-
ronment offers an exciting avenue for future work. While
it expends additional computation per iteration relative to
popular D*-based optimistic strategies (to perform a full
posterior update), DRPS effectively leverages information
from the updated distribution to quickly plan paths through
uncertain environments.

In each iteration, DRPS aims to sample from the com-
binatorially large space of plausible optimal paths to the
goal. Because directly sampling from path space is difficult,
DRPS first samples from the space of plausible environments
and then plans for the optimal path in that environment.
However, progress may stall if the sampled environment does



Fig. 5: Snapshots of HSPD planning progress through two environments.

(a) Given the maximum-likelihood-observation determinization of the posterior distribution, HSPD plans an exploitation path to the goal (blue) and an
exploration path that explores the center obstacle region (red). Following the shorter exploration path results in a collision (red), causing an updated
posterior and determinization. HSPD plans an exploitation path that backtracks and passes through the passage that is likely to be collision-free. However,
HSPD instead follows the shorter exploration path (red) to completion and updates its determinization. At this final iteration, it plans only an exploitation
path since there is no suitable exploration path.

(b) On the same environment as Fig. 2, HSPD plans on the maximum-likelihood-observation determinized graph. It follows the shorter exploration path,
which updates the posterior distribution. However, the determinization eliminated all the edges that would connect to the goal because they are each
individually unlikely to be collision-free. While HSPD continues to follow an exploration path, it eventually fails to plan either an exploitation path to the
goal or an exploration path that reduces uncertainty. It is limited to the edges available in the maximum-likelihood-observation determinization.

not contain any paths to the goal; no path is attempted in that
iteration. Even when the lack of a path plausibly reflects
the posterior distribution, this behavior may be undesirable:
querying a motion planning algorithm implicitly makes an
optimistic assumption that a path to the goal exists, and the
algorithm is tasked with finding it. Focusing sampling and
planning effort on environments where a path to the goal
exists presents an interesting future research direction.

DRPS does not explicitly optimize for combined planning
and execution time, i.e., the wall clock time for the robot
to reach the goal. (We measured the two components sep-
arately and used total distance traveled as a proxy for the
latter.) We observe that there is an implicit tradeoff between
planning and execution time. Intuitively, if a robot moves
slowly, expending additional planning time to propose a
shorter path ξ̂ may be a worthy tradeoff. The Generalized
Lazy Search framework introduces the concept of a toggle
between different components of planning [32], which can be
extended to toggle between planning and execution. Indeed,
the Bayesian lazy motion planning problems considered by
prior work, which permit collision-checking anywhere in the
environment, define one end of the spectrum where the robot
is infinitely fast [17, 23]. Future work that introspects both
the planning algorithm and underlying robot platform will be
necessary to achieve this gold standard of minimizing wall
clock time.
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Dataset Metric D* HSPD DRPS

OneWall
Time (ms) 44.26 ± 3.6 45.17 ± 2.0 7.31 ± 0.6
Distance 6.16 ± 0.4 2.54 ± 0.1 2.08 ± 0.1
Iterations 20.72 ± 1.6 6.21 ± 0.2 5.11 ± 0.4

TwoWall
Time (ms) 170.71 ± 10.7 87.33 ± 4.3 14.00 ± 1.0
Distance 6.42 ± 0.3 2.08 ± 0.1 2.05 ± 0.1
Iterations 30.40 ± 1.6 4.22 ± 0.2 2.99 ± 0.2

Forest
Time (ms) 191.93 ± 14.7 123.65 ± 4.1 27.65 ± 1.9
Distance 6.62 ± 0.4 2.28 ± 0.0 2.19 ± 0.0
Iterations 30.96 ± 2.3 7.49 ± 0.1 4.67 ± 0.2

MovingWall
Time (ms) 81.28 ± 7.0 27.18 ± 2.1
Distance 5.49 ± 0.4 3.20 ± 0.1
Iterations 19.79 ± 1.7 6.62 ± 0.5

Maze
Time (ms)1019.11 ± 52.6 92.74 ± 3.0 20.31 ± 0.9
Distance 40.26 ± 2.4 2.99 ± 0.1 3.13 ± 0.1
Iterations 215.68 ± 12.7 7.20 ± 0.2 5.75 ± 0.2

Baffle
Time (ms) 215.09 ± 10.7 105.88 ± 4.5 22.54 ± 1.5
Distance 14.22 ± 0.4 3.09 ± 0.1 3.24 ± 0.1
Iterations 57.61 ± 1.6 6.28 ± 0.2 5.25 ± 0.3

Bugtrap
Time (ms) 242.00 ± 19.7 101.34 ± 3.5 13.59 ± 0.9
Distance 13.98 ± 1.0 2.85 ± 0.1 2.25 ± 0.1
Iterations 59.61 ± 4.6 6.27 ± 0.1 2.91 ± 0.2

Baxter
(7D)

Time (s) 100.44 ± 5.2 15.37 ± 0.7 0.86 ± 0.06
Distance 743.55 ± 30.0 28.61 ± 0.6 11.82 ± 0.5
Iterations 374.94 ± 15.0 8.19 ± 0.2 2.37 ± 0.1

TABLE I: Online Bayesian dynamic motion planning performance on 2D
[23] and 7D [17] datasets. We report the 95% confidence interval on the
mean for planning time, total distance traveled, and number of iterations.
Only successful planning trials are included in these confidence intervals.
DRPS and D* succeeded on all planning problems. We have intentionally
omitted the performance of HSPD on the MovingWall dataset; it failed to
solve 199 of 200 problems. Planning times are reported in milliseconds for
2D problems and in seconds for 7D problems.
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