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Abstract— Sampling-based motion planners rely on incre-
mental densification to discover progressively shorter paths.
After computing feasible path ξ between start xs and goal
xt, the Informed Set (IS) prunes the configuration space X
by conservatively eliminating points that cannot yield shorter
paths. Densification via sampling from this Informed Set retains
asymptotic optimality of sampling from the entire configuration
space. For path length c(ξ) and Euclidean heuristic h, IS =
{x|x ∈ X , h(xs, x) + h(x, xt) ≤ c(ξ)}.

Relying on the heuristic can render the IS especially
conservative in high dimensions or complex environments.
Furthermore, the IS only shrinks when shorter paths are
discovered. Thus, the computational effort from each iteration
of densification and planning is wasted if it fails to yield a
shorter path, despite improving the cost-to-come for vertices in
the search tree. Our key insight is that even in such a failure,
shorter paths to vertices in the search tree (rather than just the
goal) can immediately improve the planner’s sampling strategy.
Guided Incremental Local Densification (GuILD) leverages this
information to sample from Local Subsets of the IS. We show
that GuILD significantly outperforms uniform sampling of
the Informed Set in simulated R2, SE(2) environments and
manipulation tasks in R7.

I. INTRODUCTION

Sampling-based algorithms have shown tremendous suc-
cess in solving complex high-dimensional robot motion
planning problems. To achieve asymptotic-optimality, these
algorithms incrementally sample the robot’s configuration
space to continually improve the shortest path in an anytime
manner [1]–[6]. A discrete sampling-based approximation to
the continuous configuration space often yields an initial fea-
sible path quickly. However, converging to the optimal path
is typically slow: many configuration samples are needed
to improve the discrete approximation (i.e., cover the space
more densely) and discover a shorter path. Replanning with
new samples can be accomplished efficiently [7], so the
computational bottleneck is sampling in regions that result
in a better path.

Our focus is on accelerating convergence to the optimal
path, assuming that an initial feasible path has already been
discovered. The current best path ξ between the start xs and
target xt defines an Informed Set XIS ⊆ X that contains only
states that can yield shorter paths:

XIS = {x | x ∈ X , h(xs, x) + h(x, xt) ≤ c(ξ)}, (1)
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Fig. 1: Comparison of (a) Informed Set and (b) Local Subsets
induced by GuILD. To further focus sampling within the Informed
Set, GuILD chooses a beacon (green) and decomposes the original
problem into two smaller problems using information from the
search tree.

where c(ξ) is the cost of the current path and h is an admis-
sible heuristic [8]. For problems minimizing path length in
Rn, the Informed Set with the Euclidean distance heuristic is
an n-dimensional prolate hyperspheroid EIS, parameterized
by foci xs and xt and transverse axis diameter c(ξ) (i.e., a
generalized ellipse as seen in Fig. 1a). Sampling from EIS
preserves the asymptotic optimality guarantee of sampling
from the entire configuration space X .

In practice, however, the Informed Set often provides
limited sample efficiency improvement. Since the measure
(n-volume) of the Informed Set λ(EIS) is a function of
the current solution cost, a high cost solution may yield a
large Informed Set with comparable (or greater) measure
to the full state space λ(X ). Paradoxically, to reap the
greatest benefits of sampling from the Informed Set, the
planner must already have a path of sufficiently small cost.
This is a particular challenge for planning problems in high
dimensions or cluttered environments where feasible paths
likely have high cost. Furthermore, the computational effort
from each iteration of densification and planning is wasted
if it fails to yield a shorter path. Until a shorter path is
discovered, EIS (and thus the sampling distribution) remains
unchanged.

Our key insight is that even in such a failure, we can
open the black box of the planning algorithm to immedi-
ately improve the planner’s sampling strategy. With Guided
Incremental Local Densification (GuILD), shorter paths to
any vertex in the search tree can guide further sampling.
GuILD introduces the idea of a beacon, a vertex in the search
tree that decomposes the original sampling/planning problem
into two smaller subproblems (Fig. 1b). Much like the
Informed Set between the start and target, the beacon induces

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 10212



(a) (b) (c) (d)

Fig. 2: (a) Initial solution. (b) GuILD selects a beacon and induces Local Subsets (green), which do not cover the narrow passage. (c) The
planner does not find a shorter path to the goal, so the Informed Set is unchanged. However, GuILD leverages improved cost-to-come in
the search tree to update Local Subsets. The start-beacon set shrinks to further focus sampling, and the remaining slack between beacon’s
and goal’s cost-to-comes expands the beacon-target set (described in detail in section IV). Local Subsets now cover the narrow passage,
focusing sampling within the Informed Set to quickly converge to (d) the optimal solution.

Local Subsets with (i) start and beacon as foci and (ii) beacon
and target as foci. GuILD leverages improvements to the
search tree to adapt the Local Subsets and converge to the
optimal path with fewer samples (Fig. 2).

Generating samples from the continuous configuration
space that will accelerate convergence to the optimal path
is a challenging problem. Most approaches extract geo-
metric information or low-dimensional structure from the
robot workspace to bias the sampling distribution [9]–[12].
However, these methods can be computationally expensive
and sensitive to covariate shift. GuILD simplifies this into
a discrete problem of identifying beacons that yield focused
samples. Local Subsets can be sampled efficiently, and the
distribution is biased online by leveraging cost information
already captured in the search tree.

GuILD only uses vertices in the search tree to construct
Local Subsets. While any configuration in the Informed Set
can be used to define subproblems, the lower bounds from
the admissible heuristic are insufficient for constraining the
two transverse axis diameters. In contrast, the current cost-
to-come for vertices in the search tree provides an additional
upper bound that uniquely defines the Local Subsets.

We make the following contributions:

• We introduce GuILD, an incremental densification
framework that effectively leverages search tree infor-
mation to focus sampling.

• We compare theoretical properties of the Local Subsets
that GuILD samples to the Informed Set.

• We propose several BEACONSELECTOR strategies for
GuILD, including an adversarial bandit algorithm.

• We show experimentally that regardless of the BEA-
CONSELECTOR, GuILD outperforms the state-of-the-
art Informed Set densification baseline across a range of
planning domains. In particular, GuILD yields modest
improvements in simpler planning domains and excels
in domains with difficult-to-sample homotopy classes.

II. RELATED WORKS

Sampling-based algorithms construct roadmaps [13] or
trees [14]–[16] by sampling configurations and connecting
nearest neighbors to compute a collision-free shortest path.
Sampling-based algorithms for optimal motion planning in-
crementally densify the configuration space to determine
shorter paths in an anytime manner [1], [3]–[6], [17] guaran-
teeing asymptotic optimality. However, their convergence is
typically slow, especially in higher dimensions and complex
environment with narrow passages; a uniform sampler re-
quires O(δ−d) configuration samples to discover the optimal
path with δ-clearance in a d-dimensional space, which can
be computationally prohibitive [16].

This motivated literature that focused on improving the
sampling strategy. A popular approach is to extract infor-
mation from the workspace to bias sampling. One class of
algorithms samples between regions of collision to identify
narrow passages [9], [18]–[23], or samples close to ob-
stacles to compute high quality paths that follow contours
of the obstacles [24]–[26]. This reduces the number of
samples required to compute a solution, at the expense of
computationally-intensive geometric tests to accept samples,
resulting in large planning times. Another class of algo-
rithms [27], [28] instead bias sampling by initially solving
a coarse approximation of the workspace, and the solution
informs subsequent sampling. These approaches, however,
can be used in parallel with GuILD to sample non-uniformly
within the Local Subsets.

Recently, to alleviate the issues with approaches relying
on explicit geometric tests, there has been effort in deter-
mining low-dimensional structure in the workspace to bias
sampling. Generative modeling tools have been applied to
learn sampling distributions, conditioned upon the current
planning problem and the obstacle distribution [10]–[12],
[29]–[31]. These approaches do not explicitly reason about
the Informed Set to provide optimality guarantees, and fail to
robustly sample bottleneck regions in complex environments.
As a result, the benefits are limited to environments that are
similar to those reflected in the training data. In contrast,

10213



GuILD makes no assumption about the environment struc-
ture. However, these learning-based approaches share with
GuILD the underlying idea of identifying critical samples
and can be leveraged to inform beacon selection.

A different class of algorithms adapt sampling online
as planning progresses. GuILD best fits in this class of
algorithms that bias sampling with the state of the planning
algorithm. Toggle-PRM [32] constructs one roadmap in the
free space and another in the obstacle space to infer narrow
passages and increase sampling density in such regions, but
does not adapt in a cost-sensitive manner. Some approaches
trade-off between exploration of the configuration space and
exploitation of the underlying cost space [33]. DRRT [34]
guides sampling by following a gradient of the underlying
cost function. However, these algorithms require additional
information from the cost function; GuILD assumes the cost
function is a black box to be evaluated. Guided-EST [35]
and Relevant Regions [36]–[38] are tree-based algorithms
that bias sampling within the Informed Set by considering
cost and the current local sampling density. In this work,
GuILD focuses on sampling increasingly dense roadmaps
via incremental densification, and thus algorithms such as
BIT* [4] are most appropriate for comparison.

III. SAMPLING-BASED OPTIMAL MOTION PLANNING
VIA INCREMENTAL DENSIFICATION

In this section, we formally introduce the problem of
sampling-based optimal motion planning (optimal SBMP).
Let X ⊆ Rn be the statespace of the planning problem,
where Xobs ⊂ X is the subspace occupied by obstacles and
the free space is Xfree = X\Xobs. Given source and target
states xs, xt ∈ Xfree, a path ξ : [0, 1]→ X is represented as
a sequence of states such that ξ(0) = xs and ξ(1) = xt. Let
Ξ(xs, xt) be the set of all such paths. Given a cost function
c : ξ → R≥0, an optimal collision-free path is defined as:

ξ∗ = arg min
ξ∈Ξ(xs,xt)

c(ξ) s.t. ∀t ∈ [0, 1], ξ(t) ∈ Xfree. (2)

Optimal SBMP algorithms progressively improve a
roadmap approximation of the state space to plan
asymptotically-optimal paths (Alg. 1). In each iteration,
states are sampled from Xfree to grow the vertices of an edge-
implicit1 graph G (Line 4). Then, a shortest path algorithm
computes the resolution-optimal path on G, internally using
an admissible heuristic h to focus the search (Line 5). If
densification produces a lower-cost path, the best solution
cost is updated and that path is emitted as ξi (Lines 6-
8). As the discrete graph G more closely approximates the
continuous state space, the sequence of resolution-optimal
paths {ξ1, ξ2, · · · } approaches the optimal path ξ∗ in cost.

Informed Incremental Densification

Given candidate state x ∈ Xfree and admissible heuristic h,
the cost of all paths between xs and xt that pass through x is
lower bounded by h(xs, x) +h(x, xt). Defined by Eq. 1, the

1The radius of connectivity of the implicit graph is chosen to ensure
asymptotic optimality [1].

Algorithm 1: Informed Optimal SBMP
Input: start vs, goal vt

Output: {ξ1, ξ2, · · · } s.t. c(ξi+1) < c(ξi)
1 Initialize best solution cost: c(ξ)←∞
2 Initialize edge-implicit graph: G ← {vs, vt}
3 repeat
4 Densify: G +←− Sample(vs, vt, c(ξ)) (?)

5 Compute shortest path: ξ̂ ← Search(vs, vt, G)

6 if c(ξ̂) = g(vt) < c(ξ) then
7 Update best solution cost: c(ξ)← g(vt)

8 Emit current solution ξ̂
9 until forever;

Informed Set (IS) excludes states for which this lower bound
exceeds the best solution cost c(ξ). Unlike sampling the
entire state space Xfree, sampling from the IS automatically
excludes states that cannot be part of a lower-cost path [8].

Euclidean distance, an admissible heuristic for path length,
admits a concise geometric description of the IS: an n-
dimensional prolate hyperspheroid EIS = E(xs, xt, c(ξ)) with
foci xs, xt and transverse axis diameter c(ξ).

EIS = {x | x ∈ X , ‖xs − x‖2 + ‖x− xt‖2 ≤ c(ξ)} (3)

Prolate hyperspheroids can be sampled analytically, rather
than via rejection sampling [8].

Sampling from the IS is a sufficient condition to converge
to ξ∗. The improved efficiency can be characterized by
comparing the measure (n-volume) λ(EIS) to the measure
of the full state space λ(X ). When λ(EIS) < λ(X ), the
IS can yield significant improvements on sample efficiency.
However, when the initial solution has high path length (e.g.,
due to a cluttered environment), λ(EIS) may instead be closer
to—or even larger than—λ(X ). This issue is exacerbated
because the IS only shrinks when shorter paths are found.
As a result, each iteration of densification and search that
fails to find a shorter path does not affect the state sampling
distribution. In the next section, we introduce a new strategy
that leverages this previously-wasted computational effort.

IV. GUIDED INCREMENTAL LOCAL DENSIFICATION

We present GuILD, an incremental densification frame-
work that leverages partial search information to focus
sampling within the IS. If an iteration of densification
and planning has failed to improve the solution cost, what
information is there for GuILD to take advantage of?

Our key insight is to open the black box of the underlying
search algorithm. Although the iteration may not have found
a shorter path to the goal, new shorter paths to other vertices
in the search tree can immediately improve the sampling
strategy (Alg. 1, Line 4).

Guiding Densification with Search Tree Information

During search (Alg. 1, Line 5), the algorithm internally
expands vertices in G to construct a search tree T . Each
vertex v ∈ T is associated with a parent vertex, a cost-
to-come g(v) via that parent, and a consistent cost-to-go
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Algorithm 2: GuILD
Input: beacon set B, search tree T , graph G
Output: densified graph G

1 if a solution does not yet exist then
2 G +←− UniformSample(Xfree)
3 else
4 b← BEACONSELECTOR(B)
5 ELS ← E(vs, b, g(b)) ∪ E(b, vt, c(ξ)− g(b))

6 G +←− UniformSample(ELS)
7 return G

vs vtb

g(b)

c(ξ) − g(b)

vs vt
b

g(b)

c(ξ) − g(b)

Fig. 3: Local Subsets ELS (green) are defined by a beacon b, as
well as the cost-to-come on the search tree g(b) and the current
best solution cost c(ξ).

heuristic h(v, vt). When new states are sampled and added
to G, they may also be added to T . Other vertices may
then discover that their cost-to-come would be reduced by
updating their parent to this new vertex [1], [4]. While the
IS only shrinks when these changes propagate all the way
to vt, GuILD leverages any cost-to-come improvement to
adaptively guide densification.
GuILD introduces the idea of a beacon: a vertex in the

search tree that decomposes the original sampling/planning
problem into two smaller subproblems (Fig. 3). We define the
Local Subsets (LS) induced by beacon b to be the union of
two prolate hyperspheroids, with foci (vs, b) and foci (b, vt).
The start-beacon set has transverse axis diameter g(b), only
including points that can improve the cost-to-come from vs

to b. Given the current shortest subpath to b and its cost-
to-come, the beacon-target set only includes points that can
extend that subpath and improve the solution cost by setting
the transverse axis diameter to c(ξ)− g(b).
GuILD adapts ELS after each iteration of densification

and planning. When g(b) is reduced, the start-beacon set
shrinks and the beacon-target set expands. Surprisingly, this
expansion is actually desirable: if the best solution cost
remains the same and the beacon’s cost-to-come is reduced,
there is a larger path length budget that can be expended
between the beacon and target that would still yield a shorter
path overall (Fig. 2).

We summarize the GuILD framework in Alg. 2, which
replaces the starred line of Alg. 1. The BEACONSELECTOR
(Alg. 2, Line 4) is a function that chooses a beacon to
guide local densification. GuILD samples uniformly from
ELS (Line 6) using the same analytic strategy proposed for
EIS [39]. GuILD must sample from the IS with nonzero

Algorithm 3: Candidate BEACONSELECTORs
Input: beacon set B

1 Function InformedSet
2 return vs;
3 Function Uniform
4 return b ∼ U(B);
5 Function Greedy
6 return arg maxb∈B w(b) . Eq. 4
7 Function Bandit
8 return EXP3(B) . implemented as in [40]

probability to retain asymptotic optimality. This is achieved
by including vs in the beacon set.

In Alg. 3, we present some candidate beacon selectors
that we evaluate in Section V. The InformedSet beacon
selector recovers the behavior of sampling from the IS by
choosing vs as the beacon. Uniform uniformly samples
from the beacon set B. The Greedy beacon selector aims to
select the beacon with the maximum possible improvement
in path length, while minimizing the measure of the set that
needs to be sampled. It takes the ratio of these two quantities:

w(b) =
c(ξ)− h(vs, b)− h(b, vt)

λ(ELS)
. (4)

Finally, the Bandit beacon selector implements the EXP3
adversarial bandit algorithm [40]. The reward function is the
fractional improvement in the path length

r(b) =
c(ξi−1)− c(ξi)

c(ξi−1)
. (5)

An adversarial bandit algorithm is necessary because this
reward function is nonstationary.

Properties of Local Subsets

First, we guarantee that GuILD only samples configura-
tions that can improve the current path length by showing
that both sets in ELS are subsets of the IS (Theorem IV.1).
Then, we show that the measure (n-volume) of ELS is upper-
bounded by that of the IS (Theorem IV.2), so choosing an
appropriate beacon will allow GuILD to densify the space
more efficiently.

Theorem IV.1. Given the current best solution cost c(ξi), a
beacon b ∈ T previously expanded with cost-to-come g(b),
we have that E(vs, b, g(b)), E(b, vt, c(ξi)− g(b)) ⊆ EIS.

Theorem IV.2. Given the current best solution cost c(ξi), a
beacon b ∈ T previously expanded with cost-to-come g(b),
we have λ(ELS) ≤ λ(EIS)

V. EXPERIMENTS

We evaluate GuILD on an array of planning problems to
characterize the proposed beacon selectors (Fig. 4).

In the R2 environments, the task is to plan from the bottom
left corner to the top right corner (Forest, TwoWall),
or the bottom right corner (Trap). A forest of obstacles is
randomly placed throughout each environment. The easier
Forest environment only has these random obstacles; as
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(a) Forest (b) TwoWall (c) Trap (d) SE2Maze (e) HERB Shelf

Fig. 4: Evaluation environments.

a result, there are many different homotopy classes that will
produce near-optimal paths. TwoWall and Trap introduce
large obstacles with narrow passages that must be crossed
to produce near-optimal paths. Discovering these passages
typically requires the space to be sampled very densely. At
the lower sampling resolutions resulting from fewer initial
graph samples, there are many suboptimal homotopy classes
that are more easily sampled and discovered. Therefore,
initial paths will have high cost and λ(EIS) will be much
larger than λ(X ). These more challenging scenarios highlight
the limitations of IS densification.

After characterizing the behavior of GuILD with R2

environments, we consider higher-dimensional planning
problems. In SE2Maze, a benchmark environment from
OMPL [41], the task is to navigate a car through a maze.
In HERB Shelf, a 7-DOF manipulator [42] is tasked with
moving its end-effector to pick an object from a bookshelf.

Evaluation Metrics and Hypotheses
We make three hypotheses that characterize the incre-

mental densification performance of GuILD. Sampling from
Local Subsets incurs negligible overhead relative to sampling
from the Informed Set; both rely on the same analytic
sampling primitive for prolate hyperspheroids. To make
these results independent of our computing environment, we
describe these hypotheses in terms of samples drawn. We
compare GuILD to BIT*, which is equivalent to GuILD
with the Informed Set BEACONSELECTOR (Alg. 3).

The first metric we consider is the Sample Efficiency of
incremental densification: how many samples must be drawn
before the optimal SBMP algorithm converges to the cost of
the optimal path? We determine this minimum cost c(ξ∗) by
running with a large timeout (1 min. for R2 problems, 5 min.
for higher-dimensional planning problems).

H1 GuILD will require fewer samples to converge to the
minimum solution cost than the Informed Set.

Next, to understand the performance of the optimal SBMP
algorithm over time, we consider the Convergence Percent-
age and Normalized Path Cost as a function of samples.
Convergence Percentage is the fraction of trials where the
planner had converged to the optimal path cost, with that
number of samples. Normalized Path Cost divides the cost
of the current best solution by the optimal path cost c(ξ)

c(ξ∗) .
H2 For a fixed sample budget, GuILD will have a higher

Convergence Percentage than the Informed Set.

H3 For a fixed sample budget, GuILD will have lower
Normalized Path Cost than the Informed Set.

Results

To test these hypotheses, we implement the BEACONS-
ELECTORs described in Section IV. We construct an initial
set of beacons B by sampling states from a low-discrepancy
sequence [43]. In our implementation, no new beacons
are added to B, and a beacon b ∈ B is considered by
BEACONSELECTOR only if b ∈ EIS. We run 100 random
trials for each pair of algorithm and environment.

To understand convergence across the random trials, we
plot the Convergence Percentage as a function of the number
of samples (Fig. 5). To support H2, we would expect the IS
baseline curve to remain below the GuILD curves. We find
this to be the case: on most environments, sampling from
the IS results in a lower Convergence Percentage for a fixed
sample budget. However, on a third of the TwoWall trials,
the Greedy heuristic causes over-sampling in regions that
ultimately do not yield the optimal path.

For each environment and instantiation of GuILD, Fig. 5
also shows Bonferroni-corrected nonparametric confidence
intervals on the median Sample Efficiency; Sample Effi-
ciency is not normally distributed. We find that in almost
all instances, GuILD focuses sampling more efficiently than
sampling from the IS, supporting H1. In general, the three
GuILD selectors achieve comparable Sample Efficiency,
suggesting that the key to their success is sampling from
Local Subsets. However, the adversarial Bandit selector
most consistently ranks among the best performing BEA-
CONSELECTORs, while Uniform and Greedy were each
less efficient on one environment.

While H1 shows that GuILD ultimately converges faster
to the optimal cost, we would also like to characterize the
rate of convergence. For each planning problem, we plot the
median Normalized Path Cost across the trials to understand
how path length is reduced over time (Fig. 6). Sharp drops in
path length (e.g., Fig. 6c) highlight the discrepancy between
high-cost homotopies that are easy to sample (navigating
around large obstacles) and near-optimal homotopies that
are difficult to sample (crossing narrow passages through
obstacles). Steady decreases in path length (e.g., Fig. 6a)
show planning problems where sampling can more easily
discover lower-cost homotopies.
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Fig. 5: Top: Convergence Percentage across 100 trials per environment. For most environments, sampling from the IS results in a worse
Convergence Percentage than GuILD for a given sample budget (leftmost curve is better). Bottom: Bonferroni-corrected nonparametric
confidence intervals (CI) for the median Sample Efficiency. For all but one GuILD instance across environments, the median Sample
Efficiency is smaller than that of the IS with 95% confidence. Bandit GuILD consistently ranks among the best densification strategies.

500 1000 1500 2000 2500 3000

Number of Samples

1.00

1.05

1.10

1.15

1.20

1.25

1.30

N
or

m
al

iz
ed

C
os

t

Bandit

Greedy

Uniform

IS (baseline)

(a) Forest

500 1000 1500 2000 2500 3000

Number of Samples

1.0

1.2

1.4

1.6

1.8

2.0

2.2

(b) TwoWall

0 500 1000 1500 2000 2500 3000

Number of Samples

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

(c) Trap

1000 1500 2000 2500 3000

Number of Samples

1.0

1.1

1.2

1.3

1.4

1.5

(d) SE2Maze

500 1000 1500 2000 2500 3000

Number of Samples

1.0

1.5

2.0

2.5

3.0

(e) HERB Shelf

Fig. 6: Normalized Path Cost, median across 100 trials. Sampling with GuILD reaches a near-optimal path length more quickly than
sampling from the IS, with significant improvement in all but the easiest planning domain (leftmost curve is better).

H3 is supported across all environments: sampling with
GuILD consistently yields a lower cost than sampling with
IS. In planning problems with low-cost homotopies, GuILD
automatically focuses sampling to deliver paths through
these narrow passages. With the Trap environment, GuILD
instances identify the narrow passage around 1100-1200
samples and quickly optimize within homotopies crossing the
passage. By contrast, the IS baseline requires nearly double
the samples to find the passage. The TwoWall environment
shows a similar trend, although with additional intermediate-
cost homotopies that only traverse one of the two narrow
passages (Fig. 6b).

The SE2Maze and HERB Shelf demonstrate the any-
time performance of GuILD on environments with less
distinct homotopy costs. As a result, all sampling schemes
steadily improve path cost, similar to Forest. However,
in HERB Shelf, GuILD instances have a much steeper
improvement, suggesting that GuILD may yield more signif-
icant sample efficiency improvements in higher dimensions.

VI. CONCLUSION

GuILD is a new framework for incremental densification
with a simple insight: even when the planner fails to dis-
cover a shorter path, the search tree still contains valuable
information that can immediately improve the densification
strategy. GuILD selects a beacon from the search tree that
decomposes the original sampling/planning problem into two
smaller subproblems. Improving the cost-to-come for any

beacon allows GuILD to adaptively shrink and expand the
Local Subsets that it samples from. Similar to the Informed
Set that GuILD builds upon, Local Subsets can be easily (and
efficiently) incorporated into any sampling-based optimal
motion planning algorithm.

Even simple beacon selectors, such as Uniform, can
dramatically accelerate the convergence rate relative to the
Informed Set densification baseline. We also propose a
Bandit selector using EXP3, an adversarial bandit algo-
rithm that consistently ranks among the best beacon selectors
across all the planning problems we considered. In particular,
GuILD excels in domains with difficult-to-sample homotopy
classes and high-dimensional planning problems.

In this work, we have primarily considered either heuristic
beacon selectors (Greedy) or beacon selectors that learn
from experience online (Bandit). Better heuristics for
selecting beacons may exist, including ones that build on
prior work in identifying and sampling bottleneck points.
Embedding these approaches within the GuILD framework
retains theoretical guarantees of asymptotic optimality, and
simplifies the learning problem from generating focused
samples to selecting beacons that yield focused samples.
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