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Abstract

We present DriveGPT, a scalable behavior model
for autonomous driving. We model driving as
a sequential decision-making task, and learn a
transformer model to predict future agent states
as tokens in an autoregressive fashion. We scale
up our model parameters and training data by
multiple orders of magnitude, enabling us to ex-
plore the scaling properties in terms of dataset
size, model parameters, and compute. We evalu-
ate DriveGPT across different scales in a planning
task, through both quantitative metrics and quali-
tative examples, including closed-loop driving in
complex real-world scenarios. In a separate pre-
diction task, DriveGPT outperforms state-of-the-
art baselines and exhibits improved performance
by pretraining on a large-scale dataset, further
validating the benefits of data scaling.

1. Introduction

Transformer-based foundation models have become increas-
ingly prevalent in sequential modeling tasks across various
machine learning domains. These models are highly ef-
fective in handling sequential data by capturing long-range
dependencies and temporal relationships. Their success has
been evident in natural language processing (Mann et al.,
2020; Kaplan et al., 2020; Hoffmann et al., 2022), time-
series forecasting (Zhou et al., 2021), and speech recogni-
tion (Kim et al., 2022), where sequential patterns play a
crucial role. One of the key strengths of transformer-based
models is their capacity to learn from large datasets includ-
ing millions of training examples, enabling them to address
complex tasks with increased model sizes, up to billions of
model parameters.
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Figure 1. Through data and model scaling, DriveGPT (red) handles
complex real-world driving scenarios, such as lane changing in
heavy traffic and yielding to a cyclist in the opposite lane, com-
pared to a smaller baseline trained on less data (pink).

Model Parameters Training Segments

VectorNet 72K 211K
PlanTF 2.1M M

QCNet-Argo2 7.3M 200K
QCNet-WOMD 7.5M 2.2M
Wayformer 20M 2.2M
MotionLM 27TM 1.1M
MTR 66M 2.2M
GUMP 523M 2.6M
DriveGPT (Ours) 1.4B 120M

Table 1. DriveGPT is ~3x larger and is trained on ~50x more data
sequences than existing published behavior models.

While scaling up model and dataset sizes has been critical
for recent advances in sequential modeling for text predic-
tion (Kaplan et al., 2020; Hoffmann et al., 2022), it remains
unclear whether these scaling trends can be directly ex-
tended to behavior modeling, particularly in driving tasks,
due to several unique challenges. First, driving tasks in-
volve a wider range of input modalities, including agent
trajectories and map information, unlike language tasks that
rely solely on textual inputs. Second, behavior modeling
demands spatial reasoning and an understanding of physical
kinematics. Such capabilities are typically beyond the scope
of language models. Finally, the collection of large-scale
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driving datasets requires substantial effort and resources,
making it far more challenging than gathering textual data.
As a result, existing work is often constrained by the avail-
ability of training data or the scalability of the models, as
summarized in Table 1.

In our work, we present a comprehensive study of scaling
up data sizes and model parameters in the context of be-
havior modeling for autonomous driving, which predicts
future actions of traffic agents to support critical tasks such
as planning and motion prediction. Specifically, we train a
transformer-based autoregressive behavior model on over
100 million high-quality human driving examples, ~50
times more than existing open-source datasets, and scale
the model over 1 billion parameters, outsizing existing pub-
lished behavior models.

As we scale up the volume of training data and the num-
ber of model parameters, we observe improvements in both
quantitative metrics and qualitative behaviors. More impor-
tantly, large models trained on extensive, diverse datasets
can better handle rare or edge-case scenarios, which of-
ten pose significant challenges for autonomous vehicles, as
shown in Fig. 1'. As a result, we see great potential in scal-
ing up behavior models through data and model parameters
to improve the safety and robustness of autonomous driving
systems.

Our main contributions are as follows:

1. We present DriveGPT, a large autoregressive behavior
model for driving, by scaling up both model parameters
and real-world training data samples.

2. We determine empirical driving scaling laws for an
autoregressive behavior model in terms of data size,
model parameters, and compute. We validate the value
of scaling up training data and compute, and observe
better model scalability as training data increases, con-
sistent with the language scaling literature.

3. We quantitatively and qualitatively compare models
from our scaling experiments to validate their effec-
tiveness in real-world driving scenarios. We present
real-world deployment of our model through closed-
loop driving in challenging conditions.

4. We demonstrate the generalizability of our model on
the Waymo Open Motion Dataset, which outperforms
prior state-of-the-art on the motion prediction task and
achieves improved performance through large-scale
pretraining.

'The baseline model is trained on ~350 times less data and uses
~50 times fewer parameters.

2. Related Work
2.1. Behavior Modeling

Behavior modeling is a critical task in autonomous driving,
which covers a broad spectrum of tasks including planning,
prediction, and simulation. Taking multimodal inputs in-
cluding agent history states and map information, behavior
models predict the future states of these traffic agents by rea-
soning about agent dynamics (Cui et al., 2020; Song et al.,
2022), interactions (Sun et al., 2022; Jiang et al., 2023),
human intent (Shi et al., 2022; Huang et al., 2022; Sun et al.,
2024), and driving environments (Liang et al., 2020; Kim
etal., 2021).

Among learning-based models, transformers have gained
popularity due to their ability to fuse multimodal inputs as
encoders (Nayakanti et al., 2023; Zhang et al., 2023; Zhou
et al., 2023; Jia et al., 2023; Gan et al., 2024) and model
long-range temporal relationships as decoders (Seff et al.,
2023; Shi et al., 2022; 2024). Despite the success of trans-
formers in behavior modeling, existing literature is often
restricted by the size of model parameters due to limited
training data, which fails to capture the full scaling poten-
tial of transformer-based models. In our work, we scale up
our transformer models to include billions of parameters,
by training on a large-scale dataset including more than
100M driving demonstrations, and validate the scalability
of transformer-based models in the context of autonomous
driving.

2.2. Large Transformer Models

Large transformers have demonstrated great success in se-
quential modeling tasks, by scaling up model parameters
and data sizes (Kaplan et al., 2020; Hoffmann et al., 2022;
Zhai et al., 2022; Muennighoff et al., 2023). These scaling
laws have pushed the boundary of many sequential mod-
eling tasks including natural language processing (Mann
et al., 2020), time-series forecasting (Zhou et al., 2021), and
speech recognition (Kim et al., 2022).

Recent work has studied the scalability of behavior mod-
els in the context of motion prediction (Seff et al., 2023;
Ettinger et al., 2024), planning (Sun et al., 2023), and sim-
ulation (Hu et al., 2024b), yet these studies are either con-
strained by limited data size (up to a couple of million
training examples), or focused on a few orders of magnitude
in terms of data and model scaling, limiting the potential to
draw statistically significant conclusions over a large scaling
range.

In this paper, we study the scaling properties (in terms of
data samples, model parameters, and compute) across a
much larger range compared to prior work. More specifi-
cally, we target an autoregressive decoder architecture that
has been proven to be both scalable (as in the LLM liter-
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Figure 2. DriveGPT architecture, including a transformer encoder and a transformer decoder. The transformer encoder summarizes
relevant scene context, such as target agent history, nearby agent history, and map information, into a set of scene embedding tokens. The
transformer decoder follows an LLM-style architecture that takes a sequence of agent states as input and predicts a discrete distribution of

actions at the next tick, conditioned on previous states.

ature) and effective in generating accurate trajectories for
traffic agents (Seff et al., 2023; Chen et al., 2024; Hu et al.,
2024a).

Beyond autonomous driving, there is limited relevant lit-
erature on building large transformer models for robotic
tasks (O’Neill et al., 2024; Octo Model Team et al., 2024),
which share a transformer architecture similar to our work.
Robotics models often share different input features and
dynamic models, and operate in different environments,
making them difficult to apply directly to driving tasks.

3. Behavior Model

We use a standard encoder-decoder architecture as our be-
havior model, as shown in Fig. 2. We use transformer-based
models as our encoder and decoder backbones due to their
scalability in related sequential modeling tasks.

3.1. Problem Formulation

We model the problem as a sequential prediction task over
the future positions of the target agent up to horizon T, by
applying the chain rule at each step, conditioning on driving
context information c and historical agent positions s:

P(s1.r|e) = II_, P(s¢|so:4—1,¢). 1)

The context information includes target agent history states
Crarget, NEArby agent history states Cpearby, and map states Cpap.
The historical agent information includes agent positions
from previous historical steps, i.e. sg.4—1 if we want to
predict agent positions at step .

We define “state” as a complete kinematic state including
position, orientation, velocity, and acceleration, which is
commonly available in agent history observations, and “po-
sition” as 2-D (X, y) coordinates to simplify the output space.

3.2. Scene Encoder

The encoder follows a standard transformer encoder archi-
tecture (Shi et al., 2022) that fuses all input modalities into
a set of scene embedding tokens. It consumes raw input
features, including target agent history states, nearby agent
history states, and map states as a set of vectors, and nor-
malizes all inputs to an agent-centric view. Each vector
is mapped to a token embedding through a PointNet-like
encoder as in (Gao et al., 2020). At the end of the encoder,
we apply a self-attention transformer (Vaswani et al., 2017)
to fuse all input context into a set of encoder embeddings,
¢ € R™"* % where n is the number of vectors and d is the
token dimensions, that summarize the driving scene.

3.3. LLM-Style Trajectory Decoder

Inspired by the LLM literature (Radford et al., 2019), we
follow (Seff et al., 2023) to use a transformer decoder archi-
tecture to predict the distribution of agent positions at each
step in the future.

The decoder first tokenizes agent positions at all steps into
embeddings with dimension d through a linear layer, fol-
lowed by a LayerNorm layer and a ReLU layer. At each
step ¢, the decoder takes agent embeddings up to ¢, and cross
attends them with the encoder embeddings c to predict the
distribution of agent positions at the next step ¢ + 1.

The output is a set of discrete actions a represented as the
Verlet action (Rhinehart et al., 2018; Seff et al., 2023), as the
second derivative of positions. We can apply the following
equation to map Verlet actions to positions:
Se41 =S¢+ (8¢ — st-1) + ay, 2
where a; is the predicted Verlet action, and (s; — s;—1)

assumes a constant velocity step. This representation helps
predict smooth trajectories using a small set of actions.
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3.4. Training

To train a DriveGPT model, we follow teacher forcing by
applying ground truth future positions as input to the trajec-
tory decoder. This allows us to predict all future steps in
parallel.

We use a single cross-entropy classification loss over the
action space, where the target action is selected as the one
that is closest to the ground truth future trajectories. We
refer the reader to Appendix A for more training details.

3.5. Inference

At inference time, we follow a standard LLM setup and
roll out a trajectory over horizon 7' autoregressively, by
repeating the process of predicting the action distribution at
the next step, sampling an action, and adding it back to the
input sequence.

We sample multiple trajectories in batch to approximate the
distribution and then subsample to the desired number of
modes using K -Means, as in (Seff et al., 2023).

4. Scaling Experiments

The goal of our scaling experiments is to determine the
effect of data and model size on behavior prediction perfor-
mance. Quantifying scaling laws similar to those seen in
LLMs (Kaplan et al., 2020) can help prioritize the value of
data and compute for future research directions in behavior
modeling. We focus our effort on exploring the next frontier
of data and model size — over an order of magnitude beyond
previously published work.

Large-scale driving dataset From millions of miles of
high-quality real-world human driving demonstrations, we
curate a small subset of 120M segments for an internal
research dataset. The dataset is carefully curated and bal-
anced to represent diverse geographic regions across multi-
ple cities and countries, including the United States, Japan,
and the UAE. Data collection is evenly distributed between
daytime and nighttime and is conducted primarily in ur-
ban environments. The dataset captures a wide range of
challenging driving scenarios, such as lane changes, inter-
sections, double-parked vehicles, construction zones, and
close interactions with pedestrians and cyclists.

We extracted map information, target agent states, and
nearby agent states into vectorized representation, as cus-
tomary in behavior modeling literature (Gao et al., 2020).

Scaling overview We scale the model size across three
orders of magnitude, from 1.5 million to 1.4 billion parame-
ters, by increasing the embedding dimension in both encoder
and decoder transformers. For each model size, we explore

Model Size | Hidden Dimension (dj0qe1)) Max LR

1.5M 64 0.0050
4M 128 0.0020
&M 192 0.0014

12M 256 0.0010

26M 384 0.0010

94M 768 0.0007

163M 1024 0.0004

358M 1536 0.0002
629M 2048 0.0001
1.4B 3072 0.0001

Table 2. We vary the model size over three orders of magnitude
through hidden dimensions. For each model size, we report the
optimal learning rate, which decreases as the model size increases,
matching the observations in the LLM scaling literature (Kaplan
et al., 2020; Hoffmann et al., 2022).

multiple learning rate schedules using a cosine decay over
the full training steps and select the maximum learning rate
that yields the best performance. Table. 2 summarizes the
optimal learning rate for each model size. Consistent with
practices in large language model scaling (Kaplan et al.,
2020), each model is trained for a single epoch.

We evaluate model performance using validation loss, com-
puted on a comprehensive validation set of 10 million sam-
ples drawn from the same distribution as the training data,
with no overlap. This set remains fixed across all scaling
experiments to ensure consistency. We use validation loss as
a proxy to measure model performance, following standard
practices in scaling studies (Kaplan et al., 2020; Hoffmann
et al., 2022; Muennighoff et al., 2023). This loss, calculated
as cross-entropy on next-action prediction, serves as our
primary performance metric. Additional driving-specific
metrics are reported in Sec. 5.1.

4.1. Data Scaling

Data scaling results are summarized in Fig. 3. The smallest
dataset of 2.2M samples mimics the size of Waymo Open
Motion Dataset (WOMD) (Ettinger et al., 2021), a large
open-source dataset for behavior modeling (~44k scenarios
with multiple target agents per scenario). We select a few
subsets of our internal research dataset to study data scaling
across different orders of dataset sizes. Our experiments use
~50x more data than WOMD, exploring a new region of
the design space.

The results indicate that as the model is trained on more
unique data samples, the performance improves, regardless
of model size. Extrapolating from the scaling law in Fig. 3,
to improve the best loss by another 10%, we would need to
include 350M more training examples. A 20% improvement
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Figure 3. Performance increases with dataset size across a range
of model parameters, indicating that data is a limiting factor. Both
axes are on a log scale. An exponential fit was applied to all
data points except for the 1.5M curve, resulting in the following
relationship: log(L) = —0.1021log(D) + 2.663 with an R* value
of 0.986, where L is the validation loss and D is the number of
unique training samples.

would require about 1.4B more examples. As a result, we
find that data remains the bottleneck for further improving
driving performance.

Lastly, the scaling results remain relatively consistent across
model sizes. This consistency indicates that data scaling
comparisons can be done on reasonably small model sizes
beyond 10M parameters.

4.2. Model Scaling

We now study model sizes across three orders of magni-
tude (1.5M to 1.4B parameters), as listed in Table 2. We
increase model size by increasing the hidden dimensions of
transformers for simplicity. We notice that modifying other
parameters such as number of attention heads and hidden
dimensions per head does not lead to noticeable changes in
the results, as studied in Appendix B.

Training larger models is sensitive to learning rates, as ob-
served in other scaling studies (Kaplan et al., 2020; Hoff-
mann et al., 2022). For each model size, we run multiple
experiments at different learning rates to select the one with
the optimal performance, as summarized in Table. 2.

Results in Fig. 4 demonstrate that increasing the amount
of training data enhances the effectiveness of model scal-
ing. Specifically, when the dataset size is up to 21M, the
impact on the validation loss is barely noticeable across a
large range of model sizes. Beyond 21M samples, validation
losses improve with larger models — up to 12M parameters
when trained on the 42M dataset and up to 94M parame-
ters when trained on the 120M dataset — before reaching
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Figure 4. Model scaling is more effective as training data increases.
The validation loss improves up to ~100M parameters when
trained on the full dataset.
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Figure 5. Relationship between (smoothed) training loss and
FLOPs. Each curve represents an experiment corresponding to a
specific model size, and the “min bound” indicates the best perfor-
mance possible for a given FLOP budget.

a plateau and eventually overfitting. These findings fur-
ther reinforce that data is the primary bottleneck for scaling
models, aligning with observations in the LLM scaling liter-
ature (Kaplan et al., 2020). We leave further exploration of
scaling behavior with larger datasets to future work.

4.3. Compute Scaling

In Fig. 5, we examine how compute affects training loss,
where compute is measured by Floating Point Operations
(FLOPs). We identify a monotonically decreasing “min-
bound” boundary, which shows the lowest training loss
observed up to the current compute value. As we increase
compute, training loss generally decreases. Initially, this
decrease is quite steep, but it gradually slows down at higher
FLOPs values. This trend is consistent with observations in
the LLM scaling literature, such as those reported by (Hoff-
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Figure 6. Performance as a function of model size for fixed com-
pute budgets. The solid gray line connects the best result from
each compute budget.

mann et al., 2022), covering a subset of the full FLOP range
explored in these studies.

Next, we investigate whether there is an optimal combina-
tion of data size and model parameters for a fixed compute
budget. Given the large computational expense for train-
ing models at the scales we are exploring, it is important
to make the best use of our data. In this study, we fixed
the compute budget in different FLOP groups. For a fixed
compute budget, we can allocate resources either to model
parameters or data samples, keeping their product constant.

Fig. 6 plots the performance with different compute budgets.
The trend clearly shows that a larger compute budget leads
to better performance, with optimal model size increasing
accordingly, as indicated by the “best” gray line. The results
further reveal that data is the main bottleneck, as the smallest
model outperforms others in the three largest FLOP groups.

4.4. Ablation Study on Decoder Architecture

We scale up two different model architectures by two orders
of magnitude: our autoregressive decoder and a one-shot
decoder. For the one-shot decoder, we follow (Nayakanti
et al., 2023) to use a transformer decoder that takes a set
of learned queries and cross attends them with scene em-
beddings to produce trajectory samples. This decoder is
referred to as “one-shot” because it generates the full tra-
jectory rollout at once, where an autoregressive decoder
follows an LLM-style to produce trajectories one step at a
time.

The results are summarized in Fig. 7, where we use minFDE
at 6 seconds as a proxy to measure the model performance
because of different loss definitions between two decoder
architectures. Despite worse performance at small-scale
parameters, our autoregressive decoder achieves better scal-
ability and outperforms the one-shot baseline beyond 8M

—e— DriveGPT (ours)
—e— One-shot decoder

fun
1

o
©

minFDE 6s [m]

T T
107 108
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Figure 7. DriveGPT achieves better scalability in terms of

minFDE, by adopting an autoregressive architecture compared
to a one-shot architecture.

parameters. While we find it harder to scale the one-shot
decoder, we confirm that our autoregressive decoder scales
up to 100M parameters in terms of prediction accuracy, and
defer further scalability study on the one-shot decoder as
future work.

5. Planning and Prediction Experiments

In this section, we show detailed results of DriveGPT in
a planning task using our internal research dataset and a
motion prediction task using an external dataset. The results
here further explore the impact of scaling from Section 4
and help ground those results in driving tasks and metrics.

5.1. Internal Evaluation: AV Planning

For the planning task, we train our model using our internal
research dataset, composed of millions of high-quality hu-
man driving demonstrations, and generate AV trajectories
by autoregressively predicting the next action, as described
in Sec. 3.5.

We approximate the distribution by oversampling trajecto-
ries in batch and subsampling to 6 trajectories as in (Seff
et al., 2023). While the AV must ultimately select a single
trajectory for planning, returning multiple samples helps bet-
ter understand multimodal behavior and aligns with motion
prediction metrics.

We measure the planning performance on a comprehensive
test set through a set of standard geometric metrics including
minADE (mADE), minFDE (mFDE), and miss rate (MR).
Additionally, we use semantic-based metrics including of-
froad rate (Offroad) that measures the ratio of trajectories
that leave the road and collision rate (Collision) that mea-
sures the ratio of trajectories overlapping with traffic agents.
We normalize these metrics across experiments to highlight
relative performance changes.

5.1.1. DATA SCALING RESULTS

We compare a DriveGPT model at 26M parameters trained
on datasets of different sizes. The baseline dataset (2.2M)
is selected to mimic the size of a typical behavior modeling
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Data| mADE | mFDE | MR | Offroad | Collision |

Model |mADE | mFDE | MR | Offroad | Collision |

22M| 1.000 1.000 1.000  1.000 1.000
21IM| 0.561 0496 0420 0.326 0.269
85M| 0.496 0441 0332 0.238 0.217

120M | 0.489 0433 0317 0.198 0.196

8M| 1.000 1.000 1.000  1.000 1.000
26M | 0.954 0950 0.902 0.858 0.915
94M | 0.937 0.925 0.866 0.815 0.890

163M | 0.943 0.925 0.875 0.815 0.817

Table 3. As we scale up more training data, DriveGPT produces
better AV trajectories as measured across all metrics. Metrics are
normalized to highlight relative performance.

Figure 8. By training on 50x more data, DriveGPT (red) is able
to produce high-quality trajectories in red that keep a safe lateral
distance from a jaywalker (top) and go around two double-parked
vehicles (bottom).

dataset such as WOMD.

The results are presented in Table 3, where we see that train-
ing on more data samples significantly improves the quality
of the predicted AV trajectories, in terms of critical seman-
tics metrics in driving including offroad rate and collision
rate, as well as geometric metrics. These improvements are
consistent with Sec. 4.1.

We further present two qualitative examples in Fig. 8 to
illustrate the value of training on more data. In these exam-
ples, red trajectories represent DriveGPT trained on 120M
samples, and pink trajectories are from the same model
trained on 2.2M samples. The examples show that our
method produces map-compliant and collision-free trajec-
tories when trained on more data, successfully handling
complicated interactions involving a jaywalking pedestrian
and two double-parked vehicles.

5.1.2. MODEL SCALING RESULTS

We train four models using our 120M internal research
dataset, and select the 8M model as the baseline. The base-
line represents a reasonable size at which our model starts
to outperform one-shot decoders, as shown in Sec. 4.4.

The results are presented in Table 4, where all metrics im-
prove as the model size increases up to 94M parameters,

Table 4. As we scale up more model parameters, all metrics im-
prove up to 94M. Collision rate continues to improve at 163M.
Metrics are normalized to highlight relative performance.

Figure 9. By training with 12x more parameters, DriveGPT (red)
produces realistic trajectories that obey lane boundaries when
performing a right turn into traffic.

with further gains in the collision metric at 163M parameters
(see Sec. D.1 for qualitative examples). Although valida-
tion loss shows diminishing returns beyond 94M in Fig. 4,
driving metrics continue to improve with increased model
capacities, highlighting the potential benefits of introducing
more parameters for enhanced driving performance.

We present a qualitative example in Fig. 9, where a
larger DriveGPT including 94M parameters produces better
trajectory samples in red that stay within the road boundary,
compared to a smaller version including 8M parameters, in
a right turn scenario.

5.1.3. CLOSED-LOOP DRIVING

We demonstrate the effectiveness of DriveGPT as a real-
time motion planner deployed in a closed-loop setting. The
model takes input features from an industry-level perception
system that outputs agent states and map information. We
used the 8M DriveGPT model, trained on the full dataset, to
drive the car, achieving a latency of under 50ms on a single
onboard GPU.

In Fig. 10, we present a challenging example in dense
urban traffic where there are two double-parked vehicles
blocking the path forward along with other oncoming ve-
hicles. DriveGPT generates smooth and safe trajecto-
ries, bypassing the blocking vehicles and moving back
to the original lane afterward. More examples are pre-
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Figure 10. Example of DriveGPT running as a closed-loop planner
in real time in dense urban traffic. It first produces a forward tra-
jectory (top), updates it to bypass double-parked vehicles (middle),
and drives back to the original lane at the end (bottom).

sented in the supplementary video at https://youtu.

be/-hLi44PfY8g, where DriveGPT alone is responsible
for driving in real time.

5.2. External Evaluation: Motion Prediction

To directly compare with published results, we evalu-
ate DriveGPT on the WOMD motion prediction task. Addi-
tionally, we explore the benefits of scale by pretraining on
our internal research dataset and finetuning on the signifi-
cantly smaller WOMD dataset.

5.2.1. OPEN-SOURCE ENCODER

For our external evaluation, we use the open-source
MTR (Shi et al., 2022) encoder. This encoder is similar
to the one described in Sec. 3.2. We make this change to
improve the reproducibility of our results and take advan-
tage of MTR’s open-source dataloading code for WOMD.
We use the same autoregressive decoder as described in
Sec. 3.3.

5.2.2. PRETRAINING SETUP

We made a couple of minor modifications to DriveGPT to
be compatible with the WOMD dataset. First, we modify
our map data to include the same semantics as in WOMD.
Second, we modify our agent data to include the same kine-

matic features for traffic agents as in WOMD.

We pretrain DriveGPT by training on our internal research
dataset for one epoch (as in Sec. 4). We load the pretrained
checkpoint and finetune the model using the same training
setup as in the MTR codebase, where we train the model for
30 epochs using a weighted decay learning rate scheduler.

5.2.3. RESULTS

We measure model performance via a set of standard
WOMD metrics, including minADE, minFDE, miss rate,
and soft mAP. Each metric is measured on the test set and
computed over three different time horizons.

We present two variants of our method to validate its effec-
tiveness on the motion prediction task, including DriveGPT-
WOMD that is trained on WOMD, and DriveGPT-
Finetune that is pretrained on our 120M internal research
dataset and finetuned on WOMD. For baselines, we use a
set of representative state-of-the-art models.

We report results on the WOMD test set” in Table 5. The
results demonstrate that our method outperforms existing
state-of-the-art non-ensemble models in terms of geometric
metrics. Compared to Wayformer (Nayakanti et al., 2023)
and MotionLM (Seff et al., 2023) that use ensembles of
up to 8 replicas, our model achieves the best minADE and
minFDE metrics and the second-best miss rate metric with-
out any ensembling.

While we prioritize geometric metrics that emphasize the
recall of predicted trajectory samples (i.e. not missing the
critical trajectory), our model shows lower soft mAP scores
due to suboptimal probability estimates. These estimates
suffer from accumulated noises over time, as they are com-
puted by compounding the action probabilities over a long
sequence (as described in Eq. (1)), resulting in less accurate
sample probabilities and reduced soft mAP, which relies on
accurate probability assignments across predicted samples.
Consequently, we notice that the gap in soft mAP grows as
the prediction horizon increases. This reveals a limitation
of using an autoregressive decoder for accurate probabil-
ity estimation, as also noted in the LLM literature (Jiang
et al., 2021; Geng et al., 2024). We defer improving the
probability estimates of autoregressive models for behav-
ior modeling as future work. One potential direction is to
train an additional probability prediction head for each sam-
ple, which could enhance probability estimates and lead to
improved soft mAP scores.

We observe up to 3% additional gains by pretraining on our
internal dataset, despite a large distribution shift between
our internal dataset and the public WOMD dataset, in terms

2Metrics are sourced from (Zhang et al., 2023) and WOMD
leaderboard.


https://youtu.be/-hLi44PfY8g
https://youtu.be/-hLi44PfY8g

DriveGPT: Scaling Autoregressive Behavior Models for Driving

minADE] minFDE| Miss Rate| Soft mAP{

MTR (Shi et al., 2022) 0.6050 1.2207 0.1351 0.4216
HDGT (Jia et al., 2023) 0.7676 1.1077 0.1325 0.3709
HPTR (Zhang et al., 2023) 0.5565 1.1393 0.1434 0.3968
ControlIMTR (Sun et al., 2024) 0.5897 1.1916 0.1282 0.4572
MTR-++ (Shi et al., 2024) 0.5906 1.1939 0.1298 0.4414
Wayformer! (Nayakanti et al., 2023) | 0.5454 1.1280 0.1228 0.4335
MotionLM' (Seff et al., 2023) 0.5509 1.1199 0.1058 0.4507
DriveGPT-WOMD 0.5279 1.0609 0.1236 0.3795
DriveGPT-Finetune 0.5240 1.0538 0.1202 0.3857

Table 5. On the WOMD test set, DriveGPT achieves better results in geometric metrics without any ensembling, and improved performance
after pretraining. Results are averaged over three agent types (vehicle, pedestrian, cyclist) and three prediction horizons (3s, 5s, 8s). The
best metric is highlighted in bold and the second best is underlined. T denotes ensemble.

Vehicle ‘minADEi minFDE| Miss Rate]
MTR 0.7642 1.5257 0.1514
DriveGPT-WOMD | 0.6396 1.2823 0.1213
DriveGPT-Finetune | 0.6326 1.2636 0.1181
Cyclist ‘minADE¢ minFDE| Miss Rate]
MTR 0.7022 1.4093 0.1786
DriveGPT-WOMD | 0.6317 1.2617 0.1756
DriveGPT-Finetune | 0.6294 1.2641 0.1691
Pedestrian minADE| minFDE| Miss Rate]
MTR 0.3486 0.7270 0.0753
DriveGPT-WOMD | 0.3122 0.6388 0.0738
DriveGPT-Finetune | 0.3100 0.6338 0.0733

Table 6. DriveGPT achieves better geometric metrics across a
diverse set of agent types. Results are averaged over 3 prediction
horizons.

of trajectory distributions, feature noises, and differences in
semantic definitions.

Diving deeper into agent-specific results in Table 6, we see
consistent improvements across all agent types, compared
to MTR that shares the same encoder as ours. This further
validates the generalizability of our method, in addition to
vehicle behavior modeling results described in Sec. 5.1.

5.2.4. QUALITATIVE COMPARISON

We present two qualitative comparisons in Fig. 11,
where DriveGPT produces better trajectories in terms of
diversity (covering more distinct outcomes) and accuracy
(matching with the ground truth future) compared to MTR.
This improvement is evident in challenging scenarios with
limited agent history information (top row) and multiple
future modalities (bottom row).

MTR S DriveGPT

MTR [ | DriveGPT

Figure 11. Compared to MTR (left), DriveGPT (right) produces
more accurate and diverse trajectories in complex intersections.
Blue represents ground truth future trajectories.

6. Conclusion

We introduced DriveGPT, an LLM-style autoregressive be-
havior model, to better understand the effects of model
parameters and dataset size for autonomous driving. We
systematically examined model performance as a function
of both dataset size and model capacity, revealing LLM-
like scaling laws for data and compute, as well as dimin-
ishing returns with increased model size. We showed the
quantitative and qualitative benefits of scaling for planning
in real-world driving scenarios. Additionally, we demon-
strated our method on a public motion prediction benchmark,
where DriveGPT outperformed state-of-the-art baselines
and achieved improved performance through pretraining on
a large-scale dataset.
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A. Training Detail
A.1. Internal Evaluation: AV Planning

‘We train our models on the internal research dataset for 1
epoch, as customary in the LLM scaling literature (Kaplan
et al., 2020; Hoffmann et al., 2022).

Our models follow the implementations described
in (Nayakanti et al., 2023; Seff et al., 2023), and are trained
using a batch size of 2048 and a standard Adam optimizer
adopted in (Kaplan et al., 2020). We follow the optimal
learning rate schedule discovered in (Hoffmann et al., 2022),
which applies a cosine decay with a cycle length equiva-
lent to the total number of training steps. All models were
trained on 16 NVIDIA H100 GPUs.

A.2. External Evaluation: Motion Prediction

We train our models on the WOMD data following the same
setup in (Shi et al., 2022). More specifically, we use a batch
size of 80 and an AdamW optimizer with a learning rate of
0.0001. The models are trained for 30 epochs, where the
learning rate is decayed by a factor of 0.5 every 2 epochs,
starting from epoch 20.

B. Additional Ablation Studies
B.1. Ablation Study on Attention Heads

In Fig. 12, we present an ablation study examining the
impact of the number of heads in the encoder and decoder
transformers, while keeping the hidden dimension the same,
as specified in Table. 4. For each hidden dimension (dyodel),
we conduct experiments across multiple configurations® of
attention heads and present their validation losses using
a distinct color. While we notice a pattern where more
decoder attention heads lead to better performance for small
models, the scaling trend is more influenced by the hidden
dimension size than by the number of attention heads when
the hidden dimension remains fixed.

B.2. Ablation Study on Decoder Scaling

In Fig. 13, we present model scaling results (in dashed lines)
where we only scale up the autoregressive decoder, while
keeping the encoder at a fixed size. Compared to scaling
both encoder and decoder (in solid lines), scaling only the
decoder exhibits a similar trend but yields worse perfor-
mance, especially for models exceeding 10M parameters in
two larger datasets. Therefore, our main results focus on
scaling both encoder and decoder.

3For the last group, we omit a few models due to memory
constraints.
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Figure 12. Adjusting the number of attention heads has a smaller
effect on the trend of validation losses, compared to changing the
hidden dimension.
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Figure 13. Scaling only the decoder exhibits a similar trend but
worse results compared to scaling both encoder and decoder. Scal-
ing only the encoder has little impact beyond 10M parameters.

B.3. Ablation Study on Encoder Scaling

In Fig. 13, we present model scaling results (in dotted lines)
where we only scale up the encoder, while keeping the
decoder at a fixed size. The results indicate that encoder
scaling is not as effective as decoder scaling.

C. Scaling From a Perplexity View

Following the LLM scaling literature, we present our scaling
results as a function of validation loss. Another key aspect
to highlight is the perplexity scale. Perplexity, defined as the
exponentiation of entropy, quantifies how well a probability
model predicts a sample. It reflects the effective number of
choices the model considers: a perplexity of k£ implies the
model is k-way perplexed.

In Fig. 14, we re-plot the scaling results, adding a secondary
y-axis to represent perplexity. In Fig. 15, we plot the per-
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Figure 14. Fig. 4 replotted with a perplexity scale on the right y-
axis for ease of reference.
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Figure 15. We fit the best perplexity values from all models in
Fig. 3 as a function of dataset size. A simple linear regression
yields log(P) = —0.28 log(D) + 7.22 with an R? value of 0.994,
where P is the validation perplexity and D is the number of unique
training examples.

plexity of our best models as a function of unique training
examples. Extrapolating from the perplexity fit in the figure,
a perplexity of 7 would require about 70M more training
examples and a perplexity of 5 would require 500M more
training examples.

D. Additional Qualitative Examples
D.1. Qualitative Comparison of Large Models

In Fig. 16, we present two qualitative examples demon-
strating that a larger DriveGPT model (163M parameters)
exhibits better collision avoidance capabilities, compared to
its smaller 94M-parameter variant.

D.2. Additional Closed-Loop Driving Examples

In the supplementary video at https://youtu.be/
-hLi44PfY8g, we present additional examples of deploy-
ing DriveGPT as a real-time motion planner in a closed-loop
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Figure 16. A larger DriveGPT model at 163M parameters gener-
ates trajectories (red) that maintain a safer distance from other
traffic agents and road debris compared to a smaller model at 94M
parameters (pink).

DriveGPT

- DriveGPT

MTR

Figure 17. In examples where DriveGPT has the largest error re-
gressions compared to MTR, it predicts less accurate trajectories
due to the presence of lane boundary (top row) or missing map
information (bottom row). Blue represents ground truth future.

setting. The video covers representative challenging scenar-
ios in driving, including a) unprotected left turn, b) double
parked vehicle, ¢) construction zone, d) blow-through cy-
clist, and e) lane change in heavy traffic.

D.3. Failure Cases on WOMD

We show two representative failure examples of DriveGPT
in Fig. 17, selected based on the largest minFDE regressions
of our method compared to the MTR baseline on WOMD.
In the first example (top row), our method fails to predict
trajectories that make a left turn, likely due to the pres-
ence of a lane boundary. In the second example (bottom
row), DriveGPT predicts an undershooting trajectory that
results in a larger longitudinal error due to missing map
information in the data.
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Vehicle |Data |mADE| mFDE| MR|

DriveGPT-WOMD | N/A
DriveGPT-Finetune | 40M
DriveGPT-Finetune | 80M
DriveGPT-Finetune | 120M

0.6381 1.2846 0.1233
0.6368 1.2788 0.1217
0.6341 1.2736 0.1207
0.6310 1.2655 0.1195

Table 7. Using more training samples during pretraining gives bet-
ter results (averaged over 3 horizons) in the finetuned model. This
verifies the benefit of data scaling as shown in Sec. 4.1.

Model Parameters ‘ mADE| mFDE| MR|]

2M 0.6953 1.4297 0.1489
4M 0.6534 1.3202 0.1298
oM 0.6423 1.2955 0.1249
14M 0.6381 1.2846 0.1233
21M 0.6396 1.2871 0.1225

Table 8. Scaling model parameters in DriveGPT-WOMD improves
vehicle prediction metrics up to 14M model parameters. Results
are averaged over 3 prediction horizons.

E. Additional WOMD Validation Results

In this section, we present additional ablation studies on the
WOMD validation set, due to the submission limit of the

WOMD test server.

E.1. WOMD Data Scaling in Pretraining

We validate the effectiveness of data scaling, by pretrain-
ing DriveGPT on various sizes of our internal dataset. The
results in Table 7 indicate that pretraining on more unique
samples leads to better results in the finetuned model, align-
ing with our findings in Sec. 4.1 that data scaling improves

model performance.

E.2. WOMD Model Scaling

We present an ablation study on model scaling us-
ing DriveGPT-WOMD in Table 8. The results show that
the model performance continues to improve up to 14M
parameters, with no further gains beyond this point due to
the limited sample size in WOMD. Therefore, we choose to
report the results from the 14M model in Sec. 5.2.
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