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Abstract— Many robotic systems deal with uncertainty by
performing a sequence of information gathering actions. In this
work, we focus on the problem of efficiently constructing such
a sequence by drawing an explicit connection to submodularity.
Ideally, we would like a method that finds the optimal sequence,
taking the minimum amount of time while providing sufficient
information. Finding this sequence, however, is generally in-
tractable. As a result, many well-established methods select ac-
tions greedily. Surprisingly, this often performs well. Our work
first explains this high performance — we note a commonly used
metric, reduction of Shannon entropy, is submodular under
certain assumptions, rendering the greedy solution comparable
to the optimal plan in the offline setting. However, reacting
online to observations can increase performance. Recently
developed notions of adaptive submodularity provide guarantees
for a greedy algorithm in this online setting. In this work,
we develop new methods based on adaptive submodularity for
selecting a sequence of information gathering actions online.
In addition to providing guarantees, we can capitalize on
submodularity to attain additional computational speedups. We
demonstrate the effectiveness of these methods in simulation
and on a robot.

I. INTRODUCTION

Uncertainty is a fundamental problem in robotics. It
accumulates from various sources such as noisy sensors,
inaccurate models, and poor calibration. This is particularly
problematic for fine manipulation tasks [1], such as grasping
and pushing a small button on a drill, hooking the fingers
of a hand around a door handle and turning it (two running
examples in our paper), or inserting a key into a keyhole.
Because these tasks require high accuracy, failing to account
for uncertainty often results in catastrophic failure.

To alleviate these failures, many works perform a se-
quence of uncertainty reducing actions prior to attempting the
task [2]-[6]. In this work, we address the efficient automatic
construction of such a sequence when information gaining
actions are guarded moves [7]. See Fig. 1 for an example
sequence which enabled a successful grasp of door handle
with a noisy pose estimate.

Ideally, the selected actions reduce uncertainty enough to
accomplish the task while optimizing a performance criterion
like minimum energy or time. Computing the optimal such
sequence can be formulated as a Partially Observable Markov
Decision Process (POMDP) [8]. However, finding optimal
solutions to POMDPs is PSPACE complete [9]. Although
several promising approximate methods have been devel-
oped [10]-[13], they are still not well suited for many ma-
nipulation tasks due to the continuous state and observation
spaces.

Previous work on uncertainty reduction utilizes online
planning within the POMDP framework, looking at locally
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Fig. 1: We adaptively select a sequence of touch actions to reduce uncer-
tainty. Here, we show actions selected by our Hypothesis Pruning method,
enabling a successful grasp.

reachable states during each decision step [14]. In general,
these methods limit the search to a low horizon [15], often
using the greedy strategy of selecting actions with the highest
expected benefit in one step [2]-[5]. This is out of necessity
- computational time increases exponentially with the search
depth. However, this simple greedy strategy often works
surprisingly well.

One class of problems known to perform well with a
greedy strategy is submodular maximization. A metric is
submodular if it exhibits the diminishing returns property,
which we define rigorously in Section III-A. A striking fea-
ture of submodular maximizations is that the greedy strategy
is provably near-optimal. Furthermore, no polynomial time
algorithm can guarantee optimality [16], [17].

One often used metric for uncertainty reduction is the ex-
pected decrease in Shannon entropy [2]-[6], [18]-[20]. This
is referred to as the information gain metric, and has been
shown to be submodular under certain assumptions [21]. Not
surprisingly, many robotic systems which perform well with
a low horizon use this metric [2]-[5], [18], though most do
not make the connection with submodularity. We note that
Hsiao mentions that touch localization could be formulated
as a submodular maximization [15].

The guarantees for submodular maximization only hold
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in the non-adaptive setting. That is, if we were to select a
sequence of actions offline, and perform the same sequence
regardless of which observations we received online, greedy
action selection would be near-optimal. Unfortunately, it
has been shown that this can perform exponentially worse
than a greedy adaptive algorithm for information gain [22].
Thus, while there are no formal guarantees for performing a
submodular maximizations online, we might hope for good
performance.

Recent notions of adaptive submodularity [23] extend the
guarantees of submodularity to the adaptive setting, requiring
properties similar to those of submodular functions. Unfor-
tunately, information gain does not have these properties.
With information gain as our inspiration, we design a similar
metric that does. In addition to providing guarantees with
respect to that metric, formulating our problem as an adaptive
submodular maximization enables a computational speedup
through a lazy-greedy algorithm [23], [24] which does not
reevaluate every action at each step.

We present three greedy approaches for selecting uncer-
tainty reducing actions. The first is our variant of information
gain. This approach is similar to previous works [2]-[6],
[18]-[20], though we also enforce the assumptions required
for submodular maximization. The latter two maximize the
expected number of hypotheses they disprove. We show these
metrics are adaptive submodular. We apply all methods to
selecting touch based sensing actions and present results
comparing the accuracy and computation time of each in
Section V. Finally, we show the applicability of these meth-
ods on a real robot.

II. RELATED WORK

Hsiao et al. [4], [15] select a sequence of uncertainty
reducing tactile actions through forward search in a POMDP.
Possible actions consist of pre-specified world-relative trajec-
tories [4], motions based on the current highest probability
state. Actions are selected using either information gain or
probability of success as a metric [15], with a forward search
depth of up to three actions. Aggressive pruning and cluster-
ing of observations makes online selection tractable. While
Hsiao considers a small, focused set of actions (typically
~5) at a greater depth, we consider a broad set of actions
(typically ~150) at a search depth of one action.

Hebert et al. [5] independently approached the problem of
action selection for touch based localization. They utilize a
greedy information gain metric, similar to our own. However,
they do not make a connection to submodularity, and provide
no theoretical guarantees with their approach. Additionally,
they model noise only in X,Y,Z, while we use X,Y,Z. 0.
Furthermore, by using a particle based representation instead
of a histogram (as in [5], [15]), we can model the underlying
belief distribution more efficiently.

Others forgo the ability to plan with the entire belief space
altogether, projecting onto a low-dimensional space before
generating a plan to the goal. During execution, this plan
will likely fail, because the true state was not known. Erez
and Smart use local controllers to adjust the trajectory [25].

Platt et al. note when the belief space diverges from what
the plan expected, and re-plan from the new belief [26].
They prove their approach will eventually converge to the
true hypothesis. While these methods plan significantly faster
due to their low-dimensional projection, they pick actions
suboptimally. Furthermore, by ignoring part of the belief
space, they sacrifice the ability to avoid potential failures. For
example, these methods cannot guarantee that a trajectory
will not collide and knock over an object, since the planner
may ignore the part of the belief space where the object is
actually located.

Petrovskaya et al. [27] consider the problem of full 6DOF
pose estimation of objects through tactile feedback. Their
primary contribution is an algorithm capable of running in
the full 6DOF space quickly. In their experiments, action
selection was done randomly, as they do not attempt to
select optimal actions. To achieve an error of ~5mm, they
needed an average of 29 actions for objects with complicated
meshes. While this does show that even random actions
achieve localization eventually, we note that our methods
take significantly fewer actions.

In the DARPA Autonomous Robotic Manipulation Soft-
ware (ARM-S) competition, teams were required to local-
ize, grasp, and manipulate various objects within a time
limit. Many teams first took uncertainty reducing actions
before attempting to accomplish tasks [28]. Similar strategies
were used to enable a robot to prepare a meal with a
microwave [29], where touch-based actions are used prior
to pushing buttons. To accomplish these tasks quickly, some
of these works rely on hand-tuned motions and policies,
specified for a particular object and environment. While this
enables very fast localization with high accuracy, a sequence
must be created manually for each task and environment.
Furthermore, these sequences aren’t entirely adaptive.

Dogar and Srinivasa [30] use the natural interaction of
an end effector and an object to handle uncertainty with
a push-grasp. By utilizing offline simulation, they reduce
the online problem to enclosing the object’s uncertainty in
a pre-computed capture region. Online, they simply plan a
push-grasp which encloses the uncertainty inside the capture
region. This work is complimentary to ours - the push-grasp
works well on objects which slide easily, while we assume
objects do not move. We believe each approach is applicable
in different scenarios.

Outside of robotics, many have addressed the problem of
query selection for identification. In the noise-free setting,
a simple adaptive algorithm known as generalized binary
search (GBS) [31] is provably near optimal. Interestingly,
this algorithm selects queries identical to greedy information
gain if there are only two outcomes [19]. The GBS method
was extended to multiple outcomes, and shown to be adaptive
submodular [23]. Our Hypothesis Pruning metric is similar
to this formulation, but with different action and observation
spaces that enable us to model touch actions naturally.

Recently, there have been guarantees made for the case of
noisy observations. For binary outcomes and independent,
random noise, the GBS was extended to noisy generalized
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binary search [32]. For cases of persistent noise, where
performing the same action results in the same noisy out-
come, adaptive submodular formulations have been devel-
oped based on eliminating noisy versions of each hypothe-
sis [33], [34]. In all of these cases, the message is the same
- with the right formulation, greedy selection performs well
for uncertainty reduction.

III. PROBLEM FORMULATION

We review the basic formulation for adaptive submodular
maximization. For a more detailed explanation, see [23].

Let a possible object state be ¢, called the realization.
Let ® be a random variable over all realizations. Thus, the
probability of a certain state is given by p(¢) = P[D = ¢].
At each decision step, we select an action a from A, the
set of all available actions, which incurs a cost c(a). Each
action will result in some observation o from Q, the set of all
possible observations. We assume that given a realization ¢,
the outcome of an action a is deterministic. Let A C A be all
the actions selected so far. During execution, we maintain the
partial realization Yy, a sequence of observations received
indexed by A. We call it a partial realization as it encodes
how realizations ¢ € ® agree with observations.

For the case of tactile localization, ¢ is the object pose. A
corresponds to all end-effector guarded move trajectories [7],
which terminate when the hand touches an obstacle. O
encompasses any possible observation, which is the set of
all distances along any trajectory within which the guarded
move may terminate. The partial realization Y, essentially
encodes the “belief state” used in POMDPs, which we denote
by p(¢|ya) =P[P = ¢|yy].

Our goal is to find an adaptive policy for selecting actions
based on observations so far. Formally, a policy 7 is a
mapping from a partial realization Y, to an action item a.
Let A(m,9) be the set of actions selected by policy 7 if the
true state is ¢. We define two cost functions for a policy -
the average cost and the worst case cost. These are:

Cavg = Ee [C(A(ﬂ?,q)))}
Cye = mq)aXC(A(TL'?(P))

Define some utility function f : 284 x QA — R>p, which
depends on actions selected and observations received. We
would like to find a policy which that will reach some utility
threshold O while minimizing one of our cost functions.
Formally:

min Clavg,we} (A(?'E,q)))
st f(A(m,9),¢0) > Q.Y

This is often referred to as the Minimum Cost Cover
problem, where we achieve some coverage Q while mini-
mizing the cost to do so. We can consider optimal policies
T, and 7y for the above, optimized for their respective
cost functions. Unfortunately, obtaining even approximate
solutions is difficult [16], [23]. However, a simple greedy
algorithm achieves near-optimal performance if our objective
function f satisfies properties of adaptive submodularity and
monotonicty. We now briefly review these properties.

A. Submodularity

First, let us consider the case when we do not condition on
observations, optimizing an offline plan. We call a function
f submodular if whenever X CY C A, a€ A\Y:

Submodularity (diminishing returns):

fXU{a}) - f(X) = f(Y U{a}) - f(Y)

The marginal benefit of adding a to a smaller set X is at
least as much as adding it to the superset Y. We also require
monotonicty, or that adding more elements never hurts:

Monotonicity (more never hurts):

JXU{a})—f(X) 20
SAaD—SA) e

The greedy algorithm maximizes (@ ,
marginal utility per unit cost. As observations are not incor-
porated, this corresponds to an offline plan. If submodularity
and monotonicty are satisfied, the greedy algorithm will be
within a (1 +1Inmax, f(a)) factor of cag(A(7,,P)) for
integer valued f [17].

B. Adaptive Submodularity

Now we consider the case where the policy adapts to new
observations [23]. In this case, the expected marginal benefit
of performing an action is:

Alalya) = E[f(AU{a},®) — f(A,P)| ya]

We call a function f adaptive submodular if whenever
XCYCA, aceA\Y:
Adaptive Submodularity:

A(alX) > A(alY)

That is, the expected benefit of adding a to a smaller set X
is at least as much as adding it to the superset Y, for any set
of observations received from actions Y\X. We also require
strong adaptive monotonicity, or more items never hurts. For
any a ¢ X, and any possible outcome o, this requires:

Strong Adaptive Monotonicity:

E[f(X,®)lyx] <E[f(XU{a},®)|yx, Ya = o]

In this case, the greedy algorithm maximize %. This
encodes an online policy, since at each yyx incorporates the
new observations. Surprisingly, we can bound the perfor-
mance of the same algorithm with respect to both the optimal
average case policy 7;,, and optimal worst case policy T,
This has been shown to have be within a (1+1n(Q)) factor
of 7., and a (1 —ﬁ—ln(m)) factor of 7). approximation
for integer valued f, for self-certifying instances (see [23]
for a more detailed explanation).

IV. APPLICATION TO TOUCH LOCALIZATION

We would like to appeal to the above algorithms and
guarantees for touch localization, while still maintaining
generality for different objects and motions. Given an object
mesh, we model the random realization & as a set of sampled
particles. We can think of each particle ¢ € ® representing
some hypothesis of the true object pose.
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Fig. 2: We can think of tactile localization as a problem of set cover, which
is adaptive submodular [23]. Each observation amounts to covering (green
area) the hypotheses (black dots) which do not agree. Our objective is to
maximize our coverage, or rule out as many hypotheses as possible.

Each action a € A corresponds to an end-effector trajectory
which stops when the object is touched. The cost c¢(a) is the
time it would take to run this entire trajectory, plus some
fixed time for moving to the start pose. An observation o € R
corresponds to the time it takes for the end-effector to make
contact with the object. We define ay as the time during
trajectory a where contact first occurs if the true state were ¢.
See Figure 3 for an example. If the swept path of a does not
contact object ¢, then ay = oo, which is a valid observation.

With this formulation, we first discuss some assumptions
made about interactions with the world. We then present
our different utility functions f, which capture the idea of
reducing the uncertainty in ®. In general, our objective will
be to achieve a certain amount of uncertainty reduction while
minimizing the time to do so.

A. Submodularity Assumptions for Touch Localization

Fitting into the framework of submodular maximization
necessitates certain assumptions. First, all actions must be
available at every step. Intuitively, this makes sense as a
necessity for diminishing returns - if actions are generated
at each step, then a new action may simply be better
than anything so far. In some sense, non-greedy methods
which generate actions based on the current belief state
are optimizing both the utility of the current action, and
the potential of actions that could be generated in the next
step. Instead, we generate a large, fixed set of information
gathering trajectories at the start.

Second, we cannot alter the underlying realization ¢, so
actions are not allowed to change the state of the environment
or objects. Therefore, we cannot intentionally reposition
objects, or model object movement caused by contact.

When applied to object localization, this frameworks lends
itself towards heavy objects that remain stationary when
touched. For such problems, we believe having an efficient
algorithm with guaranteed near-optimality outweighs these
limitations. To alleviate some of these limitations, we hope
to explore near-touch sensors in the future [35], [36].

B. Information Gain

Information gain has been applied to touch localization
before [4], [5]. In contrast to these, we utilize a large fixed
set of actions, enforce the assumptions from Section IV-A,
and use a particle-based model (as opposed to a histogram).

Following Krause and Guestrin [21], we define the infor-
mation gain as the reduction in Shannon entropy. Let W4 be

Fig. 3: The observations for action a and realizations ¢ and ¢’. Each
observation ay and a;, corresponds to the time along the straight line
trajectory when contact first occurs with the object. We use the difference
of times |ay —ayr| when measuring how far apart observations are.

the random variable over y4. Then we have
IG(®;¥4) =H(P) — H(D|V,)

As they show, this function is monotone submodular if
the observations W, are conditionally independent given the
state ¢. Thus, if we are evaluating this offline, we would
be near-optimal compared to the optimal offline solution.
However, this can actually perform exponentially worse than
the online solution [22]. Therefore, we greedily select actions
based on the marginal utility of a single action:

Aig(a) = H(®) —E, [H(P|o)]

We also need to define the probability of an observation.
We consider a “blurred” measurement model where the
probability of stopping at o conditioned on realization ¢ is
weighted based on the time difference between o and ay (the
time of contact had ¢ been the true state), with ¢ modelling
the measurement noise:

lo—ay|
plaw =olo) = exp (12221

We could consider evaluating H(®) with a discrete en-
tropy calculation, where each ¢ € @ is treated as an in-
dividual item. However, our particle set @ is modeling an
underlying continuous distribution, and we would like to
capture that. Thus, we instead fit a Gaussian to the current
set @ and evaluate the entropy of that distribution. Let X, be
the covariance over the weighted set of hypotheses, and N
the number of parameters (typically x, y, z, 6). We use the
approximated entropy:

H(®lo) = 3 In((27¢)" )

After performing the selected action, we update the belief
by reweighting hypotheses as described above. We repeat
the action selection process, setting ® to be the updated
distribution, until we reach some desired entropy.

C. Hypothesis Pruning

Intuitively, information gain is attempting to reduce uncer-
tainty by removing probability mass. Here, we formulate a
method with this underlying idea that also satisfies properties
of adaptive submodularity and strong adaptive monotonicity.
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We refer to this as Hypothesis Pruning, since the idea is to
prune away hypotheses that do not agree with observations.
Golovin et al. describe the connection between this type
of objective and adaptive submodular set cover [23]. Our
formulation is similar - see Fig. 2 for a visualization.

We note that adaptive submodular functions [23] cannot
handle noise - they require any realization ¢ be consistent
with only one observation per action. However, we would
like to model sensor noise. A standard method for alleviating
this is to construct a non-noisy problem by generating a
realization for every possible noisy observations of every
¢ € D. Let Q4(¢) = {¢1,0,,...} be the function that gen-
erates the new realizations ¢; for actions A. Underlying
our formulation, we consider constructing this non-noisy
problem. Luckily, we can compute our objective function
on the original @, and do not need to explicitly perform
this construction. We present this more efficient computation
below, and show how to construct the equivalent non-noisy
problem in our extended paper”.

As before, we consider a “blurred” measurement model
through two different observation models. In the first, we
define a cutoff threshold dr. If a hypothesis is within the
threshold, we keep it entirely. Otherwise, it is removed. We
call this metric Hypothesis Pruning (HP). In the second, we
downweight hypotheses with a (non-normalized) Gaussian,
effectively removing a portion of the hypothesis. We call this
metric Weighted Hypothesis Pruning (WHP). The weighting
functions are:

1 if Jo—ay|<d
HP ol =T
@o (%):{0 else

o —ayl?
0P (a4) = exp <262¢

For a partial realization y, we take the product of weights:

Pw(‘P) = (

Note that this can never increase the probability - for any
V. py(9) < p(9).

Define My, as the non-normalized probability remaining
after partial realization v, and my,, as the probability
remaining after an additional action a and observation o:

H wo(adl) P((]))

{ao}ey

My =Y py(9")
¢'cd
Myao=Y, Py(9")@(ay)
o'cd

We can now define our objective function for any partial
realization W, corresponding to removing probability mass:

fly)=1-My

In practice, we need to discretize the infinite observation
set Q. Formally, we require that an equal number of ob-
servations per ¢ are considered. That is, for any action a

and any realizations @;,¢;, |Q.(¢;)| = [Q4(¢;)|'. In practice,
we sample observations uniformly along the trajectory to
approximately achieve this effect.

To calculate the expected marginal gain, we also need to
define the probability of receiving an observation. We present
it here, and show the derivation in the extended paper’.
Intuitively, this will be proportional to how much probability
mass agrees with the observation. Let Q, be the set of all
possible observations for action a:

My.a,0

plao = ofy) = —— Y00
Z(/E@a My a0

We note the marginal utility is the additional probability
mass removed. For an action a and observation o this is

Sfv.ao =My —my,,. The expected marginal gain is:

A(“W’) =E, [fw,a,o}
My a0
oe;())a Zo’e@a My .0/ [Ml// mll/Aa,a]

The greedy policy w%°*Y maximizes the expected prob-
ability mass removed per unit cost, or AE’ZL‘)"). After select-
ing an action and receiving an observation, hypotheses are
removed or downweighted as described above, and action
selection is iterated. We now present our main guarantee:

Theorem 1: Let our utility function be f as defined above,
utilizing either weighting function w* or @"#P. Define a
quality threshold Q such that ming o, (4) f({A,Ag, (4)}) =
Q.2 Let n be any value such that f(y) > Q —n implies
f(y) > Q forall y. Let 7, and 7}, be the optimal policies
minimizing the expected and worst-case number of items
selected, respectively. The greedy policy 78"¢¢4Y satisfies:

cavg(ngreed)’) < cm,g(n;‘vg) <ln (g) + 1)

el <t (2 ) 1)

With & a constant based on the underlying non-noisy prob-
lem (see Appendix?).

Proof: 1In order to prove Theorem 1, we show that
our objective f is adaptive submodular, strongly adaptive
monotone, and self-certifying in an equivalent non-noisy
problem. We show this in our extended paper®. Our proof
then follows directly from [23]. |

If we utilize ®" as our weighting function, we can use
n = ming p(¢). If we utilize @"V#”, 1 is related to how we
discretize observations.

In addition to being within a logarithmic factor of optimal,
we utilize a lazy-greedy algorithm which does not reevaluate
all actions at every step, speeding up computation [23], [24].

Note that we must be consistent between contact and no-contact obser-
vations. That is, if we believe action a will contact ¢; but not ¢;, it still must
be that [Q,(¢;)| = |Q4(9;)|. Thus, we also have multiple noisy no-contact
observations. See extended paper’ for details.

21f we have a target uncertainty Q’, we can define a truncated function
g(y) = min(f(y),Q') to decrease our quality threshold. Truncation pre-
serves adaptive submodularity [23], so g is adaptive submodular if f is.

3Located at http://www.ri.cmu.edu/publication_view.
html?pub_1id=7264
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V. EXPERIMENTS

We implement a greedy action selection scheme with
each of the metrics described above (IG, HP, WHP). In
addition, we compare against two other schemes - random
action selection, and a simple human-designed scheme which
approaches the object orthogonally along the X, Y and Z
axes. Each object pose ¢ consist of a 4-tuple (x,y,z,0) € R*,
where (x,y,z) are the coordinates of the object’s center, and
0 is the rotation about the z axis.

We implement our algorithms using a 7-dof Barret arm
with an attached 4-dof Barret hand. We localize two objects:
a drill upright on a table, and a door. We define an initial
sensed location Xy € R*. To generate the initial ®, we sample
a Gaussian distribution N(u,X), where u = X;, and X is
the prior covariance of the sensor’s noise. For simulation
experiments, we also define the ground truth pose X; € R*.

For efficiency purposes, we also use a fixed number of
particles |®| at all steps, and resample after each selection,
adding small noise to the resampled set of particles.

A. Action Generation

We generate linear motions of the end effector, consisting
of a starting pose and a movement vector. Each action starts
outside of all hypotheses, and moves as far as necessary
to contact every hypotheses along the path. Note that using
straight-line trajectories is not a requirement for our algo-
rithm. We generate actions via three main techniques.

1) Sphere Sampling: Starting positions are generated by
sampling a sphere around the sensed position X;. For each
starting position, the end-effector is oriented to face the
object, and the movement direction set to X;. A random rota-
tion is applied about the movement direction, and a random
translation along the plane orthogonal to the movement.

2) Normal Sampling: These actions are intended to have
the hand’s fingers contact the object orthogonally. First, we
uniformly sample random contacts from the surface of the
object. Then, for each fingertip, we align its pre-defined
contact point and normal with our random sample, and
randomly rotate the hand about the contact normal. We then
set the movement direction as the contact normal.

3) Table Contacting: We generate random start points
around the sensed position X;, and orient the end effector
in the —z direction. These are intended to contact the table
and reduce uncertainty in z.

B. Simulation Experiments Setup

We simulate an initial sensor error as X; — X, =
(0.015,-0.015,—0.01,0.05) (in meters and radians). Our
initial random realization @ is sampled from N(u,X) with
U =X, and X a diagonal matrix with X,, =0.03, X,, = 0.03,
Y., =0.03, L9 =0.1. We fix |®| = 1500 hypotheses.

We then generate an identical action set A for each metric.
The set consists of the 3 human designed trajectories, 30
sphere sampled trajectories (Section V-A.1), 160 normal
trajectories (Section V-A.2), and 10 table contact trajectories
(Section V-A.3), giving |A| = 203.

Door Covariance Evolution

—IG
—HP
WHP
—=Human
——Random

Drill Covariance Evolution
0.04

—IG 0.04
—HP
WHP
—=Human
——Random

o
1=}
@

o
o
>

Sum of Eigenvalues
Sum of Eigenvalues

o
2

4 5 0

2 3 2 3
Action Number Action Number

Fig. 4: Uncertainty after each action for drill and door experiments. The bars
show the mean and 95% CI of the sum of eigenvalues of the covariance
matrix over experiments described in in Section V-B.

1G HP
47.171+£0.25 8.41+0.58

WHP
25.70+0.29

Time (s)

TABLE I: Time to select one action for each metric, average and 95% CI
over drill experiments described in Section V-B

We run 10 experiments using a different random seed for
each, generating a different set A and &, but ensuring each
metric has the same A and initial ® for a random seed. Each
method chooses a sequence of five actions, except the human
designed sequence which consists of only three actions.

C. Simulation Experiments Results

We analyze the uncertainty reduction of each metric as the
sum of eigenvalues of the covariance matrix, as in Fig. 4.
All metrics were able to reduce the uncertainty significantly
— confirming our speculation in Section II that even random
actions reduce uncertainty. However, as the uncertainty is
reduced, the importance of action selection increases, as
evidenced by the relatively poor performance of random
selection for the later actions. Additionally, we see the human
designed trajectories are effective for the drill, but perform
poorly on the door. Unlike the drill, the door is not radially
symmetric, and its flat surface and protruding handle offer
geometric landmarks that our action selection metrics can
exploit, making action selection more useful.

For one drill experiment, we also display the hypothesis
set after each action in Fig. 5, and the first 3 actions selected
in Table II. Note that the actions selected are very different,
while performance appears similar.

Observation 1: Information Gain (IG), Hypothesis Pruning
(HP), and Weighted Hypothesis Pruning (WHP) all perform
similarly well. On the one hand, you might expect IG to
perform poorly with adaptive greedy selection, as we don’t
have any guarantees. On the other, Shannon entropy has
many properties that make it a good measure of uncertainty.
Fig. 4 displays the covariance of all particles, which is the
criterion IG directly optimizes. Note that, surprisingly, HP
and WHP perform comparably despite not directly optimiz-
ing this measure.

Observation 2: The HP and WHP perform faster than IG.
This is due to their inherent simplicity and the more efficient
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Fig. 5: The particle sets @ from a single drill experiment after each update.
Plotted positions corresponds to the x,y parameter of each ¢ € ®, rotated by
6. X, is the sensed position, X; the true position, and ®; the particles after
update i. Arrow lengths are approximately the length of the drill base. The
initial ® was sampled from a normal distribution with o, = 0.02, 6, = 0.02,
o, =0.02, og =0.2.

lazy-greedy algorithm [23], [24]. See Table I for times. Addi-
tionally, we lose little performance with large computational
gains with the non-weighted observation model of HP.

D. Robot Experiments

We implemented each of our methods (IG, HP, WHP) on
a robot with a Barret arm and hand, and attempted to open
a door. X; is initialized with a vision system corrupted with
an artificial error of 0.035m in the y direction. Our initial
random realization @ is sampled from N(u,X) with u =
Xy, and X a diagonal matrix with X, = 0.02, X,, = 0.04,
Y., =0.02, g9 = 0.08. We fix |®| =2000 hypotheses. We
initially generate 600 normal action trajectories (Section V-
A.2), though after checking for kinematic feasibility, only
about 70 remain.

We utilize each of our uncertainty reducing methods prior
to using an open-loop sequence to grasp the door handle.
Once our algorithm selects the next action, we motion plan
to its start pose and perform the straight line guarded-
move using a task space controller. We sense contact by
thresholding the magnitude reported by a force torque sensor
in the Barret hand.

Without touch localization, the robot missed the door han-
dle entirely. With any of our localization methods, the robot
successfully opened the door, needing only two uncertainty
reducing actions to do so. Selected actions are shown in

Action 2 Action 3

Action 1

TABLE II: First three actions selected for each metric from the experiment
in Fig. 5. Particles prior to the action are grey, and particles updated after
observation are yellow.

Table III, and full videos are provided online®.
Observation 3: Using our faster adaptive submodular met-
rics, selecting an action takes approximately as long as
planning and executing it. This suggests that adaptive action
selection will often outperform a non-adaptive plan generated
offline that requires no planning time, but more actions.

VI. CONCLUSION AND FUTURE WORK

In this work, we aim to show that greedy selection with the
proper metric works well for information gathering actions,
both theoretically and practically. To do so, we draw an
explicit connection between submodularity and touch based
localization. We start with Information Gain (IG), which has
been used extensively for uncertainty reduction [2]-[6], [18],

“http://www.youtube.com/watch?v=_HiyKKDStBE
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TABLE III: Actions selected during robot experiment. Interestingly, IG and
HP select the same first action. All metrics led to a successful grasp of the
door handle.

[20]. We note the assumptions necessary for this metric to
be submodular, rendering the greedy algorithm near-optimal
in the offline setting. We design our own metrics, Hypothesis
Pruning (HP) and Weighted Hypothesis Pruning (WHP),
which we show are adaptive submodular. Thus, greedy
selection is guaranteed to provide near-optimal performance
in the online setting. In addition, these metrics are much
faster, both due to their simplicity and a more efficient lazy-
greedy algorithm [23], [24].

The methods presented here naively reduce uncertainty
without considering the underlying task. In actuality, a task
and planner may not require the exact pose, but that all
uncertainty lie within a particular distribution. While we can
apply our naive methods and terminate when this holds,
we may achieve the task-based target more quickly by
optimizing for it directly.
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