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Abstract
In shared autonomy, a user and autonomous system work together to achieve shared goals. To collaborate effectively,
the autonomous system must know the user’s goal. As such, most prior works follow a predict-then-act model, first
predicting the user’s goal with high confidence, then assisting given that goal. Unfortunately, confidently predicting the
user’s goal may not be possible until they have nearly achieved it, causing predict-then-act methods to provide little
assistance. However, the system can often provide useful assistance even when confidence for any single goal is low
(e.g. move towards multiple goals). In this work, we formalize this insight by modelling shared autonomy as a Partially
Observable Markov Decision Process (POMDP), providing assistance that minimizes the expected cost-to-go with an
unknown goal. As solving this POMDP optimally is intractable, we use hindsight optimization to approximate. We
apply our framework to both shared-control teleoperation and human-robot teaming. Compared to predict-then-act
methods, our method achieves goals faster, requires less user input, decreases user idling time, and results in fewer
user-robot collisions.
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1 Introduction

Human-robot collaboration studies interactions
between humans and robots sharing a workspace.
One instance of collaboration arises in shared
autonomy, where both the user and robotic system act
simultaneously to achieve shared goals. For example, in
shared control teleoperation (Goertz, 1963; Rosenberg,
1993; Aigner and McCarragher, 1997; Debus et al.,
2000; Dragan and Srinivasa, 2013b), both the user
and system control a single entity, the robot, in order
to achieve the user’s goal. In human-robot teaming,
the user and system act independently to achieve a
set of related goals (Hoffman and Breazeal, 2007; Arai
et al., 2010; Dragan and Srinivasa, 2013a; Koppula
and Saxena, 2013; Mainprice and Berenson, 2013;
Gombolay et al., 2014; Nikolaidis et al., 2017a).

While each instance of shared autonomy has many
unique requirements, they share a key common
challenge - for the autonomous system to be an
effective collaborator, it needs to know the user’s goal.
For example, feeding with shared control teleoperation,
an important task for assistive robotics (Chung et al.,

2013), requires knowing what the user wants to eat
(fig. 1a). Wrapping gifts with a human-robot team
requires knowing which gift the user will wrap to
avoid getting in their way and hogging shared resources
(fig. 1b).

In general, the system does not know the user’s
goal apriori. We could alleviate this issue by requiring
users to explicitly specify their goals (e.g. through voice
commands). However, there are often a continuum of
goals to choose from (e.g. location to place an object,
size to cut a bite of food), making it impossible for
users to precisely specify their goals. Furthermore,
prior works suggest requiring explicit communication
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(a) Shared Control Teleop (b) Human-Robot Teaming

Figure 1. We can provide useful assistance even when we do
not know the user’s goal. (a) Our feeding experiment, where
the user wants to eat one of the bites of food on the plate.
With an unknown goal, our method autonomously orients
the fork and moves towards all bites. In contrast,
predict-then-act methods only helped position the fork at the
end of execution. Users commented that the initial assistance
orienting the fork and getting close to all bites was the most
helpful, as this was the most time consuming portion of the
task. (b) Our teaming experiment, where the user wraps a
box, and the robot must stamp a different box. Here, the
user’s motion so far suggests their goal is likely either the
green or white box. Though we cannot confidently predict
their single goal, our method starts making progress for the
other boxes.

leads to ineffective collaboration (Vanhooydonck et al.,
2003; Goodrich and Jr., 2003; Green et al., 2007).
Instead, implicit information should be used to make
collaboration seamless. In shared autonomy, this
suggests utilizing sensing of the environment and user
actions to infer the user’s goal. This idea has been
successfully applied for shared control teleoperation (Li
and Okamura, 2003; Yu et al., 2005; Kragic et al.,
2005; Kofman et al., 2005; Aarno and Kragic, 2008;
Carlson and Demiris, 2012; Dragan and Srinivasa,
2013b; Hauser, 2013; Muelling et al., 2015) and human-
robot teaming (Hoffman and Breazeal, 2007; Nguyen
et al., 2011; Macindoe et al., 2012; Mainprice and
Berenson, 2013; Koppula and Saxena, 2013; Lasota and
Shah, 2015).

As providing effective assistance requires knowing
the user’s goal, most shared autonomy methods do
not assist when the goal is unknown. These works
split shared autonomy into two parts: 1) predict the
user’s goal with high probability, and 2) assist for
that single goal, potentially using prediction confidence
to regulate assistance. We refer to this approach
as predict-then-act. While this has been effective in
simple scenarios with few goals (Yu et al., 2005;
Kofman et al., 2005; Carlson and Demiris, 2012;
Dragan and Srinivasa, 2013b; Koppula and Saxena,
2013; Muelling et al., 2015), it is often impossible to

predict the user’s goal until the end of execution (e.g.
cluttered scenes), causing these methods to provide
little assistance. Addressing this lack of assistance is
of great practical importance - with uncertainty over
only goals in our feeding experiment, a predict-then-act
method provided assistance for only 31% of the time
on average, taking 29.4 seconds on average before the
confidence threshold was initially reached.

In this work, we present a general framework for
goal-directed shared autonomy that does not rely on
predicting a single user goal (fig. 2). We assume
the user’s goal is fixed (e.g. they want a particular
bite of food), and the autonomous system should
adapt to the user goal∗. Our key insight is that
there are useful assistance actions for distributions
over goals, even when confidence for a particular goal
is low (e.g. move towards multiple goals) (fig. 1).
We formalize this notion by modelling our problem
as a Partially Observable Markov Decision Process
(POMDP) (Kaelbling et al., 1998), treating the user’s
goal as hidden state. When the system is uncertain of
the user goal, our framework naturally optimizes for an
assistance action that is helpful for many goals. When
the system confidently predicts a single user goal, our
framework focuses assistance given that goal (fig. 3).

As our state and action spaces are both con-
tinuous, solving for the optimal action in our
POMDP is intractable. Instead, we approximate using
QMDP (Littman et al., 1995), also referred to as
hindsight optimization (Chong et al., 2000; Yoon
et al., 2008). This approximation has many properties
suitable for shared autonomy: it is computationally
efficient, works well when information is gathered
easily (Koval et al., 2014), and will not oppose the
user to gather information. The result is a system that
minimizes the expected cost-to-go to assist for any
distribution over goals.

We apply our framework in user study evaluations
for both shared control teleoperation and human-
robot teaming. For shared control teleoperation, users
performed two tasks: a simpler object grasping task
(section 4.1), and a more difficult feeding task
(section 4.2). In both cases, we find that our POMDP
based method enabled users to achieve goals faster
and with less joystick input than a state-of-the-
art predict-then-act method (Dragan and Srinivasa,
2013b). Subjective user preference differed by task,
with no statistical difference for the simpler object
grasping task, and users preferring our POMDP
method for the more difficult feeding task.

∗While we assume the goal is fixed, we do not assume how the

user will achieve that goal (e.g. grasp location) is fixed.
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Figure 2. Our shared autonomy framework. We assume the
user executes a policy for their single goal, depicted as a
heatmap plotting the value function at each position. Our
shared autonomy system models all possible user goals and
their corresponding policies. From user actions u, a
distribution over goals is inferred. Using this distribution and
the value functions for each goal, the system selects an
action a. The world transitions from x to x′. The user and
shared autonomy system both observe this state, and repeat
action selection.

For human-robot teaming (section 5.1), the user and
robot performed a collaborative gift-wrapping task,
where both agents had to manipulate the same set of
objects while avoiding collisions. We found that users
spent less time idling and less time in collision while
collaborating with a robot using our method. However,
results for total task completion time are mixed, as
predict-then-act methods are able to take advantage
of more optimized motion planners, enabling faster
execution once the user goal is confidently predicted.

2 Related Works

2.1 Shared Control Teleoperation

Shared control teleoperation has been used to assist
disabled users using robotic arms (Kim et al., 2006,
2012; McMullen et al., 2014; Katyal et al., 2014;
Schröer et al., 2015; Muelling et al., 2015) or
wheelchairs (Argall, 2014; Carlson and Demiris, 2012),
operate robots remotely (Shen et al., 2004; You and
Hauser, 2011; Leeper et al., 2012), decrease operator
fatigue in surgical settings (Park et al., 2001; Marayong
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Figure 3. Arbitration as a function of confidence with two
goals. Confidence = maxg p(g) − ming p(g), which ranges
from 0 (equal probability) to 1 (all probability on one goal).
(a) The hand is directly between the two goals, where no
action assists for both goals. As confidence for one goal
increases, assistance increases. (b) From here, going forward
assists for both goals, enabling the assistance policy to make
progress even with 0 confidence.

et al., 2003; Kragic et al., 2005; Aarno et al., 2005; Li
et al., 2007), and many other applications. As such,
there are a great many methods catering to the specific
needs of each domain.

One common paradigm launches a fully autonomous
takeover when some trigger is activated, such as a user
command (Shen et al., 2004; Bien et al., 2004; Simpson,
2005; Kim et al., 2012), or when a goal predictor
exceeds some confidence threshold (Fagg et al., 2004;
Kofman et al., 2005; McMullen et al., 2014; Katyal
et al., 2014). Others have utilized similar triggers to
initiate a subtask in a sequence (Schröer et al., 2015;
Jain et al., 2015). While these systems are effective at
accomplishing the task, studies have shown that users
often prefer having more control (Kim et al., 2012).

Another line of work utilizes high level user
commands, and relies on autonomy to generate robot
motions. Systems have been developed to enable users
to specify an end-effector path in 2D, which the robot
follows with full configuration space plans (You and
Hauser, 2011; Hauser, 2013). Point-and-click interfaces
have been used for object grasping with varying
levels of autonomy (Leeper et al., 2012). Eye gaze
has been utilized to select a target object and grasp
position (Bien et al., 2004).

Another paradigm augments user inputs minimally
to maintain some desired property, e.g. collision
avoidance, without necessarily knowing exactly what
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(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 4. Modal control used in our feeding experiment on
the Kinova MICO, with three control modes and a 2
degree-of-freedom input device. Fewer input DOFs means
more modes are required to control the robot.

goal the user wants to achieve. Sensing and complaint
controllers have been used increase safety during
teleoperation (Kim et al., 2006; Vogel et al., 2014).
Potential field methods have been employed to push
users away from obstacles (Crandall and Goodrich,
2002) and towards goals (Aigner and McCarragher,
1997). For assistive robotics using modal control, where
users control subsets of the degrees-of-freedom of the
robot in discrete modes (fig. 4), Herlant et al. (2016)
demonstrate a method for automatic time-optimal
mode switching.

Similarly, methods have been developed to augment
user inputs to follow some constraint. Virtual fixtures,
commonly used in surgical robotics settings, are
employed to project user commands onto path
constraints (e.g. straight lines only) (Park et al., 2001;
Li and Okamura, 2003; Marayong et al., 2003; Kragic
et al., 2005; Aarno et al., 2005; Li et al., 2007). Mehr
et al. (2016) learn constraints online during execution,
and apply constraints softly by combining constraint
satisfaction with user commands. While these methods
benefit from not needing to predict the user’s goal,
they generally rely on a high degree-of-freedom input,
making their use limited for assistive robotics, where
disabled users can operate few DOF at a time and thus
rely on modal control (Herlant et al., 2016).

Blending methods (Dragan and Srinivasa, 2013b)
attempt to bridge the gap between highly assistive
methods with little user control, and minimal
assistance with higher user burden. User actions
and full autonomy are treated as two independent
sources, which are combined by some arbitration
function that determines the relative contribution of
each (fig. 5). Dragan and Srinivasa (2013b) show
that many methods of shared control teleoperation
(e.g. autonomous takeover, potential field methods,
virtual fixtures) can be generalized as blending with
a particular arbitration function.

Blending is one of the most used shared control teleo-
pration paradigms due to computational efficiency,

simplicity, and empirical effectiveness (Li et al., 2011;
Carlson and Demiris, 2012; Dragan and Srinivasa,
2013b; Muelling et al., 2015; Gopinath et al., 2016).
However, blending has two key drawbacks. First, as
two independent decisions are being combined without
evaluating the action that will be executed, catas-
trophic failure can result even when each independent
decision would succeed (Trautman, 2015). Second,
these systems rely on a predict-then-act framework,
predicting the single goal the user is trying to achieve
before providing any assistance. Often, assistance will
not be provided for large portions of execution while
the system has low confidence in its prediction, as we
found in our feeding experiment (section 4.2).

Recently, Hauser (2013) presented a system which
provides assistance for a distribution over goals. Like
our method, this policy-based method minimizes an
expected cost-to-go while receiving user inputs (fig. 6).
The system iteratively plans trajectories given the
current user goal distribution, executes the plan for
some time, and updates the distribution given user
inputs. In order to efficiently compute the trajectory,
it is assumed that the cost function corresponds
to squared distance, resulting in the calculation
decomposing over goals. Our model generalizes these
notions, enabling the use of any cost function for which
a value function can be computed.

In this work, we assume the user does not change
their goal or actions based on autonomous assistance,
putting the burden of goal inference entirely on the
system. Nikolaidis et al. (2017c) present a game-
theoretic approach to shared control teleoperation,
where the user adapts to the autonomous system. Each
user has an adaptability, modelling how likely the user
is to change goals based on autonomous assistance.
They use a POMDP to learn this adaptability
during execution. While more general, this model is
computationally intractable for continuous state and
actions.

2.2 Human-Robot Teaming

In human-robot teaming, robot action selection that
models and optimizes for the human teammate leads
to better collaboration. Hoffman and Breazeal (2007)
show that using predictions of a human collaborator
during action selection led to more efficient task
completion and more favorable perception of robot
contribution to team success. Lasota and Shah (2015)
show that planning to avoid portions of the workspace
the user will occupy led to faster task completion, less
user and robot idling time, greater user satisfaction,
and greater perceived safety and comfort. Arai et al.
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Figure 5. Blend method for shared control teleoperation.
The user and robot are both modelled as separate policies πu

and πr, each independently providing actions u and a for a
single goal. These actions are combined through a specified
arbitration function, which generally uses some confidence
measure to augment the magnitude of assistance. This
combined action is executed on the robot.

πu πr

Cu(s, u) Cr(s, u, a)

u u, a

Figure 6. Policy method for shared control teleoperation.
The user is modelled as a policy πu, which selects user input
u to minimizes the expected sum of user costs Cu(x, u). The
user input u is provided to the system policy πr, which then
selects action a to minimize its expected sum of costs cost
Cr(s, u, a). Both actions are passed to the robot for
execution. Unlike the blend method, the user and robot
actions are not treated separately, which can lead to
catastrophic failure (Trautman, 2015). Instead, the robot
action a is optimized given the user action u.

(2010) show that users feel high mental strain when a
robot collaborator moves too close or too quickly.

Motion planners have been augmented to include
user models and collaboration constraints. For static
users, researchers have incorporated collaboration con-
straints such as safety and social acceptability (Sisbot
et al., 2007), and task constraints such as user visibility
and reachability (Sisbot et al., 2010; Pandey and
Alami, 2010; Mainprice et al., 2011). For moving users,
Mainprice and Berenson (2013) use a Gaussian mixture
model to predict user motion, and select a robot goal
that avoids the predicted user locations.

Similar ideas have been used to avoid moving
pedestrians. Ziebart et al. (2009) learn a predictor
of pedestrian motion, and use this to predict the
probability a location will be occupied at each

time step. They build a time-varying cost map,
penalizing locations likely to be occupied, and optimize
trajectories for this cost. Chung and Huang (2011)
use A* search to predict pedestrian motions, including
a model of uncertainty, and plan paths using these
predictions. Bandyopadhyay et al. (2012) use fixed
models for pedestrian motions, and focus on utilizing
a POMDP framework with SARSOP (Kurniawati
et al., 2008) for selecting good actions. Like our
approach, this enables them to reason over the
entire distribution of potential goals. They show this
outperforms utilizing only the maximum likelihood
estimate of goal prediction for avoidance.

Others develop methods for how the human-robot
team should be structured. Gombolay et al. (2014)
study the effects of having the user and robot assign
goals to each other. They find that users were willing
to cede decision making to the robot if it resulted
in greater team fluency (Gombolay et al., 2014).
However, Gombolay et al. (2017) later show that
having the autonomous entity assign goals led to less
situational awareness. Inspired by training schemes
for human-human teams, Nikolaidis and Shah (2013)
present a human-robot cross training method, where
the user and robot iteratively switch roles to learn
a shared plan. Their model leads to greater team
fluency, more concurrent motions, greater perceived
robot performance, and greater user trust. Koppula
and Saxena (2013) use conditional random fields to
predict the user goal (e.g. grasp cup), and have a robot
achieve a complementary goal (e.g. pour water into
cup).

Others have studied how robot motions can influence
the belief of users. Sisbot et al. (2010) fix the gaze
of the robot on its goal to communicate intent.
Dragan and Srinivasa (2013a) incorporate legibility
into the motion planner for a robotic arm, causing the
robot to exaggerate its motion to communicate intent.
They show this leads to more quickly and accurately
predicting the robot intent (Dragan et al., 2013).
Rezvani et al. (2016) study the effects of conveying
a robot’s state (e.g. confidence in action selection,
anomaly in detection) directly on a user interface for
autonomous driving.

Recent works have gone one step further, selecting
robot actions that not only change the perceptions of
users, but also their actions. Nikolaidis et al. (2017a)
model how likely users are to adopt the robot’s
policy based on robot actions. They utilize a POMDP
to simultaneously learn this user adaptability while
steering users to more optimal goals to achieve greater
reward. Nikolaidis et al. (2017b) present a more general
game theoretic approach where users change their
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actions based on robot actions, while not completely
adopting the robot’s policy. Similarly, Sadigh et al.
(2016b) generate motions for an autonomous car using
predictions of how other drivers will respond, enabling
them to change the behavior of other users, and infer
the internal user state (Sadigh et al., 2016a).

Teaming with an autonomous agent has also been
studied outside of robotics. Fern and Tadepalli (2010)
have studied MDPs and POMDPs for interactive
assistants that suggest actions to users, who then
accept or reject each action. They show that optimal
action selection even in this simplified model is
PSPACE-complete. However, a simple greedy policy
has bounded regret. Nguyen et al. (2011) and
Macindoe et al. (2012) apply POMDPs to cooperative
games, where autonomous agents simultaneously infer
human intentions and take assistance actions. Like
our approach, they model users as stochastically
optimizing an MDP, and solve for assistance actions
with a POMDP. In contrast to these works, our state
and action spaces are continuous.

2.3 User Prediction

A variety of models and methods have been used for
intent prediction. Hidden markov model (HMM) based
methods (Li and Okamura, 2003; Kragic et al., 2005;
Aarno et al., 2005; Aarno and Kragic, 2008) predict
subtasks or intent during execution, treating the intent
as latent state. Schrempf et al. (2007) use a Bayesian
network constructed with expert knowledge. Koppula
and Saxena (2013) extend conditional random fields
(CRFs) with object affordance to predict potential
human motions. Wang et al. (2013) learn a generative
predictor by extending Gaussian Process Dynamical
Models (GPDMs) with a latent variable for intention.
Hauser (2013) utilizes a Gaussian mixture model over
task types (e.g. reach, grasp), and predicts both the
task type and continuous parameters for that type (e.g.
movements) using Gaussian mixture autoregression.

Many successful works in shared autonomy utilize
of maximum entropy inverse optimal control (MaxEnt
IOC) (Ziebart et al., 2008) for user goal prediction.
Briefly, the user is modelled as a stochastic policy
approximately optimizing some cost function. By
minimizing the worst-case predictive loss, Ziebart et al.
(2008) derive a model where trajectory probability
decreases exponentially with cost. They then derive
a method for inferring a distribution over goals from
user inputs, where probabilities correspond to how
efficiently the inputs achieve each goal (Ziebart et al.,
2009). A key advantage of this framework for shared
autonomy is that the we can directly optimize for the
cost function used to model the user.

Exact, global inference over these distributions
is computationally infeasible in continuous state
and action spaces. Instead, Levine and Koltun
(2012) provide a method that considers the expert
demonstrations as only locally optimal, and utilize
Laplace’s method about the expert demonstration to
estimate the log likelihood during learning. Similarly,
Dragan and Srinivasa (2013b) use Laplace’s method
about the optimal trajectory between any two points to
approximate the distribution over goals during shared
control teleoperation. Finn et al. (2016) simultaneously
learn a cost function and policy consistent with user
demonstrations using deep neural networks, utilizing
importance sampling to approximate inference with
few samples. Inspired by Generative Adversarial
Nets (Goodfellow et al., 2014), Ho and Ermon (2016)
directly learn a policy to mimic the user through
Generative Adversarial Imitation Learning.

We use the approximation of Dragan and Srinivasa
(2013b) in our framework due to empirical evidence of
effectiveness in shared autonomy systems (Dragan and
Srinivasa, 2013b; Muelling et al., 2015).

3 Framework

We present our framework for minimizing a cost
function for shared autonomy with an unknown user
goal. We assume the user’s goal is fixed, and they
take actions to achieve that goal without considering
autonomous assistance. These actions are used to
predict the user’s goal based on how optimal the
action is for each goal (section 3.4). Our system
uses this distribution to minimize the expected
cost-to-go (section 3.2). As solving for the optimal
action is infeasible, we use hindsight optimization to
approximate a solution (section 3.3). For reference, see
table 3 in section A for variable definitions.

3.1 Cost minimization with a known goal

We first formulate the problem for a known user goal,
which we will use in our solution with an unknown goal.
We model this problem as a Markov Decision Process
(MDP).

Formally, let x ∈ X be the environment state (e.g.
human and robot pose). Let u ∈ U be the user actions,
and a ∈ A the robot actions. Both agents can affect the
environment state - if the user takes action u and the
robot takes action a while in state x, the environment
stochastically transitions to a new state x′ through
T (x′ | x, u, a).

We assume the user has an intended goal g ∈
G which does not change during execution. We
augment the environment state with this goal, defined
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by s = (x, g) ∈ X ×G. We overload our transition
function to model the transition in environment state
without changing the goal, T ((x′, g) | (x, g), u, a) =
T (x′ | x, u, a).

We assume access to a user policy for each goal πu(u |
s) = πu

g (u | x) = p(u | x, g). We model this policy using
the maximum entropy inverse optimal control (MaxEnt
IOC) framework of Ziebart et al. (2008), where
the policy corresponds to stochastically optimizing
a cost function Cu(s, u) = Cu

g (x, u). We assume the
user selects actions based only on s, the current
environment state and their intended goal, and does
not model any actions that the robot might take.
Details are in section 3.4.

The robot selects actions to minimize a cost function
dependent on the user goal and action Cr(s, u, a) =
Cr
g(x, u, a). At each time step, we assume the user

first selects an action, which the robot observes before
selecting a. The robot selects actions based on the state
and user inputs through a policy πr(a | s, u) = p(a |
s, u). We define the value function for a robot policy
V π

r

as the expected cost-to-go from a particular state,
assuming some user policy πu:

V π
r

(s) = E

[∑
t

Cr(st, ut, at) | s0 = s

]
ut ∼ πu(· | st)
at ∼ πr(· | st, ut)

st+1 ∼ T (· | st, ut, at)

The optimal value function V ∗ is the cost-to-go for
the best robot policy:

V ∗(s) = min
πr

V π
r

(s)

The action-value function Q∗ computes the imme-
diate cost of taking action a after observing u, and
following the optimal policy thereafter:

Q∗(s, u, a) = Cr(s, u, a) + E[V ∗(s′)]

Where s′ ∼ T (· | s, u, a). The optimal robot action is
given by arg minaQ

∗(s, u, a).
In order to make explicit the dependence on the user

goal, we often write these quantities as:

Vg(x) = V ∗(s)

Qg(x, u, a) = Q∗(s, u, a)

Computing the optimal policy and corresponding
action-value function is a common objective in
reinforcement learning. We assume access to this
function in our framework, and describe our particular
implementation in the experiments.

3.2 Cost Minimization with an unknown goal

We formulate the problem of minimizing a cost
function with an unknown user goal as a Partially
Observable Markov Decision Process (POMDP). A
POMDP maps a distribution over states, known as the
belief b, to actions. We assume that all uncertainty
is over the user’s goal, and the environment state is
known. This subclass of POMDPs, where uncertainty
is constant, has been studied as a Hidden Goal
MDP (Fern and Tadepalli, 2010), and as a POMDP-
lite (Chen et al., 2016).

In this framework, we infer a distribution of the
user’s goal by observing the user actions u. Similar
to the known-goal setting (section 3.1), we define the
value function of a belief as:

V π
r

(b) = E

[∑
t

Cr(st, ut, at) | b0 = b

]
st ∼ bt
ut ∼ πu(· | st)
at ∼ πr(· | st, ut)

bt+1 ∼ τ(· | bt, ut, at)

Where the belief transition τ corresponds to
transitioning the known environment state x according
to T , and updating our belief over the user’s goal
as described in section 3.4. We can define quantities
similar to above over beliefs:

V ∗(b) = min
πr

V π
r

(b) (1)

Q∗(b, u, a) = E[Cr(b, u, a) + Eb′ [V ∗(b′)]]

3.3 Hindsight Optimization

Computing the optimal solution for a POMDP
with continuous states and actions is generally
intractable. Instead, we approximate this quantity
through Hindsight Optimization (Chong et al., 2000;
Yoon et al., 2008), or QMDP (Littman et al., 1995).
This approximation estimates the value function by
switching the order of the min and expectation in
eq. (1):

V HS(b) = Eb
[
min
πr

V π
r

(s)
]

= Eg[Vg(x)]

QHS(b, u, a) = Eb
[
Cr(s, u, a) + Es′

[
V HS(s′)

]]
= Eg[Qg(x, u, a)]

Where we explicitly take the expectation over g ∈ G,
as we assume that is the only uncertain part of the
state.
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Conceptually, this approximation corresponds to
assuming that all uncertainty will be resolved at the
next timestep, and computing the optimal cost-to-go.
As this is the best case scenario for our uncertainty,
this is a lower bound of the cost-to-go, V HS(b) ≤ V ∗(b).
Hindsight optimization has demonstrated effectiveness
in other domains (Yoon et al., 2007, 2008). However,
as it assumes uncertainty will be resolved, it never
explicitly gathers information (Littman et al., 1995),
and thus performs poorly when this is necessary.

We believe this method is suitable for shared
autonomy for many reasons. Conceptually, we assume
the user provides inputs at all times, and therefore
we gain information without explicit information
gathering. Works in other domains with similar
properties have shown that this approximation
performs comparably to methods that consider
explicit information gathering (Koval et al., 2014).
Computationally, computing QHS can be done with
continuous state and action spaces, enabling fast
reaction to user inputs.

Computing Qg for shared autonomy requires
utilizing the user policy πu

g , which can make
computation difficult. This can be alleviated with the
following approximations:

Stochastic user with robot Estimate u using πu
g at

each time step, e.g. by sampling, and utilize the full
cost function Cr

g(x, u, a) and transition function T (x′ |
x, u, a) to compute Qg. This would be the standard
QMDP approach for our POMDP.

Deterministic user with robot Estimate u as the most
likely u from πu

g at each time step, and utilize the
full cost function Cr

g(x, u, a) and transition function
T (x′ | x, u, a) to compute Qg. This uses our policy
predictor, as above, but does so deterministically, and
is thus more computationally efficient.

Robot takes over Assume the user will stop supplying
inputs, and the robot will complete the task. This
enables us to use the cost function Cr

g(x, 0, a) and
transition function T (x′ | x, 0, a) to compute Qg. For
many cost functions, we can analytically compute this
value, e.g. cost of always moving towards the goal at
some velocity. An additional benefit of this method is
that it makes no assumptions about the user policy πu

g ,
making it more robust to modelling errors. We use this
method in our experiments.

Finally, as we often cannot calculate
arg maxaQ

HS(b, u, a) directly, we use a first-order
approximation, which leads to us to following the
gradient of QHS(b, u, a).

3.4 User Prediction

In order to infer the user’s goal, we rely on a model
πu
g to provide the distribution of user actions at state
x for user goal g. In principle, we could use any
generative predictor for this model, e.g. (Koppula and
Saxena, 2013; Wang et al., 2013). We choose to use
maximum entropy inverse optimal control (MaxEnt
IOC) (Ziebart et al., 2008), as it explicitly models a
user cost function Cu

g . We optimize this directly by
defining Cr

g as a function of Cu
g .

In this work, we assume the user does not model
robot actions. We use this assumption to define an
MDP with states x ∈ X and user actions u ∈ U
as before, transition T u(x′ | x, u) = T (x′ | x, u, 0), and
cost Cu

g (x, u). MaxEnt IOC computes a stochastically
optimal policy for this MDP.

The distribution of actions at a single state are
computed based on how optimal that action is
for minimizing cost over a horizon T . Define a
sequence of environment states and user inputs as
ξ = {x0, u0, · · · , xT , uT }. Note that sequences are not
required to be trajectories, in that xt+1 is not
necessarily the result of applying ut in state xt. Define
the cost of a sequence as the sum of costs of all
state-input pairs, Cu

g (ξ) =
∑
t C

u
g (xt, ut). Let ξ0→t be

a sequence from time 0 to t, and ξt→Tx a sequence of
from time t to T , starting at x.

Ziebart (2010) shows that minimizing the worst-case
predictive loss results in a model where the probability
of a sequence decreases exponentially with cost, p(ξ |
g) ∝ exp(−Cu

g (ξ)). Importantly, one can efficiently
learn a cost function consistent with this model from
demonstrations (Ziebart et al., 2008).

Computationally, the difficulty in computing p(ξ |
g) lies in the normalizing constant

∫
ξ

exp(−Cu
g (ξ)),

known as the partition function. Evaluating this
explicitly would require enumerating all sequences
and calculating their cost. However, as the cost of a
sequence is the sum of costs of all state-action pairs,
dynamic programming can be utilized to compute this
through soft-minimum value iteration when the state
is discrete (Ziebart et al., 2009, 2012):

Q≈g,t(x, u) = Cu
g (x, u) + E

[
V ≈g,t+1(x′)

]
V ≈g,t(x) = softmin

u
Q≈g,t(x, u)

Where softminx f(x) = − log
∫
x

exp(−f(x))dx and
x′ ∼ T u(· | x, u).

The log partition function is given by the soft value
function, V ≈g,t(x) = − log

∫
ξt→T
x

exp
(
−Cu

g (ξt→Tx )
)
,

where the integral is over all sequences starting at
x and time t. Furthermore, the probability of a
single input at a given environment state is given by
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πu
t (u | x, g) = exp(V ≈g,t(x)−Q≈g,t(x, u)) (Ziebart et al.,

2009).
Many works derive a simplification that enables

them to only look at the start and current states,
ignoring the inputs in between (Ziebart et al., 2012;
Dragan and Srinivasa, 2013b). Key to this assumption
is that ξ corresponds to a trajectory, where applying
action ut at xt results in xt+1. However, if the system
is providing assistance, this may not be the case. In
particular, if the assistance strategy believes the user’s
goal is g, the assistance strategy will select actions to
minimize Cu

g . Applying these simplifications will result
positive feedback, where the robot makes itself more
confident about goals it already believes are likely. In
order to avoid this, we ensure that the prediction comes
from user inputs only, and not robot actions:

p(ξ | g) =
∏
t

πu
t (ut | xt, g)

To compute the probability of a goal given the partial
sequence up to t, we apply Bayes’ rule:

p(g | ξ0→t) =
p(ξ0→t | g)p(g)∑
g′ p(ξ

0→t | g′)p(g′)

This corresponds to our POMDP observation model,
used to transition our belief over goals through τ .

3.4.1 Continuous state and action approximation Soft-
minimum value iteration is able to find the exact
partition function when states and actions are discrete.
However, it is computationally intractable to apply in
continuous state and action spaces. Instead, we follow
Dragan and Srinivasa (2013b) and use a second order
approximation about the optimal trajectory. They
show that, assuming a constant Hessian, we can replace
the difficult to compute soft-min functions V ≈g and Q≈g
with the min value and action-value functions V u

g and
Qu
g :

πu
t (u | x, g) = exp(V u

g (x)−Qu
g(x, u))

Recent works have explored extensions of the MaxEnt
IOC model for continuous spaces (Boularias et al.,
2011; Levine and Koltun, 2012; Finn et al., 2016). We
leave experiments using these methods for learning and
prediction as future work.

3.5 Multi-Target MDP

There are often multiple ways to achieve a goal. We
refer to each of these ways as a target. For a single goal
(e.g. object to grasp), let the set of targets (e.g. grasp
poses) be κ ∈ K. We assume each target has a cost
function Cκ, from which we compute the corresponding

value and action-value functions Vκ and Qκ, and soft-
value functions V ≈κ and Q≈κ . We derive the quantities
for goals, Vg, Qg, V

≈
g , Q

≈
g , as functions of these target

functions.
We state the theorems below, and provide proofs in

the appendix (section B).

3.5.1 Multi-Target Assistance We assign the cost of a
state-action pair to be the cost for the target with the
minimum cost-to-go after this state:

Cg(x, u, a) = Cκ∗(x, u, a) κ∗ = arg min
κ

Vκ(x′) (2)

Where x′ is the environment state after actions u and
a are applied at state x. For the following theorem, we
require that our user policy be deterministic, which we
already assume in our approximations when computing
robot actions in section 3.3.

Theorem 1. Let Vκ be the value function for target κ.
Define the cost for the goal as in eq. (2). For an MDP
with deterministic transitions, and a deterministic user
policy πu, the value and action-value functions Vg and
Qg can be computed as:

Qg(x, u, a) = Qκ∗(x, u, a) κ∗ = arg min
κ

Vκ(x′)

Vg(x) = min
κ
Vκ(x)

3.5.2 Multi-Target Prediction Here, we don’t assign
the goal cost to be the cost of a single target Cκ, but
instead use a distribution over targets.

Theorem 2. Define the probability of a trajectory and
target as p(ξ, κ) ∝ exp(−Cκ(ξ)). Let V ≈κ and Q≈κ be
the soft-value functions for target κ. For an MDP with
deterministic transitions, the soft value functions for
goal g, V ≈g and Q≈g , can be computed as:

V ≈g (x) = softmin
κ

V ≈κ (x)

Q≈g (x, u) = softmin
κ

Q≈κ (x, u)

4 Shared Control Teleoperation

We apply our shared autonomy framework to two
shared control teleoperation tasks: a simpler task of
object grasping (section 4.1) and a more complicated
task of feeding (section 4.2). Formally, the state x
corresponds to the end-effector pose of the robot, each
goal g an object in the world, and each target κ
a pose for achieving that goal (e.g. pre-grasp pose).
The transition function T (x′ | x, u, a) deterministically
transitions the state by applying both u and a as end-
effector velocities. We map user joystick inputs to u as
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(a) (b)

(c) (d)

Figure 7. Value function for a goal (grasp the ball)
decomposed into value functions of targets (grasp poses). (a,
b) Two targets and their corresponding value function Vκ. In
this example, there are 16 targets for the goal. (c) The value
function of a goal Vg used for assistance, corresponding to
the minimum of all 16 target value functions (d) The
soft-min value function V ≈g used for prediction,
corresponding to the soft-min of all 16 target value functions.

if the user were controlling the robot through direct
teleoperation.

For both tasks, we hand-specify a simple user cost
function, Cu

κ , from which everything is derived. Let d
be the distance between the robot state x′ = T u(x, u)
and target κ:

Cu
κ(x, u) =

{
α d > δ
α
δ d d ≤ δ

That is, a linear cost near a target (d ≤ δ), and
a constant cost otherwise. This is based on our
observation that users make fast, constant progress
towards their goal when far away, and slow down for
alignment when near their goal. This is by no means
the best cost function, but it does provide a baseline
for performance. We might expect, for example, that
incorporating collision avoidance into our cost function
may enable better performance (You and Hauser,
2011). We use this cost function, as it enables closed-
form value function computation, enabling inference
and execution at 50Hz.

For prediction, when the distance is far away from
any target (d > δ), our algorithm shifts probability
towards goals relative to how much progress the user
action makes towards the target. If the user stays

close to a particular target (d ≤ δ), probability mass
automatically shifts to that goal, as the cost for that
goal is less than all others.

We set Cr
κ(x, a, u) = Cu

κ(x, a), causing the robot
to optimize for the user cost function directly†, and
behave similar to how we observe users behaved. When
far away from goals (d > δ), it makes progress towards
all goals in proportion to their probability of being
the user’s goal. When near a target (d ≤ δ) that has
high probability, our system reduces assistance as it
approaches the final target pose, letting users adjust
the final pose if they wish.

We believe hindsight optimization is a suitable
POMDP approximation for shared control teleopera-
tion. A key requirement for shared control teleopera-
tion is efficient computation, in order to make the sys-
tem feel responsive. With hindsight optimization, we
can provide assistance at 50Hz, even with continuous
state and action spaces.

The primary drawback of hindsight optimization is
the lack of explicit information gathering (Littman
et al., 1995): it assumes all information is revealed at
the next timestep, negating any benefit to information
gathering. As we assume the user provides inputs at
all times, we gain information automatically when
it matters. When the optimal action is the same
for multiple goals, we take that action. When the
optimal action differs, our model gains information
proportional to how suboptimal the user action is for
each goal, shifting probability mass towards the user
goal, and providing more assistance to that goal.

For shared control teleoperation, explicit informa-
tion gathering would move the user to a location where
their actions between goals were maximally different.
Prior works suggest that treating users as an oracle is
frustrating (Guillory and Bilmes, 2011; Amershi et al.,
2014), and this method naturally avoids it.

We evaluated this system in two experiments,
comparing our POMDP based method, referred to
as policy, to a conventional predict-then-act approach
based on Dragan and Srinivasa (2013b), referred to
as blend (fig. 5). In our feeding experiment, we
additionally compare to direct teleoperation, referred
to as direct, and full autonomy, referred to as
autonomy.

†In our prior work (Javdani et al., 2015), we used Cr
κ(x, a, u) =

Cu
κ(x, a) + (a− u)2 in a different framework where only the

robot action transitions the state. Both formulations are

identical after linearization. Let a∗ be the optimal optimal robot
action in this framework. The additional term (a− u)2 leads to
executing the action u + a∗, equivalent to first executing the user

action u, then a∗, as in this framework.
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User Robot
(a)

User Robot
(b)

User Robot
(c)

Figure 8. Estimated goal probabilities and value function for object grasping. Top row: the probability of each goal object
and a 2-dimensional slice of the estimated value function. The transparent end-effector corresponds to the initial state, and
the opaque end-effector to the next state. Bottom row: the user input and robot control vectors which caused this motion.
(a) Without user input, the robot automatically goes to the position with lowest value, while estimated probabilities and
value function are unchanged. (b) As the user inputs “forward”, the end-effector moves forward, the probability of goals in
that direction increase, and the estimated value function shifts in that direction. (c) As the user inputs “left”, the goal
probabilities and value function shift in that direction. Note that as the probability of one object dominates the others, the
system automatically rotates the end-effector for grasping that object.

The blend baseline of Dragan and Srinivasa (2013b)
requires estimating the predictor’s confidence of the
most probable goals, which controls how user action
and autonomous assistance are arbitrated (fig. 5).
We use the distance-based measure used in the
experiments of Dragan and Srinivasa (2013b), conf =
max

(
0, 1− d

D

)
, where d is the distance to the nearest

target, and D is some threshold past which confidence
is zero.

4.1 Grasping Experiment

Our first shared-control teleoperation user study
evaluates two methods, our POMDP framework and
a predict-then-act blending method (Dragan and
Srinivasa, 2013b), on the task of object grasping.
This task appears broadly in teleoperation systems,
appearing in nearly all applications of teleoperated
robotic arms. Additionally, we chose this task for its
simplicity, evaluating these methods on tasks where
direct teleoperation is relatively easy.

4.1.1 Metrics Our experiment aims to evaluate the
efficiency and user satisfaction of each method.

Objective measures. We measure the objective
efficiency of the system in two ways. Total execution
time measures how long it took the participant to grasp
an object, measuring the effectiveness in achieving
the user’s goal. Total joystick input measures the
magnitude of joystick movement during each trial,
measuring the user’s effort to achieve their goal.

Subjective measures. We also evaluated user
satisfaction with the system through through a seven-
point Likert scale survey. After using each control
method, we asked users to rate if they would like to
use the method. After using both methods, we asked
users which they preferred.

4.1.2 Hypotheses Prior work suggests that more
autonomy leads to greater efficiency for teleoperated
robots (You and Hauser, 2011; Leeper et al., 2012;
Dragan and Srinivasa, 2013b; Hauser, 2013; Javdani
et al., 2015). Additionally, prior work indicates that
users subjectively prefer more assistance when it leads
to more efficient task completion (You and Hauser,
2011; Dragan and Srinivasa, 2013b). Based on this, we
formulate the following hypotheses:
H1a Participants using the policy method will grasp
objects significantly faster than the blend method
H1b Participants using the policy method will grasp
objects with significantly less control input than the
blend method
H1c Participants will agree more strongly on their
preferences for the policy method compared to the blend
method

4.1.3 Experiment Design We set up our experiments
with three objects on a table: a canteen, a block, and a
cup (fig. 9). Users teleoperated a robot arm using two
joysticks on a Razer Hydra system. The right joystick
mapped to the horizontal plane, and the left joystick
mapped to the height. A button on the right joystick
closed the hand. Each trial consisted of moving from
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Figure 9. Our experimental setup for object grasping. Three
objects - a canteen, block, and glass - were placed on the
table in front of the robot in a random order. Prior to each
trial, the robot moved to the configuration shown. Users
picked up each object using each teleoperation system.

the fixed start pose, shown in fig. 9, to the target
object, and ended once the hand was closed.

4.1.4 Procedure We conducted a within-subjects
study with one independent variable (control method)
that had two conditions (policy, blend). We counteract
the effects of novelty and practice by counterbalancing
the order of conditions. Each participant grasped each
object one time for each condition for a total of 6 trials.

We recruited 10 participants (9 male, 1 female),
all with experience in robotics, but none with prior
exposure to our system. To counterbalance individual
differences of users, we chose a within-subjects design,
where each user used both systems.

Users were told they would be using two different
teleoperation systems, referred to as “method1” and
“method2”. Users were not provided any information
about the methods. Prior to the recorded trials,
users went through a training procedure: First, they
teleoperated the robot directly, without any assistance
or objects in the scene. Second, they grasped each
object one time with each system, repeating if they
failed the grasp. Users were then given the option
of additional training trials for either system if they
wished.

Users then proceeded to the recorded trials. For each
system, users picked up each object one time in a
random order. Users were told they would complete
all trials for one system before the system switched,
but were not told the order. However, it was obvious
immediately after the first trail started, as the policy
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Figure 10. Task completion times and total input for all
trials. On the left, box plots for each system. On the right,
the time and input of blend minus policy, as a function of
the time and total input of blend. Each point corresponds to
one trial, and colors correspond to different users. We see
that policy was faster (p < 0.01) and resulted in less input
(p < 0.05). Additionally, the difference between systems
increases with the time/input of blend.

method assists from the start pose and blend does
not. Upon completing all trials for one system, they
were told the system would be switching, and then
proceeded to complete all trials for the other system.
If users failed at grasping (e.g. they knocked the
object over), the data was discarded and they repeated
that trial. Execution time and total user input were
measured for each trial.

Upon completing all trials, users were given a short
survey. For each system, they were asked for their
agreement on a 1-7 Likert scale for the following
statements:

1. “I felt in control”
2. “The robot did what I wanted”
3. “I was able to accomplish the tasks quickly”
4. “If I was going to teleoperate a robotic arm, I

would like to use the system”

They were also asked “which system do you prefer”,
where 1 corresponded to blend, 7 to policy, and 4
to neutral. Finally, they were asked to explain their
choices and provide any general comments.

4.1.5 Results Users were able to successfully use both
systems. There were a total of two failures while using
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Figure 11. (a) Means and standard errors from survey
results from our user study. For each system, users were
asked if they felt in control, if the robot did what they
wanted, if they were able to accomplish tasks quickly, and if
they would like to use the system. Additionally, they were
asked which system they prefer, where a rating of 1
corresponds to blend, and 7 corresponds to policy. We found
that users agreed with feeling in control more when using the
blend method compared to the policy method (p < 0.01).
(b) The like rating of policy minus blend, plotted against the
prefer rating. When multiple users mapped to the same
coordinate, we plot multiple dots around that coordinate.
Colors correspond to different users, where the same user has
the same color in fig. 10.

each system - once each because the user attempted
to grasp too early, and once each because the user
knocked the object over. These experiments were reset
and repeated.

We assess our hypotheses using a significance level
of α = 0.05. For data that violated the assumption of
sphericity, we used a Greenhouse-Geisser correction.
If a significant main effect was found, a post-hoc
analysis was used to identify which conditions were
statistically different from each other, with Holm-
Bonferroni corrections for multiple comparisons.

Trial times and total control input were assessed
using a two-factor repeated measures ANOVA, using
the assistance method and object grasped as factors.
Both trial times and total control input had a
significant main effect. We found that our policy
method resulted in users accomplishing tasks more
quickly, supporting H1a (F (1, 9) = 12.98, p = 0.006).
Similarly, our policy method resulted in users grasping
objects with less input, supporting H1b (F (1, 9) =
7.76, p = 0.021). See fig. 10 for more detailed results.

To assess user preference, we performed a
Wilcoxon paired signed-rank test on our survey
question asking if they would like to use each system,
and a Wilcoxon rank-sum test on the survey question
of which system they prefer against the null hypothesis

of no preference (value of 4). There was no evidence to
support H1c.

In fact, our data suggests a trend towards the
opposite: that users prefer blend over policy. When
asked if they would like to use the system, there
was a small difference between methods (blend:
M = 4.90, SD = 1.58, policy: M = 4.10, SD = 1.64).
However, when asked which system they preferred,
users expressed a stronger preference for blend
(M = 2.90, SD = 1.76). While these results are not
statistically significant according to our Wilcoxon
tests and α = 0.05, it does suggest a trend towards
preferring blend. See fig. 11 for results for all survey
questions.

We found this surprising, as prior work indicates
a strong correlation between task completion time
and user satisfaction, even at the cost of control
authority, in both shared autonomy (Dragan and
Srinivasa, 2013b; Hauser, 2013) and human-robot
teaming (Gombolay et al., 2014) settings.‡ Not only
were users faster, but they recognized they could
accomplish tasks more quickly (see quickly in fig. 11).
One user specifically commented that “[Policy] took
more practice to learn. . . but once I learned I was able
to do things a little faster. However, I still don’t like
feeling it has a mind of its own”.

Users agreed more strongly that they felt in control
during blend (Z = −2.687, p = 0.007). Interestingly,
when asked if the robot did what they wanted, the
difference between methods was less drastic. This
suggests that for some users, the robot’s autonomous
actions were in-line with their desired motions, even
though the user did not feel that they were in control.

Users also commented that they had to compensate
for policy in their inputs. For example, one user stated
that “[policy] did things that I was not expecting
and resulted in unplanned motion”. This can perhaps
be alleviated with user-specific policies, matching the
behavior of particular users.

Some users suggested their preferences may change
with better understanding. For example, one user
stated they “disliked (policy) at first, but began to
prefer it slightly after learning its behavior. Perhaps I
would prefer it more strongly with more experience”. It
is possible that with more training, or an explanation
of how policy works, users would have preferred the
policy method. We leave this for future work.

4.1.6 Examining trajectories Users with different pref-
erences had very different strategies for using each

‡In prior works where users preferred greater control authority,

task completion times were indistinguishable (Kim et al., 2012).
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Figure 12. User input and autonomous actions for a user
who preferred policy assistance, using (a) blending and
(b) policy for grasping the same object. We plot the user
input, autonomous assistance with the estimated
distribution, and what the autonomous assistance would have
been had the predictor known the true goal. We subtract the
user input from the assistance when plotting, to show the
autonomous action as compared to direct teleoperation. The
top 3 figures show each dimension separately. The bottom
shows the dot product between the user input and assistance
action. This user changed their strategy during policy
assistance, letting the robot do the bulk of the work, and
only applying enough input to correct the robot for their
goal. Note that this user never applied input in the ‘X’
dimension in this or any of their three policy trials, as the
assistance always went towards all objects in that dimension.

system. Some users who preferred the assistance policy
changed their strategy to take advantage of the con-
stant assistance towards all goals, applying minimal
input to guide the robot to the correct goal (fig. 12).
In contrast, users who preferred blending were often
opposing the actions of the autonomous policy (fig. 13).
This suggests the robot was following a strategy differ-
ent from their own.

4.2 Feeding Experiment

Building from the results of the grasping study
(section 4.1), we designed a broader evaluation of our
system. In this evaluation, we test our system in an
eating task using a Kinova Mico robot manipulator.
We chose the Mico robot because it is a commercially
available assistive device, and thus provides a realistic
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Figure 13. User input and autonomous assistance for a user
who preferred blending, with plots as in fig. 12. The user
inputs sometimes opposed the autonomous assistance (such
as in the ‘X’ dimension) for both the estimated distribution
and known goal, suggesting the cost function didn’t
accomplish the task in the way the user wanted. Even still,
the user was able to accomplish the task faster with the
autonomous assistance then blending.

testbed for assistive applications. We selected the task
of eating for two reasons. First, eating independently
is a real need; it has been identified as one of the
most important tasks for assistive robotic arms (Chung
et al., 2013). Second, eating independently is hard;
interviews with current users of assistive arms have
found that people generally do not attempt to use
their robot arm for eating, as it requires too much
effort (Herlant et al., 2016). By evaluating our systems
on the desirable but difficult task of eating, we show
how shared autonomy can improve over traditional
methods for controlling an assistive robot in a real-
world domain that has implications for people’s quality
of life.

We also extended our evaluation by considering
two additional control methods: direct teleoperation
and full robot autonomy. Direct teleoperation is
how assistive robot manipulators like the Mico are
currently operated by users. Full autonomy represents
a condition in which the robot is behaving “optimally”
for its own goal, but does not take the user’s goal into
account.
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Thus, in this evaluation, we conducted a user
study to evaluate four methods of robot control—
our POMDP framework, a predict-then-act blending
method (Dragan and Srinivasa, 2013b), direct
teleoperation, and full autonomy—in an assistive
eating task.

4.2.1 Metrics Our experiments aim to evaluate the
effectiveness and user satisfaction of each method.

Objective measures. We measure the objective
efficiency of the system in four ways. Success rate
identifies the proportion of successfully completed
trials, where success is determined by whether the
user was able to pick up their intended piece of food.
Total execution time measures how long it took the
participant to retrieve the food in each trial. Number of
mode switches identifies how many times participants
had to switch control modes during the trial (fig. 4).
Total joystick input measures the magnitude of joystick
movement during each trial. The first two measures
evaluate how effectively the participant could reach
their goal, while the last two measures evaluate how
much effort it took them to do so.

Subjective measures. We also evaluated user
satisfaction with the system through subjective
measures. After five trials with each control method, we
asked users to respond to questions about each system
using a seven point Likert scale. These questions,
specified in section 4.2.4, assessed user preferences,
their perceived ability to achieve their goal, and feeling
they were in control. Additionally, after they saw all of
the methods, we asked users to rank order the methods
according to their preference.

4.2.2 Hypotheses As in the previous evaluation, we
are motivated by prior work that suggests that more
autonomy leads to greater efficiency and accuracy for
teleoperated robots (You and Hauser, 2011; Leeper
et al., 2012; Dragan and Srinivasa, 2013b; Hauser,
2013; Javdani et al., 2015). We formulate the following
hypotheses regarding the efficiency of our control
methods, measured through objective metrics.

H2a Using methods with more autonomous assis-
tance will lead to more successful task completions

H2b Using methods with more autonomous assis-
tance will result in faster task completion

H2c Using methods with more autonomous assis-
tance will lead to fewer mode switches

H2d Using methods with more autonomous assis-
tance will lead to less joystick input

Feeding with an assistive arm is difficult (Herlant
et al., 2016), and prior work indicates that users
subjectively prefer more assistance when the task is
difficult even though they have less control (You and

Hauser, 2011; Dragan and Srinivasa, 2013b). Based on
this, we formulate the following hypotheses regarding
user preferences, measured through our subjective
metrics:
H2e Participants will more strongly agree on feeling
in control for methods with less autonomous assistance
H2f Participants will more strongly agree preference
and usability subjective measures for methods with
more autonomous assistance
H2g Participants will rank methods with more
autonomous assistance above methods with less
autonomous assistance

Our hypotheses depend on an ordering of “more”
or “less” autonomous assistance. The four control
methods in this study naturally fall into the following
ordering (from least to most assistance): direct
teleoperation, blending, policy, and full autonomy.
Between the two shared autonomy methods, policy
provides more assistance because it creates assistive
robot behavior over the entire duration of the
trajectory, whereas blend must wait until the intent
prediction confidence exceeds some threshold before it
produces an assistive robot motion.

4.2.3 Experimental Design To evaluate each robot
control algorithm on a realistic assistive task,
participants tried to spear bites of food from a plate
onto a fork held in the robot’s end effector (fig. 14). For
each trial, participants controlled the robot through a
joystick and attempted to retrieve one of three bites of
food on a plate.

Each trial followed a fixed bite retrieval sequence.
First, the robot would move to a pose where its wrist-
mounted camera could detect bites of food on the
plate. This step ensured that the system was robust
to bite locations and could operate no matter where
on the plate the bites were located. While the camera
captured and processed the scene to identify bite
locations, we asked users to verbally specify which bite
they wanted to retrieve§, which allowed us to identify
whether people were able to successfully retrieve their
target bite.

Next, participants used the joystick to position the
robot’s end effector so that the fork was directly above
their target bite. Six DOF control was available in
three modes of 2 DOF each (fig. 4), and participants
could switch between modes by pressing a button on
the joystick.

Once they had the fork positioned above their target
bite, the participant prompted the robot to retrieve the

§Users verbally specified which bite they wanted for all methods

except autonomous, in which the algorithm selects the bite
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(a) Detect (b) Align (c) Acquire (d) Serve

Figure 14. Our bite grasping study. A plate with three bites of food was placed in front of users. (a) The robot start by
detecting the pose of all bites of food. (b) The user then uses one of the four methods to align the fork with their desired
bite. When the user indicates they are aligned, the robot automatically (c) acquires and (d) serves the bite.

bite by pressing and holding the mode switch button.
The robot would then automatically move straight
down to the height of the table, spearing the bite on
the fork. Finally, the robot automatically served the
bite.

4.2.4 Procedure We conducted a within-subjects
study with one independent variable (control method)
that had four conditions (full teleoperation, blend,
policy, and full autonomy). Because each participant
saw all control methods, we counteract the effects
of novelty and practice by fully counterbalancing the
order of conditions. Each participant completed five
trials for each condition for a total of 20 trials. The bite
retrieval sequence described in section 4.2.3 was the
same in each trial across the four control conditions.
The only difference between trials was the control
method used for the alignment step, where the fork
is positioned above the bite. We measure the metrics
discussed in section 4.2.2 only during this step.

We recruited 23 able-bodied participants from the
local community (11 male, 12 female, ages 19 to
59). After obtaining written consent, participants were
given a brief overview of the feeding task, and told
the robot may provide help or take over completely.
Users then received instruction for teleoperating the
system with modal control, and were given five minutes
to practice using the robot under direct teleoperation.
An eye tracking system was then placed on users for
future data analysis, but participant gaze had no effect
on the assistance provided by the robot.

As described in section 4.2.3, participants used a
joystick to spear a piece of food from a plate on a
fork held in the robot’s end effector. The different
control methods were never explained or identified
to users, and were simply referred to by their order
of presentation (e.g., “method 1,” “method 2,” etc.).

After using each method, users were given a short
questionnaire pertaining to that specific method. The
questions were:

1. “I felt in control”
2. “The robot did what I wanted”
3. “I was able to accomplish the tasks quickly”
4. “My goals were perceived accurately”
5. “If I were going to teleoperate a robotic arm, I

would like to use the system”

These questions are identical to those asked in the
previous evaluation (section 4.1), with the addition
of question 4, which focuses specifically on the user’s
goals. Participants were also provided space to write
additional comments. After completing all 20 trials,
participants were asked to rank all four methods in
order of preference and provide final comments.

4.2.5 Results One participant was unable to complete
the tasks due to lack of comprehension of instructions,
and was excluded from the analysis. One participant
did not use the blend method because the robot’s
finger broke during a previous trial. This user’s blend
condition and final ranking data were excluded from
the analysis, but all other data (which were completed
before the finger breakage) were used. Two other
participants missed one trial each due to technical
issues.

Our metrics are detailed in section 4.2.1. For each
participant, we computed the task success rate for
each method. For metrics measured per trial (execution
time, number of mode switches, and total joystick
input), we averaged the data across all five trials
in each condition, enabling us to treat each user as
one independent datapoint in our analyses. Differences
in our metrics across conditions were analyzed using
a repeated measures ANOVA with a significance
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threshold of α = 0.05. For data that violated the
assumption of sphericity, we used a Greenhouse-Geisser
correction. If a significant main effect was found, a
post-hoc analysis was used to identify which conditions
were statistically different from each other, with Holm-
Bonferroni corrections for multiple comparisons.

Success Rate differed significantly between control
methods (F (2.33, 49.00) = 4.57, p = 0.011). Post-hoc
analysis revealed that more autonomy resulted in
significant differences of task completion between
policy and direct (p = 0.021), and a significant
difference between policy and blend (p = 0.0498). All
other comparisons were not significant. Surprisingly,
we found that policy actually had a higher average
task completion ratio than autonomy, though not
significantly so. Thus, we found support H2a (fig. 15a).

Total execution time differed significantly
between methods (F (1.89, 39.73) = 43.55, p < 0.001).
Post-hoc analysis revealed that more autonomy
resulted in faster task completion: autonomy condition
completion times were faster than policy (p = 0.001),
blend (p < 0.001), and direct (p < 0.001). There were
also significant differences between policy and blend
(p < 0.001), and policy and direct (p < 0.001). The
only pair of methods which did not have a significant
difference was blend and direct. Thus, we found sup-
port for H2b (fig. 15b).

Number of mode switches differed significantly
between methods (F (2.30, 48.39) = 65.16, p < 0.001).
Post-hoc analysis revealed that more autonomy
resulted fewer mode switches between autonomy and
blend (p < 0.001), autonomy and direct (p < 0.001),
policy and blend (p < 0.001), and policy and direct
(p < 0.001). Interestingly, there was not a significant
difference in the number of mode switches between full
autonomy and policy, even though users cannot mode
switch when using full autonomy at all. Thus, we found
support for H2c (fig. 15c).

Total joystick input differed significantly between
methods (F (1.67, 35.14) = 65.35, p < 0.001). Post-hoc
analysis revealed that more autonomy resulted in less
total joystick input between all pairs of methods:
autonomy and policy (p < 0.001), autonomy and blend
(p < 0.001), autonomy and direct (p < 0.001), policy
and blend (p < 0.001), policy and direct (p < 0.001),
and blend and direct (p = 0.026). Thus, we found
support for H2d (fig. 15d).

User reported subjective measures for the survey
questions are assessed using a Friedman’s test and a
significance threshold of p = 0.05. If significance was
found, a post-hoc analysis was performed, comparing
all pairs with Holm-Bonferroni corrections.
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Figure 15. Boxplots for each algorithm across all users of
the (a) task completion ratio, (b) total execution time, (c)
number of mode switches, (d) total joystick input, (e) the
ratio of time that robotic assistance was provided, and (f)
the ranking as provided by each user, where 1 corresponds to
the most preferred algorithm. Pairs that were found
significant during post-analysis are plotted, where ∗ indicates
p < 0.05, ∗∗ that p < 0.01, and ∗∗∗ that p < 0.001.

User agreement on control differed significantly
between methods, ξ2(3) = 15.44, p < 0.001, with more
autonomy leading to less feeling of control. Post-hoc
analysis revealed that all pairs were significant, where
autonomy resulting in less feeling of control compared
to policy (p < 0.001), blend (p = 0.001), and direct
(p < 0.001). Policy resulted in less feeling of control
compared to blend (p < 0.001) and direct (p = 0.008).
Blend resulted in less feeling of control compared to
direct (p = 0.002). Thus, we found suppoert for H2e.

User agreement on preference and usability sub-
jective measures sometimeses differed significantly
between methods. User agreement on liking differed
significantly between methods, ξ2(3) = 8.74, p = 0.033.
Post-hoc analysis revealed that between the two shared
autonomy methods (policy and blend), users liked
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(b) Time vs. Total Joystick Input

Figure 16. Time vs. user input in both the number of mode
switches (a) and joystick input (b). Each point corresponds
to the average for one user for each method. We see a
general trend that trials with more time corresponded to
more user input. We also fit a line so all points for all
methods. Note that the direct teleoperation methods are
generally above the line, indicating that shared and full
autonomy usually results in less user input even for similar
task completion time.
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Figure 17. Ratio of the magnitude of the assistance to user
input as a function of time. Line shows mean of the
assistance ratio as a function of the proportion of the
trajectory. Shaded array plots the standard error over users.
We see that blend initially provides no assistance, as the
predictor is not confident in the user goal. In contrast, policy
provides assistance throughout the trajectory. We also see
that policy decreases in assistance ratio over time, as many
users provided little input until the system moved and
oriented the fork near all objects, at which time they
provided input to express their preference and align the fork.

the more autonomous method more (p = 0.012). User
ability for achieving goals quickly also differed signifi-
cantly between methods, ξ23 = 11.90, p = 0.008. Post-
hoc analysis revelead that users felt they could achieve
their goals more quickly with policy than with blend
(p = 0.010) and direct (p = 0.043). We found no signif-
icant differences for our other measures. Thus, we find
partial support for H2f (fig. 18).

Ranking differed significantly between methods,
ξ2(3) = 10.31, p = 0.016. Again, post-hoc analysis
revealed that between the two shared autonomy
methods (policy and blend), users ranked the more
autonomous one higher (p = 0.006). Thus, we find
support for H2g. As for the like rating, we also
found that on average, users ranked direct teleopration
higher than both blend and full autonomy, though not
significantly so (fig. 15f).

4.2.6 Discussion The robot in this study was
controlled through a 2 DOF joystick and a single
button, which is comparable to the assistive robot arms
in use today.

As expected, we saw a general trend in which
more autonomy resulted in better performance
across all objective measures (task completion ratio,
execution time, number of mode switches, and total
joystick input), supporting H2a–H2d. We also saw
evidence that autonomy decreased feelings of control,
supporting H2e. However, it improved people’s
subjective evaluations of usability and preference,
particularly between the shared autonomy methods
(policy and blend), supporting H2f and H2g. Most
objective measures (particularly total execution time,
number of mode switches, and total joystick input)
showed significant differences between all or nearly all
pairs of methods, while the subjective results were less
certain, with significant differences between fewer pairs
of methods.

We can draw several insights from these findings.
First, autonomy improves peoples’ performance on
a realistic assistive task by requiring less physical
effort to control the robot. People use fewer mode
switches (which require button presses) and move the
joystick less in the more autonomous conditions, but
still perform the task more quickly and effectively.
For example, in the policy method, 8 of our 22 users
did not use any mode switches for any trial, but this
method yielded the highest completion ratio and low
execution times. Clearly, some robot autonomy can
benefit people’s experience by reducing the amount of
work they have to do.

Interestingly, full autonomy is not always as effective
as allowing the user to retain some control. For
example, the policy method had a slightly (though not
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Figure 18. Boxplots for user responses to all survey question. See section 4.2.4 for specific questions. Pairs that were found
significant during post-analysis are plotted, where ∗ indicates p < 0.05, ∗∗ that p < 0.01, and ∗∗∗ that p < 0.001. We note
that policy was perceived as quick, even though autonomy actually had lower task completion (fig. 15b). Additionally,
autonomy had a very high variance in user responses for many questions, with users very mixed on if it did what they wanted,
and achieved their goal. On average, we see that policy did better then other methods for most user responses.

significantly) higher average completion ratio than the
full autonomy method. This appears to be the result
of users fine-tuning the robot’s end effector position
to compensate for small visual or motor inaccuracies
in the automatic bite localization process. Because the
task of spearing relatively small bites of food requires
precise end effector localization, users’ ability to fine-
tune the final fork alignment seems to benefit the
overall success rate. Though some users were able to
achieve it, our policy method isn’t designed to allow
this kind of fine-tuning, and will continually move the
robot’s end effector back to the erroneous location
against the user’s control. Detecting when this may
be occurring and decreasing assistance would likely
enhance people’s ability to fine-tune alignment, and
improve their task completion rate even further.

Given the success of blending in previous studies (Li
et al., 2011; Carlson and Demiris, 2012; Dragan and
Srinivasa, 2013b; Muelling et al., 2015; Gopinath et al.,
2016), we were surprised by the poor performance of
blend in our study. We found no significant difference
for blending over direct teleopration for success rate,
task completion time, or number of mode switches.
We also saw that it performed the worst among
all methods for both user liking and ranking. One
possible explanation is that blend spent relatively little
time assisting users (fig. 15e). For this task, the goal
predictor was unable to confidently predict the user’s
goal for 69% of execution time, limiting the amount of
assistance (fig. 17). Furthermore, the difficult portion
of the task—rotating the fork tip to face downward—
occurred at the beginning of execution. Thus, as one
user put it “While the robot would eventually line
up the arm over the plate, most of the hard work
was done by me.” In contrast, user comments for

shared autonomy indicated that “having help earlier
with fork orientation was best.” This suggests that
the magnitude of assistance was less important then
assisting at a time that would have been helpful. And
in fact, assisting only during the portion where the
user could do well themselves resulted in additional
frustration.

Although worse by all objective metrics, participants
tended to prefer direct teleoperation over autonomy.
This is not entirely surprising, given prior work where
users expressed preference for more control Kim et al.
(2012). However, for difficult tasks like this one, users
in prior works tend to favor more assistance (You
and Hauser, 2011; Dragan and Srinivasa, 2013b).
Many users commented that they disliked autonomy
due to the lack of item selection, for example,
“While [autonomy] was fastest and easiest, it did not
account for the marshmallow I wanted.” Another user
mentioned that autonomy “made me feel inadequate.”

We also found that users responded to failures
by blaming the system, even when using direct
teleoperation. Of the eight users who failed to
successfully spear a bite during an autonomous trial,
five users commented on the failure of the algorithm.
In contrast, of the 19 users who had one or more failure
during teleoperation, only two commented on their own
performance. Instead, users made comments about the
system itself, such as how the system “seemed off for
some reason” or “did not do what I intended.” One
user blamed their viewpoint for causing difficulty for
the alignment, and another the joystick. This suggests
that people are more likely to penalize autonomy for its
shortcomings than their own control. Interestingly, this
was not the case for the shared autonomy methods. We
find that when users had some control over the robot’s
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movement, they did not blame the algorithm’s failures
(for example, mistaken alignments) on the system.

5 Human-Robot Teaming

In human-robot teaming, the user and robot want
to achieve a set of related goals. Formally, we
assume a set of user goals gu ∈ Gu and robot goals
gr ∈ Gr, where both want to achieve all goals.
However, there may be constraints on how these
goals can be achieved (e.g. user and robot cannot
simultaneously use the same object (Hoffman and
Breazeal, 2007)). We apply a conservative model for
these constraints through a goal restriction set R =
{(gu, gr) : Cannot achieve gu and gr simultaneously}.
In order to efficiently collaborate with the user, our
objective is to simultaneously predict the human’s
intended goal, and achieve a robot goal not in the
restricted set. We remove the achieved goals from
their corresponding goal sets, and repeat this process
until all robot goals are achieved.

The state x corresponds to the state of both the user
and robot, where u affects the user portion of state,
and a affects the robot portion. The transition function
T (x′ | x, u, a) deterministically transitions the state by
applying u and a sequentially.

For prediction, we used the same cost function for Cu
κ

as in our shared teleoperation experiments (section 4).
Let d be the distance between the robot state x′ =
T u(x, u)¶ and target κ:

Cu
κ(x, u) =

{
α d > δ
α
δ d d ≤ δ

Which behaves identically to our shared control
teleoperation setting: when the distance is far away
from any target (d > δ), probability shifts towards
goals relative to how much progress the user makes
towards them. When the user stays close to a particular
target (d ≤ δ), probability mass shifts to that goal, as
the cost for that goal is less than all others.

Unlike our shared control teleoperation setting, our
robot cost function does not aim to achieve the same
goal as the user, but rather any goal not in the
restricted set. As in our shared autonomy framework,
let g be the user’s goal. The cost function for a
particular user goal is:

Cr
g(x, u, a) = min

gr s.t. (g,gr) 6∈R
Cu
gr(x, a)

Where Cu
g uses the cost for each target Cu

κ to
compute the cost function as described in section 3.5.
Additionally, note that the min over cost functions
looks identical to the min over targets to compute

the cost for a goal. Thus, for deterministic transition
functions, we can use the same proof for computing the
value function of a goal given the value function for all
targets (section 3.5.1) to compute the value function
for a robot goal given the value function for all user
goals:

V r
g (x) = min

gr s.t. (g,gr) 6∈R
V u
gr(x)

This simple cost function provides us a baseline for
performance. We might expect better collaboration
performance by incorporating costs for collision
avoidance with the user (Mainprice and Berenson,
2013; Lasota and Shah, 2015), social acceptability of
actions (Sisbot et al., 2007), and user visibility and
reachability (Sisbot et al., 2010; Pandey and Alami,
2010; Mainprice et al., 2011). We use this cost function
to test the viability of our framework as it enables
closed-form computation of the value function.

This cost and value function causes the robot to go
to any goal currently in it’s goal set gr ∈ Gr which is
not in the restriction set of the user goal g. Under
this model, the robot makes progress towards goals
that are unlikely to be in the restricted set and have
low cost-to-go. As the form of the cost function is
identical to that which we used in shared control
teleoperation, the robot behaves similarly: making
constant progress when far away (d > δ), and slowing
down for alignment when near (d ≤ δ). The robot
terminates and completes the task once some condition
is met (e.g. d ≤ ε).
Hindsight Optimization for Human-Robot Teaming Sim-
ilar to shared control teleoperation, we believe hind-
sight optimization is a suitable POMDP approximation
for human-robot teaming. The efficient computation
enables us to respond quickly to changing user goals,
even with continuous state and action spaces. For our
formulation of human-robot teaming, explicit informa-
tion gathering is not possible: As we assume the user
and robot affect different parts of state space, robot
actions are unable to explicitly gather information
about the user’s goal. Instead, we gain information
freely from user actions.

5.1 Human-Robot Teaming Experiment

We apply our shared autonomy framework to a human-
robot teaming task of gift-wrapping, where the user
and robot must both perform a task on each box to
be gift wrapped. Our goal restriction set enforces that

¶We sometimes instead observe x′ directly (e.g. sensing the pose

of the user hand)
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Metric Auton-Policy Auton-Blend Auton-Direct Policy-Blend Policy-Direct Blend-Direct
Success Rate NS NS NS 0.050 0.021 NS

Completion Time <0.001 <0.001 <0.001 <0.001 <0.001 NS
Mode Switches NS <0.001 <0.001 <0.001 <0.001 NS
Control Input <0.001 <0.001 <0.001 <0.001 <0.001 0.004

Ranking NS NS NS 0.006 NS NS
Like Rating NS NS NS 0.012 NS NS

Control Rating <0.001 .001 <0.001 <0.001 0.008 .002
Quickly Rating NS NS NS 0.010 0.043 NS

Table 1. Post-Hoc p-value for every pair of algorithms for each hypothesis. For Success rate, completion time, mode
switches, and total joystick input, results are from a repeated measures ANOVA. For like rating and ranking, results are from
a Wilcoxon signed-rank test. All values reported with Holm-Bonferroni corrections.

they cannot perform a task on the same box at the
same time.

In a user study, we compare three methods: our
shared autonomy framework, referred to as policy, a
standard predict-then-act system, referred to as plan,
and a non-adaptive system where the robot executes a
fixed sequence of motions, referred to as fixed.

5.1.1 Metrics Task fluency involves seamless coordi-
nation of action. One measure for task fluency is
the minimum distance between the human and robot
end effectors during a trial. This was measured auto-
matically by a Kinect mounted on the robot’s head,
operating at 30Hz. Our second fluency measure is the
proportion of trial time spent in collision. Collisions
occur when the distance between the robot’s end
effector and the human’s hand goes below a certain
threshold. We determined that 8cm was a reasonable
collision threshold based on observations before begin-
ning the study.

Task efficiency relates to the speed with which
the task is completed. Objective measures for task
efficiency were total task duration for robot and for
human, the amount of human idle time during the
trial, and the proportion of trial time spent idling.
Idling is defined as time a participant spends with
their hands still (i.e., not completing the task). For
example, idling occurs when the human has to wait for
the robot to stamp a box before they can tie the ribbon
on it. We only considered idling time while the robot
was executing its tasks, so idle behaviors that occurred
after the robot was finished stamping the boxes—which
could not have been caused by the robot’s behavior—
were not taken into account.

We also measured subjective human satisfaction
with each method through a seven-point Likert scale
survey evaluating perceived safety (four questions) and
sense of collaboration (four questions). The questions
were:

1. “HERB was a good partner”

2. “I think HERB and I worked well as a team”
3. “I’m dissatisfied with how HERB and I worked

together”
4. “I trust HERB”
5. “I felt that HERB kept a safe distance from me”
6. “HERB got in my way”
7. “HERB moved too fast”
8. “I felt uncomfortable working so close to HERB”

5.1.2 Hypotheses We hypothesize that:
H3a Task fluency will be improved with our policy
method compared with the plan and fixed methods
H3b Task efficiency will be improved with our policy
method compared with the plan and fixed methods
H3c People will subjectively prefer the policy method
to the plan or fixed methods

5.1.3 Experimental Design We developed a gift-
wrapping task (fig. 19). A row of four boxes was
arranged on a table between the human and the robot;
each box had a ribbon underneath it. The robot’s
task was to stamp the top of each box with a marker
it held in its hand. The human’s task was to tie a
bow from the ribbon around each box. By nature of
the task, the goals had to be selected serially, though
ordering was unspecified. Though participants were not
explicitly instructed to avoid the robot, tying the bow
while the robot was stamping the box was challenging
because the robot’s hand interfered, which provided
a natural disincentive toward selecting the same goal
simultaneously.

5.1.4 Implementation We implemented the three
control methods on HERB Srinivasa et al. (2012), a
bi-manual mobile manipulator with two Barrett WAM
arms. A Kinect was used for skeleton tracking and
object detection. Motion planning was performed using
CHOMP, except for our policy method in which motion
planning works according to section 3.

The stamping marker was pre-loaded in HERB’s
hand. A stamping action began at a home position,
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Figure 19. Participants performed a collaborative
gift-wrapping task with HERB to evaluate our POMDP
based reactive system against a state of the art
predict-then-act method, and a non-adaptive fixed sequence
of robot goals.

the robot extended its arm toward a box, stamped the
box with the marker, and retracted its arm back to the
home position.

To implement the fixed method, the system simply
calculated a random ordering of the four boxes,
then performed a stamping action for each box. To
implement the predict-then-act method, the system
ran the human goal prediction algorithm from
section 3.4 until a certain confidence was reached
(50%), then selected a goal that was not within the
restricted set R and performed a stamping action
on that goal. There was no additional human goal
monitoring once the goal action was selected. In
contrast, our policy implementation performed as
described in section 5, accounting continually for
adapting human goals and seamlessly re-planning when
the human’s goal changed.

5.1.5 Procedure We conducted a within-subjects
study with one independent variable (control method)
that had 3 conditions (policy, plan, and fixed). Each
performed the gift-wrapping task three times, once
with each robot control method. To counteract the
effects of novelty and practice, we counterbalanced on
the order of conditions.

We recruited 28 participants (14 female, 14 male;
mean age 24, SD 6) from the local community. Each
participant was compensated $5 for their time. After
providing consent, participants were introduced to
the task by a researcher. They then performed the
three gift-wrapping trials sequentially. Immediately
after each trial, before continuing to the next one,
participants completed an eight question Likert-scale
survey to evaluate their collaboration with HERB
on that trial. At the end of the study, participants
provided verbal feedback about the three methods. All
trials and feedback were video recorded.
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Figure 20. Distance metrics: no difference between methods
for minimum distance during interaction, but the policy
method yields significantly (p < 0.05) less time in collision
between human and robot.

5.1.6 Results Two participants were excluded from
all analyses for noncompliance during the study (not
following directions). Additionally, for the fluency
objective measures, five other participants were
excluded due to Kinect tracking errors that affected the
automatic calculation of minimum distance and time
under collision threshold. Other analyses were based
on video data and were not affected by Kinect tracking
errors.

We assess our hypotheses using a significance level
of α = 0.05. For data that violated the assumption of
sphericity, we used a Greenhouse-Geisser correction.
If a significant main effect was found, a post-hoc
analysis was used to identify which conditions were
statistically different from each other, with Holm-
Bonferroni corrections for multiple comparisons.

To evaluate H3a (fluency), we conducted a repeated
measures ANOVA testing the effects of method
type (policy, plan, and fixed) on our two measures
of human-robot distance: the minimum distance
between participant and robot end effectors during
each trial, and the proportion of trial time spent
with end effector distance below the 8cm collision
threshold (fig. 20). The minimum distance metric was
not significant (F (2, 40) = 1.405, p = 0.257). However,
proportion of trial time spent in collision was
significantly affected by method type (F (2, 40) =
3.639, p = 0.035). Interestingly, the policy method
never entered under the collision threshold. Post-
hoc pairwise comparisons with a Holm-Bonferroni
correction reveal that the policy method yielded
significantly (p = 0.027) less time in collision than the
plan method (policy M = 0.0%, SD = 0; plan M =
0.44%, SD = 0.7).

Therefore, H3a is partially supported: the policy
method actually yielded no collisions during the trials,
whereas the plan method yielded collisions during 0.4%
of the trial time on average. This confirms the intuition
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Figure 21. Duration metrics, with pairs that differed significantly during post-analysis are plotted, where ∗ indicates p < 0.05
and ∗∗∗ that p < 0.001. Human trial time was approximately the same across all methods, but robot time increased with the
computational requirements of the method. Total time thus also increased with algorithmic complexity.
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Figure 22. Idle time metrics: policy yielded significantly
(p < 0.05) less absolute idle time than the fixed method.

behind the differences in the two methods: the policy
continually monitors human goals, and thus never
collides with the human, whereas the plan method
commits to an action once a confidence level has been
reached, and is not adaptable to changing human goals.

To evaluate H3b (efficiency), we conducted a similar
repeated measures ANOVA for the effect of method
type on task durations for robot and human (fig. 21),
as well as human time spent idling (fig. 22). Human
task duration was highly variable and no significant
effect for method was found (F (2, 50) = 2.259, p =
0.115). On the other hand, robot task duration was
significantly affected by method condition (F (2, 50) =
79.653, p < 0.001). Post-hoc pairwise comparisons with
a Bonferroni correction reveal that differences between
all conditions are significant at the p < 0.001 level.
Unsurprisingly, robot task completion time was
shortest in the fixed condition, in which the robot
simply executed its actions without monitoring human
goals (M = 46.4s, SD = 3.5s). It was significantly
longer with the plan method, which had to wait
until prediction reached a confidence threshold to
begin its action (M = 56.7s, SD = 6.0). Robot task
time was still longer for the policy method, which
continually monitored human goals and smoothly

replanned motions when required, slowing down the
overall trajectory execution (M = 64.6s, SD = 5.3).

Total task duration (the maximum of human and
robot time) also showed a statistically significant differ-
ence (F (2, 50) = 4.887, p = 0.012). Post-hoc tests with
a Bonferroni-Holm correction show that both fixed
(M = 58.6s, SD = 14.1) and plan (M = 60.6s, SD =
7.1) performed significantly (p = 0.026 and p = 0.032,
respectively) faster than policy (M = 65.9s, SD =
6.3). This is due to the slower execution time of the
policy method, which dominates the total execution
time.

Total idle time was also significantly affected
by method type (F (2, 50) = 3.809, p = 0.029). Post-
hoc pairwise comparisons with Bonferroni correction
reveal that the policy method yielded significantly
(p = 0.048) less idle time than the fixed condition
(policy M = 0.46s, SD = 0.93, fixed M = 1.62s, SD =
2.1). Idle time percentage (total idle time divided
by human trial completion time) was also significant
(F (2, 50) = 3.258, p = 0.047). Post-hoc pairwise tests
with Bonferroni-Holm correction finds no significance
between pairs. In other words, the policy method
performed significantly better than the fixed method
for reducing human idling time, while the plan method
did not.

Therefore, H3b is partially supported: although
total human task time was not significantly influenced
by method condition, the total robot task time and
human idle time were all significantly affected by which
method was running on the robot. The robot task time
was slower using the policy method, but human idling
was significantly reduced by the policy method.

To evaluate H3c (subjective responses), we first
conducted a Chronbach’s alpha test to assure that
the eight survey questions were internally consistent.
The four questions asked in the negative (e.g., “I’m
dissatisfied with how HERB and I worked together”)
were reverse coded so their scales matched the
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No Collision Collision

mean (SD) N mean (SD) N

Fixed 5.625 (1.28) 14 4.448 (1.23) 12
Plan 5.389 (1.05) 18 4.875 (1.28) 8
Policy 5.308 (0.94) 26 — 0

Table 2. Subjective ratings for each method condition,
separated by whether a collision occurred during that trial.

positive questions. The result of the test showed high
consistency (α = 0.849), so we proceeded with our
analysis by averaging together the participant ratings
across all eight questions.

During the experiment, participants sometimes saw
collisions with the robot. We predict that collisions will
be an important covariate on the subjective ratings of
the three methods. In order to account for whether a
collision occurred on each trial in our within-subjects
design, we cannot conduct a simple repeated measures
ANOVA. Instead, we conduct a linear mixed model
analysis, with average rating as our dependent variable;
method (policy, plan, and fixed), collision (present
or absent), and their interaction as fixed factors;
and method condition as a repeated measure and
participant ID as a covariate to account for the fact
that participant ratings were not independent across
the three conditions. Table 2 shows details of the scores
for each method broken down by whether a collision
occurred.

We found that collision had a significant effect on
ratings (F (1, 47.933) = 6.055, p = 0.018), but method
did not (F (1, 47.933) = 0.312, p = 0.733). No interac-
tion was found. In other words, ratings were sig-
nificantly affected by whether or not a participant
saw a collision, but not by which method they saw
independent of that collision. Therefore, H3c is not
directly supported. However, our analysis shows that
collisions lead to poor ratings, and our results above
show that the policy method yields fewer collisions.
We believe a more efficient implementation of our
policy method to enable faster robot task completion,
while maintaining fewer collisions, may result in users
preferring the policy method.

6 Discussion and Conclusion

In this work, we present a method for shared autonomy
that does not rely on predicting a single user goal, but
assists for a distribution over goals. Our motivation
was a lack of assistance when using predict-then-
act methods - in our own experiment (section 4.2),
resulting in no assistance for 69% of execution time.
To assist for any distribution over goals, we formulate

shared autonomy as a POMDP with uncertainty over
user goals. To provide assistance in real-time over
continuous state and action spaces, we used hindsight
optimization (Littman et al., 1995; Chong et al.,
2000; Yoon et al., 2008) to approximate solutions. We
tested our method on two shared-control teleoperation
scenarios, and one human-robot teaming scenario.
Compared to predict-then-act methods, our method
achieves goals faster, requires less user input, decreases
user idling time, and results in fewer user-robot
collisions.

In our shared control teleoperation experiments,
we found user preference differed for each task,
even though our method outperformed a predict-
then-act method across all objective measures for
both tasks. This is not entirely surprising, as prior
works have also been mixed on whether users prefer
more control authority or better task completion You
and Hauser (2011); Kim et al. (2012); Dragan and
Srinivasa (2013b). In our studies, user’s tended to
prefer a predict-then-act approach for the simpler
grasping scenario, though not significantly so. For the
more complex eating task, users significantly preferred
our shared autonomy method to a predict-then-act
method. In fact, our method and blending were the
only pair of algorithms that had a significant difference
across all objective measures and the subjective
measuring of like and rank (table 1).

However, we believe this difference of rating cannot
simply be explained by task difficulty and timing, as
the experiments had other important differences. The
grasping task required minimal rotation, and relied
entirely on assistance to achieve it. Using blending,
the user could focus on teleoperating the arm near the
object, at which point the predictor would confidently
predict the user goal, and assistance would orient
the hand. For the feeding task, however, orienting
the fork was necessary before moving the arm, at
which point the predictor could confidently predict
the user goal. For this task, predict-then-act methods
usually did not reach their confidence threshold until
users completed the most difficult portion of the
task - cycling control modes to rotate and orient
the fork. These mode switches have been identified
as a significant contributor to operator difficulty and
time consumption (Herlant et al., 2016). This inability
to confidently predict a goal until the fork was
oriented caused predict-then-act methods to provide no
assistance for the first 29.4 seconds on average - which
is greater then the total average time of our method
(18.5s). We believe users were more willing to give up
control authority if they did not need to do multiple
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mode switches and orient the fork, which subjectively
felt much more tedious then moving the position.

In all experiments, we used a simple distance-
based cost function, for which we could compute value
functions in closed form. This enabled us to compute
prediction and assistance 50 times a second, making
the system feel responsive and reactive. However,
this simple cost function could only provide simple
assistance, with the objective of minimizing the time to
reach a goal. Our new insights into possible differences
of user costs for rotation and mode switches as
compared to translation can be incorporated into the
cost function, with the goal of minimizing user effort.

For human-robot teaming, the total task time was
dominated by the robot, with the user generally
finishing before the robot. In situations like this,
augmenting the cost function to be more aggressive
with robot motion, even at the cost of responsiveness to
the user, may be beneficial. Additionally, incorporating
more optimal robot policies may enable faster robot
motions within the current framework.

Finally, though we believe these results show great
promise for shared control teleoperation and teaming,
we note users varied greatly in their preferences and
desires. Prior works in shared control teleoperation
have been mixed on whether users prefer control
authority or more assistance You and Hauser (2011);
Kim et al. (2012); Dragan and Srinivasa (2013b). Our
own experiments were also mixed, depending on the
task. Even within a task, users had high variance,
with users fairly split for grasping (fig. 11), and a high
variance for user responses for full autonomy for eating
(fig. 18). For teaming, users were similarly mixed in
their rating for an algorithm depending on whether or
not they collided with the robot (table 2). This variance
suggests a need for the algorithm to adapt to each
individual user, learning their particular preferences.
New work by Nikolaidis et al. (2017c) captures these
ideas through the user’s adaptability, but we believe
even richer user models and their incorporation into the
system action selection would make shared autonomy
systems better collaborators.
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Appendix A Variable Definitions

For reference, we provide a table of variable definitions
in table 3.

Appendix B Multi-Target MDPs Proofs

Below we provide the proofs for decomposing the
value functions for MDPs with multiple targets, as
introduced in section 3.5.

B.1 Theorem 1: Decomposing value functions

Here, we show the proof for our theorem that we can
decompose the value functions over that the targets
for deterministic MDPs. The proofs here are written
for our shared autonomy scenario. However, the same
results hold for any deterministic MDP:

Theorem 1. Let Vκ be the value function for target κ.
Define the cost for the goal as in eq. (2). For an MDP
with deterministic transitions, and a deterministic user
policy πu, the value and action-value functions Vg and
Qg can be computed as:

Qg(x, u, a) = Qκ∗(x, u, a) κ∗ = arg min
κ

Vκ(x′)

Vg(x) = min
κ
Vκ(x)

Proof. We show how the standard value iteration
algorithm, computing Qg and Vg backwards, breaks
down at each time step. At the final timestep T, we
get:

QTg (x, u, a) = Cg(x, u, a)

= Cκ(x, u, a) for any κ

V Tg (x) = min
a
Cg(x, u, a) u = πu(x)

= min
a

min
κ
Cκ(x, u, a)

= min
κ
V Tκ (x)

Let κ∗ = arg minVκ(x′) as before. Now, we show the
recursive step:

Qt−1g (x, u, a) = Cg(x, u, a) + V tg (x′)

= Cκ∗(x, u, a) + min
κ
V tκ(x′)

= Cκ∗(x, u, a) + V tκ∗(x
′)

= Qκ∗(x, u, a)

V t−1g (x) = min
a
Qt−1g (x, u, a) u = πu(x)

= min
a
Cκ∗(x, u, a) + V tκ∗(x

′)

≥ min
a

min
κ

(
Cκ(x, u, a) + V tκ(x′)

)
= min

κ
V t−1κ (x)

Additionally, we know that Vg(x) ≤ minκ Vκ(x),
since Vκ(x) measures the cost-to-go for a specific
target, and the total cost-to-go is bounded by this
value for a deterministic system. Therefore, Vg(x) =
minκ Vκ(x).

B.2 Theorem 2: Decomposing soft value
functions

Here, we show the proof for our theorem that we
can decompose the soft value functions over that the
targets for deterministic MDPs:
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Symbol Description

x ∈ X Environment state, e.g. robot and human pose
g ∈ G User goal
s ∈ S s = (x, g). State and user goal
u ∈ U User action
a ∈ A Robot action

Cu(s, u) = Cu
g (x, u) Cost function for each user goal

Cr(s, u, a) = Cr
g(x, u, a) Robot cost function for each goal

T (x′ | x, u, a) Transition function of environment state
T ((x′, g) | (x, g), u, a) = T (x′ | x, u, a) User goal does not change with transition

T u(x′ | x, u) = T (x′ | x, u, 0) User transition function assumes the user is in full control
Vg(x) = V ∗(s) The value function for a user goal and environment state

Qg(x, u, a) = Q∗(s, u, a) The action-value function for a user goal and environment state
b Belief, or distribution over states in our POMDP.

τ(b′ | b, u, a) Transition function of belief state
V π

r

(b) Value function for following policy πr given belief b
Qπ

r

(b, u, a) Action-Value for taking actions u and a and following πr thereafter
V HS(b) Value given by Hindsight Optimization approximation

QHS(b, u, a) Action-Value given by Hindsight Optimization approximation

Table 3. Variable definitions

Theorem 2. Define the probability of a trajectory and
target as p(ξ, κ) ∝ exp(−Cκ(ξ)). Let V ≈κ and Q≈κ be
the soft-value functions for target κ. For an MDP with
deterministic transitions, the soft value functions for
goal g, V ≈g and Q≈g , can be computed as:

V ≈g (x) = softmin
κ

V ≈κ (x)

Q≈g (x, u) = softmin
κ

Q≈κ (x, u)

Proof. As the cost is additive along the trajectory,
we can expand out exp(−Cκ(ξ)) and marginalize over
future inputs to get the probability of an input now:

πu(ut, κ|xt) =
exp(−Cκ(xt, ut))

∫
exp(−Cκ(ξt+1→T

xt+1
))∑

κ′

∫
exp(−Cκ′(ξt→Txt

))

Where the integrals are over all trajectories. By
definition, exp(−V ≈κ,t(xt)) =

∫
exp(−Cκ(ξt→Txt

)):

=
exp(−Cκ(xt, ut)) exp(−V ≈κ,t+1(xt+1))∑

κ′ exp(−V ≈κ′,t(xt))

=
exp(−Q≈κ,t(xt, ut))∑
κ′ exp(−V ≈κ′,t(xt))

Marginalizing out κ and simplifying:

πu(ut|xt) =

∑
κ exp(−Q≈κ,t(xt, ut))∑
κ exp(−V ≈κ,t(xt))

= exp

(
log

(∑
κ exp(−Q≈κ,t(xt, ut))∑
κ exp(−V ≈κ,t(xt))

))
= exp

(
softmin

κ
V ≈κ,t(xt)− softmin

κ
Q≈κ t(xt, ut)

)
As V ≈g,t and Q≈g,t are defined such that πu

t (u|x, g) =
exp(V ≈g,t(x)−Q≈g,t(x, u)), our proof is complete.
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