Sensor Fusion for Fiducial Tags: Highly Robust Pose Estimation from
Single Frame RGBD

Pengju Jin, Pyry Matikainen, Siddhartha S. Srinivasa

Abstract—Although there is an abundance of planar fiducial-
marker systems proposed for augmented reality and computer-
vision purposes, using them to estimate the pose accurately in
robotic applications where collected data are noisy remains a
challenge. This is inherently a difficult problem because these
fiducial marker systems work solely within the RGB image space
and the resolution of cameras on robots is often constrained. As
a result, small noise in the image would cause the tag’s detection
process to produce large pose estimation errors.

This paper describes an algorithm that improves the pose
estimation accuracy of square fiducial markers in difficult
scenes by fusing information from RGB and depth sensors.
The algorithm retains the high detection rate and low false
positive rate characteristics of fiducial systems while making
them much more robust to size, lighting and sensory noise
for pose estimation. The improvements make the fiducial tags
suitable for robotic tasks requiring high pose accuracy in the
real world environment.

I. INTRODUCTION

Detection and identification using artificial landmarks,
known as fiducial markers, has long been used in augmented
reality (AR) and computer vision (CV) applications. Over
the last decade, there have been numerous marker systems,
such as ARTags [1] Apriltags [2], and Rune Tags [3],
designed to improve detection encoding precision. In contrast
to AR systems, robots often operate in suboptimal conditions
where, for instance, camera resolution and illumination are
constrained and cause the data to be noisy. In order for
fiducial-marker systems to be effective in these settings, they
must be robustness to scenery and sensory noises.

There are two qualities of fiducial-marker systems that are
especially important to robotic applications: detection rate,
the ability to find the tag in the image, and pose accuracy, the
accuracy of the estimated 6 DOF pose of the tag. Compared
to markerless detection algorithms, fiducial-marker methods
are simpler. They yield great results in augmented reality
tasks that require high detection speed. Furthermore, the
fiducial tags are popular in the robotic community due to
their high detection rates and numerous encoding schemes.
For example, Apriltags are commonly used to test SLAM
systems, or finding ground truth for objects in manipulation
and motion planning tasks.

However, obtaining highly accurate pose estimations using
fiducial tags from noisy data remains a challenge. This
is important for robotic applications because small errors
can cause large system failures as the errors propagate and
amplify through the system as shown in Figure 1. Cur-
rently, the fiducial tag systems yield promising results under
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Fig. 1: Robot about to execute a manipulation task and rearrange the objects
on the table. Apriltags are used to find the poses of targeted objects in the
scene but the robot ultimately fails to gasp the rectangular prism because
the orientation of its pose is wrong.
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Fig. 2: An overview of our purposed sensor fusion pipeline. We implicitly
generate pose estimations from RGB and depth sensor observations and
combine them according to their uncertainty distribution.

well conditioned or rendered environments, but this does
not translate to ill-conditioned settings. For instance, when
AprilTags, a state of the art fiducial marker, are used with low
resolution cameras or harsh lighting conditions, the system
often produces poses with tremendous rotational errors. We
observe that the AprilTag’s localization accuracy performs
significantly worse when there is noise in the captured image.
This is a difficult problem because RGB sensors are often
sensitive to lighting, and most popular fiducial systems are
not designed to take advantage of other sensors commonly



(a) ARToolkit (b) ARTag (c) AprilTag

(d) RUNE-Tag
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Fig. 3: Different types of popular fiducial tags. ARToolkit, ARTags, and
AprilTags are square tags with black borders. RUNE-tags and Intersense
use different circle features as landmarks

available on robots.

We present two main contributions in this paper. First, we
conducted an in-depth analysis on the effect of various noises
on the pose estimation process. In particular, the noise in
RGB images creates a perspective ambiguity problem that
makes the pose estimation challenging without additional
information.

Second, we describe a novel method that takes advantage
of the RGBD sensors that are commonly available on many
robotic systems to accurately estimate the pose from a single
tag under noisy conditions in real time. The overview of
our method as shown in Figure 2. Our key insight is that
RGB and depth sensors work optimally in complements.
RGB data can be used to efficiently detect features where
depth data can retain better structural information. We can
leverage this to improve the pose estimation process and
increase the localization accuracy under difficult conditions.
The key features to this algorithm are:

o This method is highly robust to noise in the scene. It
can obtain accurate poses suitable for a wide range of
robotic applications.

« It is easily generalizable to most fiducial tag designs.

« It has very small computation overhead, and can be ran
in real time.

This paper also presents empirical results demonstrating
the successful performance of the algorithm on captured data
from a humanoid robot. Our implementation of the algorithm
is based on the Apriltag detection pipeline and it is integrated
with ROS.

II. RELATED WORK

Obtaining highly accurate pose estimation has been an im-
portant research area in robotics. Numerous algorithms rely
only on RGB or gray scale images. Solving the projection
geometry of some detected features and then minimize the
reprojection error of the features in the image space [4].
Similarly, methods such as Iterative Closest Point [S] were
developed to solve the pose estimation problem using range
data by minimizing the Euclidean distance between the model
and the depth data. Recently, some approaches in the SLAM
community propose to enhance the accuracy of traditional

(b)

Fig. 4: The ambiguity effect can be demonstrated with two rendered cubes
in the perspective view. The two cubes are rotated such that two faces are
interlaced. The red square in 4a is a simulated projection of a square tag.
The red circular regions denote the region of potential corner detection in
a noisy scene. 4b is a sketch of the potential resulting 2D projection. The
pose can converge to either one of the two faces.

tracking algorithms by fusing RGB with depth data or inertial
data in various problems using extended Kalman filters
[6, 7]. Compared to the single-sensor approaches, algorithms
utilizing RGBD data are more accurate and perform well in
noisy situations where other approaches fail. However, such
approaches are often costly in terms of physical hardware as
well as computation overhead. It is difficult to apply them in
time sensitive applications.

Fiducial markers solve pose estimation by exploiting easily
detectable features in the RGB space. There is an abundance
of unique tag designs, most of them carry easily recognizable
yet precise binary patterns in the inner region to encode
information. There are two types of common tags: circular
tags and square tags (see Figure 3).

Circular tags are created to encode the payload using small
circular patterns arranged in various shapes. Examples of
circular tags include Intersense [8] and Rune tags [3]. The
perspective transformation of a circle is an ellipse, which can
be used to directly compute the pose using back projection
methods. Localization of circular features is generally more
accurate, and thus generates better pose estimation at the
cost of higher computation time [9]. However, small circular
features become hard to detect when they are far away from
the camera or prospectively rotated, and thus their effective
range is much smaller than that of square tags.

ARTags [1], ARToolkit [10], ArUco [11], AprilTag [2] and
AprilTag 2 [12] are examples of squared-based fiducial tags.
The perspective projection of a square becomes a general
quadrilateral. Given the scale of a single marker, the full
6-DOF pose can then be estimated using the corners of the
quadrilateral. However, since the tags are detected using rect-
angles and lines, the accuracy of their corner point sub-pixel
locations is limited. Among the square tags, ARToolkit is one
of the earliest detection systems, and it is mainly used for
Augmented reality applications. Built on top of ARToolkit,
ARTags and Apriltag reduced the computation time by using
a 2D binary pattern as the payload. Both systems use the
image gradient to compute the tag border making it robust to
lighting changes and partial occlusions. Relative to ARTags,
Apriltags have a lower false positive rate, as they use a
lexicode-based system that is invariant to rotation. In addi-
tion, Apriltags have higher detection rates at further distances
and at more difficult viewing angles. Recently AprilTag 2



Viewing Angle Errors (Simulation)

sigma: 0.2 pixel
sigma: 0.5 pixel
sigma: 1.0 pixel

Error Percentage
o
N
o

=}
=
o

o
o
o

o
o
S

10 20 30 40 50 60 70 80 90
Rotation Angle (degrees)

(a)

Distance Error (Simulation)

0.5
i : 0.2 pixel
sigma: 0.5 pixel
sigma: 1.0 pixel
0.4
[
j=2)
S03
c
o]
I~
CIJ
a
§ 0.2
i
0.1
0.
8.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Distance (m)

(b)

Fig. 5: Simulation results of Apriltag pose estimation under different noise level. In both simulations, four corners are projected onto a rendered image
with some noise then computed their poses in each trail. In 5a, corners are projected to the center of the camera 0.8 meters away and rotated from 0° to
90° at 1° interval. In 5b, the corners are projected at 40° and moved from 0.6 meters to 1.8 meters at 0.1 meter interval. We sampled the poses from
10,000 trials for each experiment and computed the percentage of unacceptable poses base on a threshold.

improved upon the original Apriltag. It implements a new
boundary segmentation algorithm which further reduces the
computing time for detection and increases the detection rate.
Compared to circular tags, the advantages of square tags are
that they can be located very efficiently and they have reliable
decoding schemes. Therefore, Its they are more suitable for
robotic applications that require a robust system.

III. CHALLENGES

In square fiducial marker detection, the pose is computed
using the four corners of the tag. Since the tags are planar, it
is easy to compute perspective point correspondences from
the corners. This can be formalized as a specific case of
pose estimation from Perspective-N-Point and it has been
well studied in geometry-based Computer Vision literatures
[13, 14]. There are numerous optimization methods such as
the ones proposed in [15] and [16] to solve this problem. In
particular, Horaud et al. [17] show that there is a deterministic
analytical solution to the Perspective-4-Point (P4P) problem
when the points are coplanar as they are on the tag. In
practice, however, these methods are very sensitive to noise in
the scene. When ARTags, Apriltags and ARToolkit systems
are used in scenarios shown in Figure 1, the poses of the tags
are unstable even when the scene is static. Since the minimal
number of perspective points are used to estimate the pose,
a small variance in the corner detection process will yield
estimations far from the true pose.

We will illustrate an ambiguity effect caused by noise by
using two overlapping cubes, shown in Figure 4. The overlap-
ping face of the two cubes are interlaced but rotated by 120
degrees. However, due to perspective projection, the squares
appear to be on the same plane. With low camera resolution,
the overlapping squares become virtually indistinguishable.
The red circular regions are the detected corners under
some sensory noise. Even though the reprojection error is
minimized in the 2D space using P4P optimization methods,
the 3D pose can still be far off. The result of the optimization

can be characterized as a bimodal distribution and a function
of the the viewing angle and distance. Depending on the
noise level in the scene, the optimization might converge to
either one of the local minima causing the pose estimation
to be unreliable. In Figure 5, we ran the P4P pipeline
used in Apriltag on rendered corners with small Gaussian
noises simulating an Apriltag detection. The results show the
percentage of poses that have more than 30° of rotational
error.

IV. APPROACH

This section describes a method for accurately estimating
poses for square fiducial tags in noisy settings by fusing
RGBD data. The process of detecting and decoding the
tag is identical to previous fiducial tag systems. After the
tag corners are detected, they are treated as approximated
locations of the true corners. Using the corners, the method
implicitly evaluates the depth data and RGB data as two
separate observations and fuse them to minimize the error
in 2D and 3D space.

There are three distinct components to this method. First,
we find the plane in SO(3) containing the tag using depth
data and detected corners. Secondly, an approximate initial
pose is computed using the depth plane. Finally, the method
refines the initial pose using the RGB data by minimizing
the reprojection error within a constrained space. Each com-
ponent is described in detail in the following subsections.

A. Depth Plane Fitting

The first step is to extract the plane which the tag is laying
on. We assume that the RGBD sensor is calibrated such that
depth and RGB streams are registered to the same frame. The
rectangular patch of points in the depth image bounded by the
approximated corner pixels y = [y1, Y2, Y3, y4]| contains the
range information of all the points on the tag. Here we take
advantage of the planar characteristic of the tag. By fitting a
plane over the range data, we can constrain the pose of the
tag to be on the plane.
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Fig. 6: An abstract visualization of the optimization constraints. The blue
curve is the initial pose estimation obtained from the depth plane. The red
curves are the ambiguous poses from the RGB image. We constrained the
region of optimization based on how well we fit the depth plane.

The raw range data retrieved from the depth sensors are
generally noisy. The borders and dark regions of the tag
produce unreliable range data and artifacts due to a weakness
of our depth sensor (time of flight sensor from Kinect V2).
Therefore, we first filter the data by removing points too
far from the median before fitting the plane. Nevertheless,
the remaining points could have a large variance depending
on the lighting condition and the magnitude of the in-
plane rotation. The accuracy of the plane fit and initial pose
estimation is directly affected by the noise level of data. We
will characterize the uncertainty of the plane fit and adjust
the weight of the depth pose estimation accordingly during
the fusing stage.

In implementation, we used a Bayesian plane fitting algo-
rithm described in [18] which computes the Hessian Normal
parameters [71,d] of a plane for noisy range data through
optimizing
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where 7o is the local normal to the planar surface of the
depth point and mi; is the measurement direction for the
sensor for point p;. The algorithm in the paper assumes a
radial Gaussian noise in the range data p; with the standard
deviation modeled by a function in the form

kd?
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The coefficient £ > 0 is an estimated value obtained from
sensor calibration. In our implementation, we obtained k by
using the Kinect V2 model obtained from [19].

An important result we used from [18] is the covariance
matrix for the plane-parameters. The covariance is obtained
by taking the Moore-Penrose generalized inverse of Hessian
matrix computed from the Lagrangian. It characterizes the
uncertainty of the plane fit and implicitly measures the
relative accuracy of the depth data.

B. Initial Pose Estimation

The 6 DOF pose of the tag can be described as the trans-
formation [R,t] aligning the tag frame’s coordinate system
and the sensory frame’s coordinate system of the robot. The
depth plane D[7,d] alone is insufficient to determine the
transformation as it only defines 3 DOF. Since the depth plane
was computed based on the approximate center of the tag, we
can use the center of the tag and center of the plane as a pair
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Fig. 7: The pose of the Apriltag visualized in RViz computed using the
original library VS our RGBD fused method.

point correspondence. However, there are still infinite number
of valid poses rotating about the normal 71. One solution is
to constrain the pose by using a corner as an extra point
correspondence to solve for the optimal rotation. In practice,
the accuracy of this method largely depends on the depth
accuracy of the chosen corner point.

An alternative is to use all 4 detected corners as 4 pairs
of point correspondences for the optimization. We projected
the detected corners onto D[, d] to get the coordinates
p = [p1,p2,p3,p4] in the robot sensory frame. The corner
coordinates ¢ = [q1, ¢2, g3, q4] in the tag frame can be easily
calculated since the tag is a square plane. We define the center
of the tag as the origin, and the coordinates are simply the
location of the corners on a Cartesian plane. Given these two
sets of 3D point correspondences, the pose can be computed
as a rigid body transformation estimation. Solving for the
optimal transformation [R,t] requires minimizing a least
squares error objective function given by:

n
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[R.t] =

There are numerous approaches to solve Eq. 3 described
in [20]. Since we have very few correspondences and they are
assumed to be correct, it can be computed efficiently using
SVD:
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Here, R and t are the corresponding rotation and translation
components of the the transformation. The above approach
minimizes the least square error of the transformation and it is
robust to small errors in the correspondences. The resulting
pose obtained from the range data, although not accurate,
provides a good approximation for the true pose.

C. Pose Refinement

Lastly, the pose is refined by minimizing the reprojection
error in Eq.10 using the initial pose estimated from the
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Fig. 8: An example of the experimental setup in 8a. Groundtruth is computed from a large chessboard where the relative transformation to the tag is
known. Each data collection, shown in 8b, is ran through 1000 trials and pose errors are measured. Since a 7 cm tag only occupies 15 pixels, the system

has a signficant failure rate even at 65 cm.

previous step. The camera is assumed to be calibrated and
the camera projection model K is known. Here, R* and ¢*
are the optimal pose in the constrained optimization function

n
[R*,¢%] = argmin ) |(K[R*[£*])pi —wil® O
R¥ % =

R* = R(AR) (10)
t* =t+ R(At) (11)

subject to:
AR < T, At < T} (12)

Intuitively, the optimal pose is the one with minimal repro-
jection error in the RGB space and aligned with the plane
in the depth space. Therefore, the goal of the optimization
is to find the local minimum closest to the initial estimation
within allowable region I' as illustrated with Figure 6. The
key challenge is to determine the constrained region I'r and
I'; such that it include a locally optimal pose and exclude the
ambiguous pose. In most cases where the depth plane yields a
good fit, this region should be small because the optimal pose
is close to the initial estimate. When the depth sensor is noisy,
the I' increases since the initial estimate might be far off.
Thus, the constrained region I' is defined by the uncertainty
in the initial estimate and it is characterized by the covariance
of the plane parameters. In implementation, we used a trust-
region optimization algorithm to bound the constraints. The
scaling parameters for the covariance is empirically tested to
obtain the best results for our robot.

The strength of this method is that it harness the benefits
of RGB and depth information without explicitly assuming
their relative accuracy. One advantage of RGBD sensors is
that the camera and the depth sensor often work optimally
with different constraints. In the example of Kinect, the RGB
camera is sensitive to lighting and works poorly in scenes
with low illumination. However, the time of flight depth
sensor is unaffected by such a problem. On the hand, the
time of flight sensor yields poor range results on surface
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Fig. 9: Viewing Angle vs Error Percentage (0.1 = 10%) under different
simulated noise level. The new RGBD based algorithm can resist noise in
the RGB image and it vastly outperforms the original algorithm.

edges, but the RGB camera works exceptionally well with
edges where there is a high color contrast.

V. EXPERIMENTAL RESULTS

The key problem we are trying to resolve is the localization
accuracy of Apriltags in noisy situations. Therefore, we want
to test the resilience of our algorithm and show that it
can obtain reasonable pose estimations under high level of
noise. Figure 7 demonstrates an example visualization of the
result. We also compare our method against ar_track_alvar,
a popular ARTag detection package that incorporated depth
information. Finally, we briefly tested the runtime of the
algorithm to show that it remains capable of real time
detection.

In our experiments, we measured the rotational and trans-
lation accuracy of the detection algorithms with respect to
three different independent variables: viewing angles, dis-
tances, and lighting conditions. We placed a standard camera
calibration chessboard and a 7 cm Apriltag on a solid planar
board. The Apriltag has a fixed distance from the chessboard.
This is used to compute the ground-truth pose for the tag.
By using a large chessboard, we can detect the corners to a
sub-pixel accuracy and compute accurate ground-truth poses
unsusceptible to lighting and sensory noises.
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Fig. 10: Distance vs Error Percentage (0.1 = 10%). Data are captured at a
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Since our algorithm aims to solve the pose ambiguity
problem, we evaluated all the results based on an adap-
tive threshold separating the bimodal distribution. This is
a reasonable evaluation criteria because easily detectable
ambiguous poses are often close to the true pose, making
the average of absolute errors small even though the poses
might be wrong most of the time.

A. Viewing Angle

Due to the perspective ambiguity effect, the localization
accuracy of the Apriltags is heavily affected by the viewing
angle of the tag. To characterize the effect, we placed the
testing board with a tag in front of the robot as shown in 8a.
The testing board is 0.65 meters away from the sensor and
rotated it at a increment of 5 degrees from 0 degrees to 60.
The angles are measured from the axis parallel to the sensor.
This is about the range which the tag can be detected reliably
given the camera resolution and the distance. At each angle,
we captured the RGB image, depth image, and detection
outputs from the Apriltag library.

For each captured data bundle, we introduced 3 levels of
Gaussian noise of ¢ = 0.2, 0 = 0.5, ¢ = 1 to the RGB
image and computed the resulting tag pose. This is repeated
for 1000 trails for each data bundle per noise level and the
errors are computed for each trial.

The empirical result in Figure 8b show a very clear bi-
modal distribution, as we expected, for the detected poses for
a given data bundle over 1000 trials. In Figure 9, we threshold
all the poses based on their rotational errors and plotted
the percentage of unacceptable poses at each viewing angle.
The proposed RGBD fused algorithm vastly outperforms the
original algorithm as it has better localization accuracy at all
viewing angles and noise levels.

B. Distance

The relationship between the distance and localization
accuracy is much more apparent. As the tag moves further
away from the sensor, the number of pixels on the tag
decreases. The perspective ambiguity effect becomes more
apparent when there is only a small patch of pixels on the
tag. We show the results of both RGB and RGBD methods
in Figure 10. During the experiment, it is difficult to keep the
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Fig. 11: Apriltags captured by Kinect V2 under different levels of illumina-
tion. The RGB sensor dynamically adjust the exposure time to compensate
for low lighting. In 11a, the image is captured outside of Kinect’s adjustable
range and the pixels are underexposed. In 11b, the long exposure time
introduced noticeable noise to the image.
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Fig. 12: Illumination vs Error Percentage (0.1 = 10%). Data are captured
at 65 cm away from the camera at a 40 degree angle.

viewing angle precisely consistent at each trail. Therefore, the
pose error percentage using RGB is not increasing smoothly
as they are in the simulation results.

We see a clear increase in error percentage in the proposed
method when the tag is far away from the camera. This is
contributed both by a smaller tag patch size in the depth
image and an increase in noise with the Kinect sensor at
a further distance. In these cases, the variance of the depth
plane estimation becomes very wide and the algorithm is
unable to converge to the correct pose. Nevertheless, our
method shows a significant gain in accuracy at every distance.

C. Lighting

From our past observations, poor lighting condition is the
most significant contributing factor to noise and it results
in low localization accuracy. The Kinect V2 sensor used in
our experiments dynamically adjust the exposure time under
low lighting conditions. When pictures are taken below or
near the adjustable range of the sensor, they contain very
noticeable noise as shown in Figure 11.

We also tested the algorithm under harsh lighting condi-
tions in a real world setting. The data were captured under
4 different lighting conditions: 20 lux (dark), 43 lux (dim),
and 90 lux (normal), 243 lux (bright). We recorded a static
scene over 5 seconds and randomly sampled 100 frames to
run the test. In Figure 12, we demonstrate the particular
result collected where the board is 0.65 m away and angled
at 40 degrees. Other data captures reflect similar results.
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The localization accuracy significantly improves with better
illumination. At the lowest illumination, nearly 25% of the
poses were unacceptable. By using depth sensor which is
unaffected by poor source radiance, there are only 3% of
unacceptable poses.

D. Benchmark Against ar_track_alvar

ar_track_alvar is a ROS wrapper package for Alvar [21],
an open source AR tag tracking library. The package is
capable of pose estimation for robots similar to Apriltags.
In particular, it implements a module where depth sensor is
integrated to improve the pose estimation. The package uses
the detected corner points to extract a patch of point clouds
containing the tag then compute its centroid. The pose is then
computed by aligning the centroid with the center of the tag.

We implemented a similar module for the Apriltag and
compared the pose accuracy between our proposed method
and the module using all the collected data. The results are
shown in Figure 13. The two algorithms performed similarly
in rotation error, but the proposed method was on average 2
cm better with the position component. The spread of error
is also much smaller for the position component indicating
that our proposed method is more consistent.

E. Computation Time

With our current implementation in Python, the additional
computation time for the sensor fusing process is 11 ms.
Therefore the entire detection pipeline can process a 960 x
540 image within 35 ms. All tag detectors and the fusing
process were running in a single-threaded mode of an Intel
core. Since our sensory updates at roughly 35H z, the entire
pipeline can process the tags and estimate the pose in near
real time.

VI. CONCLUSION

In this paper, we did a in depth analysis of the localization
problem with Apriltags. We proposed a novel algorithm
of using RGBD sensors to accurately compute the pose
of Apriltags robust to noise. It is particularly suitable for

robotic applications which require precise poses such as
manipulation, SLAM, and others. Furthermore, this technique
can be easily generalized to other types of planar fiducial
tags. Our implementation is fully open sourced and will be
available at: https://github.com/personalrobotics/
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