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Convergent Planning
Aaron M. Johnson, Jennifer E. King, and Siddhartha Srinivasa

Abstract—We propose a number of “divergence metrics” to
quantify the robustness of a trajectory to state uncertainty
for under-actuated or under-sensed systems. These metrics are
inspired by contraction analysis and we demonstrate their use
to guide randomized planners toward more convergent trajecto-
ries through three extensions to the kinodynamic RRT. The first
strictly thresholds action selection based on these metrics, forcing
the planner to find a solution that lies within a contraction region
over which all initial conditions converge exponentially to a sin-
gle trajectory. However, finding such a monotonically contracting
plan is not always possible. Thus, we propose a second method
that relaxes these strict requirements to find “convergent” (i.e.,
low-divergence) plans. The third algorithm uses these metrics for
postplanning path selection. Two examples test the ability of these
metrics to lead the planners to more robust trajectories: a mobile
robot climbing a hill and a manipulator rearranging objects on a
table.

Index Terms—Motion and Path Planning, Manipulation
Planning, Field Robots.

I. INTRODUCTION

C ONSIDER a mobile robot, such as in Fig. 1, tasked with
traversing a hilly terrain to reach a goal configuration

using only local gradient sensors (as in [1]). In red, we see a
simple trajectory consisting of a closed loop uphill controller
run from multiple initial conditions. While the controller has
closed the loop on heading angle relative to the hill, it is not
stable in the unobserved global frame. Small disturbances in
the initial conditions lead to larger disturbances in the final
conditions. In contrast, the blue trajectories (which are more
complicated but still follow a gradient direction feedback con-
trol scheme) naturally converge over the length of the path
reducing any state disturbance. The goal of this work is to quan-
tify the difference between these trajectories and use a motion
planner to generate solutions like the blue trajectories.

Robustness to this sort of uncertainty has been considered
in contraction analysis, [2], which provides a proof of global
exponential convergence for a controller over a contraction
region (a subset of the configuration space where all states
will converge to a single trajectory). However while contrac-
tion analysis provides conditions for convergence and methods
for choosing controller gains, it does not provide a method of
finding such regions. The strongest conditions of the planning
framework proposed here extends this work with a method of
finding a contracting solution, when one exists. However, not
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Fig. 1. Example trajectories from a closed-loop controller with different initial
conditions for a robot (e.g. [1], inset) climbing hilly terrain with only local
sensors. The red (shorter) trajectories are diverging by a factor of Ea = 2.67.
The blue trajectories, while twice as long, are converging by a factor of Ea =
0.25. Photo credit: M. Fogelson and D. Koditschek.

every problem will admit such a region, nor is such a strict
convergence result always necessary. We relax these require-
ments and instead draw inspiration from contraction analysis to
bias search based planning methods towards more convergent
trajectories.

As such, this letter may be summarized by the research ques-
tion: How can we incorporate and extend contraction analysis
into path planning in order to generate trajectories that are
more robust to uncertainty?

We present three divergence metrics, partially based on con-
traction analysis and extending beyond it, as well as motion
planning methods designed to find convergent (low-divergence)
trajectories. These metrics and methods minimize uncertainty
and improve the reliability of systems that cannot accurately
sense and/or control the full system state.

Specifically, Section II-A introduces metrics that measure the
divergence of an action (among them div, the vector field diver-
gence). Section II-B defines numerical approximations to these
metrics when a closed form vector field is not available, and
shows that in the limit these are equal to the closed-form met-
rics. These single point metrics are extended to metrics over a
path in Section II-C. Then Section III proposes three planning
algorithms that incorporate these metrics to either guarantee a
contraction region or heuristically bias the solutions towards
convergent plans.

We demonstrate the effectiveness of these methods on two
problems: a mobile robot climbing a hill (Section IV-A) and a
manipulator rearranging an object (Section IV-B). These results
show that the planning methods can find strictly contracting
paths in some cases, but also that such paths may not always
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be possible. In addition, these results show that using a local
divergence metric to bias the planning extension step can lead
to globally more robust solutions. Finally, we present limited
experimental results supporting the claim that these metrics
predict success of the actual system.

While these planning methods show promising results, they
are simple and based on randomized search. However, the
divergence metrics potentially have broad applications for find-
ing robust trajectories with other motion control algorithms. In
particular trajectory optimization [3], [4] or optimal anytime
planning techniques [5] could use these metrics to find shorter
low-divergence trajectories. Here we focus on state uncertainty,
but the same concepts could be applied to system uncertainty,
e.g. by adding the unknown parameter to the state and searching
for convergent plans in the larger space.

A. Related Work

This work is closely related to the control and motion plan-
ning literature. From the controls side, we present a method
of generating trajectories that in the best cases meet the
conditions of [2], i.e. that a contraction region exists over which
any state will converge to a single trajectory. This is in some
sense a smooth version of the ideas of preimage backchain-
ing [6] or sequential composition [7], wherein each discrete
step “prepares” the next over it’s entire local domain. While
the contraction analysis of [2] provides strong guarantees of
convergence to a trajectory, it does not prescribe a method
of finding such a trajectory or suggest what to do when a
contraction cannot be found.

One method of addressing the more general question of
generating plans that are robust to uncertainty is to formulate
the planning problem as a partially observable Markov deci-
sion process (POMDP) [8]. POMDP solvers can reason about
uncertainty and incorporate closed-loop feedback from local or
global sensors, but do not easily generalize to continuous spaces
and are limited to low-dimensional problems.

An alternative approach is to frame the problem as an
instance of probabilistic conformant planning. There, the goal
is to find an open-loop trajectory that maximizes the probability
of success under uncertainty [6], [9]. These methods are useful
for part alignment [10], [11], manipulation in clutter [12] and
navigation planning [13]. These ideas are similar to those pre-
sented here, but only consider trajectories that are agnostic to
sensor feedback.

Our method falls between these two extremes. We aim to
select closed-loop plans achievable with execution-time sen-
sor data. Other works have presented similar methods for
linear systems and/or Gaussian uncertainty [14]–[16]. We con-
sider problems outside of this domain, such as the problem in
Section IV-B, and avoid explicit uncertainty models.

The particle RRT [17] (pRRT) relaxes the linearity assump-
tion, representing uncertainty as a set of state particles. Growth
of the search tree on branches of low probability is discouraged
by a heuristic method for node selection [18] – the planner pre-
sented in Section III-C has some similar properties but removes
the reliance on this heuristic. Meanwhile, [19] offers a related
RRT-based method for incorporating uncertainty, but explicitly
thresholds low probability extensions. Section III-B presents

a similar algorithm using our divergence metrics, but we note
that this can lead to failures when no paths exist that meet the
threshold.

Some approaches track the expected uncertainty and con-
strain the plan to have an acceptably low chance of failure.
These “chance-constrained” methods have been applied in pre-
dictive controls [20], [21], receding horizon control [22], and
randomized planning [23], [24]. Related predictive controls
results bound the uncertainty to a set and show input-to-state
stability of the system [25], [26]. Of the planning results, the
Safe-RRT [23] and CC-RRT [24] are similar to some of the
methods presented here in that they prune possible extension
actions based on the uncertainty. These methods are best suited
to settings where a running model of the uncertainty is available
and the probability of failure may be explicitly checked based
on that uncertainty. Here, we do not require any knowledge of
the magnitude of uncertainty and instead aim at each time step
to reduce the uncertainty, whatever it may be.

Finally, some approaches handle uncertainty in post-
processing rather than during planning [16], [27]. In these
approaches, a randomized planner generates candidate trajecto-
ries and scores them according to some metric in order to select
a single trajectory for execution. Our work is complementary
to these approaches – we prove some theoretical results for
the empirically-motivated numerical approximations in [27],
(Section II-B) and also implement a similar post-processing
method (Section III-D).

II. CONTRACTION ANALYSIS AND DIVERGENCE METRICS

In this section we review the main results from contraction
analysis [2]. We then define the divergence metrics, Di, par-
tially based on this analysis, as well as corresponding numerical
approximations and path metrics. These metrics are key contri-
butions of this letter, and provide a way to quantify the conver-
gence of a path as well as guide the search for a convergent plan.

A. Contraction Analysis

Consider a system with state x ∈ X ⊆ R
n, control input

u ∈ U ⊆ R
m, and a (possibly time-varying) vector field f :

X × U × R → TX . Define F as the symmetric part of the
Jacobian of f , i.e.,

F(x,u, t) :=
1

2

(
∂f(x,u, t)

∂x
+

∂f(x,u, t)

∂x

T
)

(1)

The magnitude of a virtual displacement (an infinitesimal
displacement at a fixed time t), δx(t), is bounded by the
magnitude of the initial displacement, δx(t0), and the integral
of λmax(x,u, t), the maximum eigenvalue of F at x at time t,
[2, Eqn. 3],

‖δx(t)‖ ≤ ‖δx(t0)‖e
∫ t
t0

λmax(x,u,τ)dτ . (2)

Define the maximal divergence metric Dm := λmax. In partic-
ular if Dm (and therefore also F) is uniformly negative definite
everywhere in a region around a nominal trajectory, any differ-
ential length at the start of a trajectory will vanish exponentially
along its length, [2, Thm. 1],
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Theorem 1: Given a nominal trajectory, x0(t), that is the
solution to a vector field, ẋ0(t) = f(x0(t),u0(t), t), under con-
trol u0(t), any other trajectory that begins within region defined
by a ball of radius r around the nominal trajectory will converge
exponentially to that trajectory so long as F, (1), is uniformly
negative definite over that region, i.e. if,

∃β > 0,∀t ≥ t0,x ∈ R(t), Dm(x,u0(t), t) ≤ −β < 0,

where R(t) := {x : ‖x− x0(t)‖ < r}. By bounding Dm we
conclude that all neighboring trajectories converge to a single
trajectory.

Consider now the evolution of a differential volume, δV ,
around the trajectory,

‖δV (t)‖ = ‖δV (t0)‖e
∫ t
t0

div f(x,u,τ)dτ
. (3)

Define the average divergence metric, Da := div f . As a relax-
ation of Theorem 1, consider [2, Sec. 3.9],

Theorem 2: Given a nominal trajectory, x0(t), that is the
solution to a vector field, ẋ0(t) = f(x0(t),u0(t), t), under con-
trol u0(t), any other trajectory that begins within a volume
element δV around the nominal trajectory will converge expo-
nentially to a set of measure zero around that trajectory so
long as div f is uniformly negative definite at every point of
the nominal trajectory, i.e. if,

∃β > 0,∀t ≥ t0 Da(x0(t),u0(t), t) ≤ −β < 0.

This theorem says that if the average eigenvalue of F is nega-
tive (since div f = trF =

∑
λF) then a volume around a given

trajectory will collapse on average. There may still be some dif-
ferential directions which do not collapse down to the nominal
trajectory (and, indeed, may diverge), however the differential
volume will shrink to zero and the trajectories will lie on some
set of measure zero.

Extending beyond the results of contraction analysis, con-
sider the evolution of the expected value of a virtual displace-
ment, E [‖δx(t)‖], taken over some distribution,

E [‖δx(t)‖] =E [‖δx(t0)‖] e
∫ t
t0

De(x,u,τ)dτ , (4)

De(x,u, t) :=
d

dt
lnE [‖δx(t)‖] . (5)

The form of the expected divergence metric, De, may not seem
particularly useful however we will show in the next section
that it is easy to compute numerically.

B. Numerical Approximation

The contraction analysis of [2] assumes a closed form dif-
ferentiable vector field that may not be available in practice.
Instead, to approximate Dm, Da, and De we introduce numer-
ical divergence metrics that approximate the virtual displace-
ment, δx, with finite samples.

Given a nominal trajectory, x0(t), generated by applying
some action u0(t) to a system with dynamics f , a per-
turbed trajectory (or noisy rollout), xi(t), is the solution
to the same system and action as the nominal trajectory,

ẋi(t) = f(xi(t),u0(t), t), but with a different initial condition,
xi(t0) = x0(t0) + δxi. Thus (2) may be modified as,

‖xi(t)− x0(t)‖ ≤ ‖xi(t0)− x0(t0)‖e
∫ t
t0

Dm(x0,u,τ)dτ, (6)

which holds in the limit as δxi goes to zero. Thus if Dm <
0, the ratio, ‖xi(t)− x0(t)‖/‖xi(t0)− x0(t0)‖, goes to zero
exponentially. To get the closest approximation, consider the
largest such ratio, each of which abides by the bound in (6),

max
i

‖xi(t)− x0(t)‖
‖xi(t0)− x0(t0)‖ ≤e

∫ t
t0

Dm(x0,u0,τ)dτ (7)

For a small time step δt, we have that,

D̂m(x0,u0, t) :=
1

δt
lnmax

i

‖xi(t+ δt)− x0(t+ δt)‖
‖xi(t)− x0(t)‖ (8)

and we arrive at the numerical approximation, D̂m ≈ Dm.
Similarly, for the average divergence Da, we will approx-

imate the differential volume by taking the volume spanned
by a finite set of points. Let V (x) define such a volume, then
D̂a ≈ Da is a numerical approximation where,

D̂a(x0,u0, t) :=
1

δt
ln

V (x(t+ δt))

V (x(t))
(9)

Finally, to estimate the divergence of expectation D̂e ≈ De,
consider the ratio of the average displacements,

D̂e(x0,u0, t) :=
1

δt
ln

1
N

∑N
i=0 ‖xi(t+ δt)− x0(t+ δt)‖
1
N

∑N
i=0 ‖xi(t)− x0(t)‖

.

(10)

The approximation holds exactly in the limit as N goes to infin-
ity and δt goes to zero, as can be derived from (10) or from
standard results in Monte Carlo estimation, e.g. [28, Sec. 1.3.1].
Note that the condition in (4) will hold over the length of a path
if the set of noisy samples, {δxi}, is drawn once at time t0 and
not independently at each time step.

C. Path Metrics

Define for each metric Di the exponential of the integral of
that metric along a trajectory,

Ei := e
∫ t
0
Di(x,u,τ)dτ (11)

where note that some of the divergence metrics admit the
following simplifications,

Ea = exp

(∫ t

t0

div f(x(τ),u(τ), τ)dτ

)
=

‖δV (x(t))‖
‖δV (x(t0))‖

Êa = exp

(
lim
δt→0

∑
τ

ln
V (x(τ + δt))

V (x(τ))

)
=

V (x(t))

V (x(t0))

Ee = exp

(∫ t

t0

d

dτ
lnE [‖δx(τ)‖] dτ

)
=

E [‖δx(t)‖]
E [‖δx(t0)‖]

Êe = exp lim
δt→0

(
t∑

τ=t0

ln
1
N

∑N
i=0 ‖δxi(τ + δt)‖

1
N

∑N
i=0 ‖δxi(τ)‖

)

=
1
N

∑N
i=0 ‖δxi(t)‖

1
N

∑N
i=0 ‖δxi(t0)‖

.
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Fig. 2. Topographic map of a hill showing elevation lines, with a KD-RRT
overlayed in red and the solution path in green connecting the start and goal.

III. CONVERGENT PLANNING METHODS

This section presents methods of automatically finding paths
that respect the dynamics of the system, f , and are robust
to state uncertainty. We first define the kinodynamic RRT
(KD-RRT) and then propose three extensions that aim to find
convergent (low-divergence) plans. The CR-RRT sets a thresh-
old on divergence in order to find a monotonically converging
trajectory (e.g. to meet the requirements of [2]). The B-RRT
uses the divergence as a heuristic bias in order to find more
robust trajectories even when a monotonically converging tra-
jectory is impossible. Finally, the AMD-RRT builds off of
the other planners in order to find progressively improving
solutions if given sufficient time.

A. Kinodynamic RRT (KD-RRT)

Given a known initial state, xs ∈ X , and a goal region XG ⊆
X , traditional planning problems search for a trajectory, (x,u) :
R → X × U subject to three constraints,

x(t0) = xs (12)

x(tf ) ∈ XG (13)

ẋ(t) = f(x(t),u(t), t) for all t0 ≤ t ≤ tf . (14)

Constraints (12) and (13) ensure the trajectory meets the plan-
ning goals, while (14) guarantees a feasible trajectory.

One method of path planning for systems with a constraint
like (14) is to use a kinodynamic RRT [29]. At each iteration,
sample a random configuration and find the nearest neighbor in
the RRT under some cost-to-go metric (typically Euclidean dis-
tance). From this configuration generate a candidate action by
running a set of controllers. Add a new node to the RRT with
the endpoint of the candidate action that is closest to the sam-
pled point, typically under the same metric. The search finishes
when a node is within the goal set. Fig. 2 shows an example
KD-RRT for the hill climbing problem (Sec. IV-A).

B. Contraction Region RRT (CR-RRT)

To find a motion plan that meets the requirements of
Theorem 1 (or Theorem 2), we must modify the extension step
of the KD-RRT to only consider actions such that,

Dm(x(t),u(t), t) < 0 for all t0 ≤ t ≤ tf , (15)

(respectively, Da < 0). If no such actions are sampled, the tree
is not extended. If one or more such actions are sampled, then
add a node in the same way as the KD-RRT extend step.

Not every problem will have a solution that meets the
requirement of Theorem 1, and in such cases this algorithm will
never terminate with a solution. We can relax the requirement
by altering the constraint,

Dm(x(t),u(t), t) < dm for all t0 ≤ t ≤ tf , (16)

where dm ∈ R is a parameter that corresponds to the maximum
admissible divergence value.

C. Biased RRT (B-RRT)

A less strict method of incorporating the divergence metrics
is to include them as a cost in an optimization,

x∗,u∗ = argmin
x,u

Ei(x,u) s.t.(12)−(14). (17)

Solving this optimization exactly is difficult, but we can approx-
imate the optimization by incorporating one of the metrics Di

into the selection criteria at each extension. Rather than select-
ing the best action based on a Euclidean distance metric, this
biased RRT (B-RRT) algorithm scales the original distance by
a factor of s = ebDi . Here b ∈ R is a bias and Di is the cho-
sen divergence metric. With this, actions that perform well with
respect to the divergence metric are preferred even if they are
not the most direct path. Thus, the B-RRT heuristically tries to
reduce the divergence, without enforcing the strict conditions of
the CR-RRT. Note that when b = 0 this algorithm is identical to
the KD-RRT.

D. Anytime Minimal Divergence RRT (AMD-RRT)

The third extension to the KD-RRT takes advantage of the
fact that with a randomized planner, identical calls for the same
query will generate different solutions. Here we use multiple
calls to either the KD-RRT or the B-RRT to generate a set of
candidate paths, and then we select the best path with respect to
a chosen path metric, Ei. This process can use a fixed number
of trials or a termination condition such as a threshold on the
metric. Alternatively, it can be an anytime algorithm and simply
return the best trajectory found when stopped. This AMD-RRT
implicitly assumes that the trajectory generator is capable of
finding good candidates with non-zero probability, and if so,
with enough time, the AMD-RRT will return one such good
trajectory.

IV. EXPERIMENTS

We demonstrate the algorithms from Section III in two sce-
narios: a mobile robot traversing hilly terrain, and a manipulator
rearranging objects on a table.

A. Hill Climbing Example

1) Problem Specification: Suppose you have a mobile robot
that is navigating hilly terrain, such as in the contour plot
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Fig. 3. Average exponential divergence, Ea, for the hill climbing problem, cal-
culated from 100 trials each at different values of the bias terms, b, and for the
CR-RRT. The mean (green triangle) and median (red square) are also shown for
each b.

in Fig. 1 or Fig. 2. We model the hill as a height func-
tion, z = h(x, y) := 3y + sin(x+ xy) for (x, y) ∈ [−2, 2]×
[0, 2.5]. The robot uses a controller that allows it to follow
a constant forward velocity at any arbitrary angle θ relative
to the hill gradient ∇h. Thus the closed loop vector field of
the system is f(x, y, θ) = R(θ)∇h(x, y)/‖∇h(x, y)‖, where
R(θ) is a rotation matrix. Note that such a controller uses
only local sensors, as done in [1] for the uphill direction. For
a two dimensional problem like this with fixed forward veloc-
ity, one eigenvalue of the vector field Jacobian will be zero and
therefore either λmax = 0 or λmax = divf = trF = λ1 + λ2.
As such we will consider Da and related metrics, since either
Dm = Da or Dm = 0.

The task is to find a trajectory from a start location to a
goal location using the hill-relative controller. Fig. 2 shows one
example trajectory and final tree generated with the KD-RRT.
In this section, the planner extension samples 8 fixed-length
actions (i.e. it samples a value of θ and applies the hill-relative
controller for a fixed amount of time). A planning call is suc-
cessful if it returns a path to the goal after adding fewer than
10,000 nodes to the tree.

2) B-RRT: We use the B-RRT to test whether using a local
metric as a heuristic bias results in solutions that are globally
more robust to uncertainty. The overall integral divergence, Ea,
scores the solution generated by the planner. To see the effect
of the bias term, we ran 100 trials at different values of b with
randomized start and goal location.

The results of Fig. 3 and Table I show that increasing the
bias term does indeed lead to a lower exponential integral diver-
gence (Ea) on average (all are statistically different from b =
0.0 with p < 0.0001). This added bias does slightly increase
the planning time – see Table I. It appears that b = 0.5 achieves
most of the improvement for this problem.

3) Numerical Approximations: To confirm the accuracy of
the numerical approximations given in Section II-B, we com-
pare Ea, the integral of the analytic divergence, with Êa, the
numerically computed ratio of initial volume to final volume of
N perturbed initial conditions, over all of the trials from the
previous section. Fig. 4 shows that these metrics are highly
correlated, even with a relatively small N = 4. The correla-
tion (in log-log) is linear with R2 = 0.98, with most of the
deviations coming from very large and very small values of

TABLE I
HILL CLIMBING PLANNING RESULTS FOR THE KD-RRT (top), B-RRT

(middle), AND CR-RRT(bottom), INCLUDING SUCCESS RATE (S),
EXPONENTIAL DIVERGENCE (Ea AND Êa), AND PLANNING TIME. MEAN

± ONE STANDARD DEVIATION LISTED. NON-GRAY RESULTS ARE

STATISTICALLY DIFFERENT FROM THE BASELINE WITH p < 0.005.

Fig. 4. Correlation between Ea and Êa for the hill climbing B-RRT.

Fig. 5. Minimum divergence found by a given planning call for the AMD-RRT
based on the KD-RRT (top) and the B-RRT (bottom). Mean and ± one standard
deviation shown over 100 trials (each consisting of 100 calls).

Ea. We suspect that improved numerical methods and smaller
displacements would reduce the remaining differences.

4) AMD-RRT: We test the AMD-RRT on both the KD-RRT
(b = 0) and the B-RRT (b = 0.25) with fixed start and goal
locations. Fig. 5 reports the best-so-far from up to 100 calls,
showing the mean and standard deviation over 100 trials of
each AMD-RRT conditions (and therefore represents a total of
100× 100 calls to each underlying planner).

First, consider the problem of finding a trajectory with Ea <
1 using only the KD-RRT, as done in [27] (for a different
objective function). While only about 11% (1053/10000) of
individual KD-RRT runs results in a candidate trajectory with
Ea < 1, if we allow the AMD-RRT to pick from 7 candidates
more than half (51%, 51/100) of the AMD-RRT trials succeed
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Fig. 6. Exponential divergence, Ea, over the length of sample solution paths
for the B-RRT with different bias terms, b, as well as one solution from a CR-
RRT, the only example that is monotonically decreasing in Ea.

with Ea < 1. If we allow 32 runs, then all 100 trials succeeded.
Thus the AMD-RRT can find low divergence paths without
modifying the motion planner at all.

Biasing the search by using a B-RRT can find a good trajec-
tory much faster, with 92% (9194/10000) of individual runs
succeeding with Ea < 1. In this case all 100 trials of the AMD-
RRT succeeded by the 3rd run of the B-RRT. These results show
that even though the unbiased search (KD-RRT) can find low-
divergence paths, using a local bias (B-RRT) will find better
paths faster.

5) CR-RRT: The above methods were able to find trajecto-
ries that had low divergence, however they did not guarantee
monotonic contraction as required for the strongest of the theo-
retical results in Section II-A. For example, the solid lines of
Fig. 6 show the evolution of Ea over the length of the tra-
jectory for eight different B-RRT solutions – note that none
are monotonically decreasing (i.e. they all have at least one
point with Da > 0). One way to generate trajectories that meet
the requirements of, e.g., Theorem 2 is to use the CR-RRT.
As shown in Table I, a successful contraction region (mono-
tonically contracting) path was found S = 30% of the time
(30/100). The dashed line in Fig. 6 shows an example of a
successful monotonically decreasing trajectory.

B. Rearrangement Planning

1) Problem Specification: Next we consider a rearrange-
ment planning problem [12], [30]. We task a manipulator to
push an object to a goal region, as seen in Fig. 7. The robot
is not endowed with sensors that can detect the object’s state.
However, prior work has shown that some pushing actions are
inherently uncertainty reducing [31], and we would like to
guide our planners to select such actions.

The vector field, f , of the system describes the motion of
the manipulator and the object and is defined by the physics of
the contact between the manipulator and the object. This vector
field is not smooth – contact is inherently discontinuous – and
lacks an analytic representation (although for simple problems
this is theoretically possible [32]). Prior work has shown that
f can be effectively approximated by a physics simulator [33],
[34], however analytic divergence measures are unavailable.

The state space is the joint configuration of the manipulator
and the pushed object, each in SE(2). Computing the volume
of a set of points in this high-dimensional space is challenging,
and so we will use only D̂m and D̂e. For a potential motion,

Fig. 7. Two pushing examples. Top: Exponential divergence Ee = 11.14,
NG = 5% of rollouts reaching the goal. Bottom: Ee = 1.84, NG = 100%.

u0(t), applied to a state, x0(t), these metrics are calculated by
rolling out a set of N noisy samples using the physics simula-
tor. The samples are drawn from a Gaussian distribution around
x0(t) with a standard deviation of 4 cm for both the object and
the manipulator pose.

We plan for a hand pushing a 5 cm × 5 cm box in the plane.
The planner samples 8 actions and uses separate threads to eval-
uate each in parallel. An action is a linear and angular velocity
of the hand and a duration. Each component of a sampled action
is drawn uniformly from a bounded interval. A planning call is
successful if it returns a path within 480 seconds that moves the
box to a 10 cm radius goal region. Plans are evaluated using Êe

calculated using N = 100 and sampling the initial object and
manipulator poses from a Gaussian distribution with standard
deviation of 1cm.

2) B-RRT: For this rearrangement planning problem, we
implemented the B-RRT using D̂e as the divergence metric,
i.e. the numerical approximation to the expected value diver-
gence. As with the hill climbing problem, we ran 100 trials of
the B-RRT for different values of the bias b and the results are
in Table II and Fig. 8, including success rate (S) from 100 tri-
als, exponential divergence Êe, percent of trials better than the
KD-RRT (K), percent of rollouts that reach the goal (NG), and
planning time. These trials used N = 4 samples at each exten-
sion step to calculate D̂e, which appears to be a very small
number of samples for this high dimensional problem, but is
sufficient to bias the results towards lower values of Êe. Results
from an additional set of trials with N = 10 were not statisti-
cally different from those of Table II, with the exception of the
planning time which was, unsurprisingly, about twice as long.

Overall the B-RRT was able to find more reliable trajecto-
ries, with lower values of Êe on average. As with the results
from Section IV-A2, b = 0.5 achieves most of the improvement
in Êe. In addition for each condition we list the percent of the
noisy samples used to calculate Êe that reach the goal region,
NG, which [27] anecdotally shows correlates with the success
of actual experiments. Similar to the Êe metric, NG is higher
for the B-RRT, but further increasing the value of b had lit-
tle effect. These improvements do come at the cost of higher
planning times.
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TABLE II
REARRANGEMENT PLANNING RESULTS FOR THE KD-RRT (top), B-RRT

(middle), AND CR-RRT(bottom), INCLUDING SUCCESS RATE (S),
EXPONENTIAL DIVERGENCE (Êe), % OF RUNS BETTER THAN KD (K),
NUMBER OF SAMPLES THAT REACH THE GOAL (NG), AND PLANNING

TIME. MEAN ± ONE STANDARD DEVIATION LISTED. ALL RESULTS

STATISTICALLY DIFFERENT FROM THE BASELINE WITH p < 0.005.

Fig. 8. Expected exponential divergence, Êe, for the rearrangement problem
under the test conditions from Table II. The mean (green triangle) and median
(red square) are also shown for each b.

3) CR-RRT: In this more complex problem with non-
smooth dynamics, finding a solution trajectory that lies in
a contraction region is quite difficult. To test this, we used
the CR-RRT with D̂m computed with N = 10 samples. After
100 trials with a timeout of 480s each, we found no success-
ful contracting solutions (with D̂m < 0 everywhere). To relax
this requirement, we consider higher thresholds for D̂m < dm;
these results are also in Table II and Fig. 8.

The results from these trials have lower Êe on average, and
are more likely to reach the goal region (NG). However this
higher performance does come at the cost of a lower planning
success rate S (i.e. more trials reached the timeout of 480s), and
the successful trials took much longer.

4) AMD-RRT: Individual planning calls from the B-RRT
and CR-RRT provided better results than the KD-RRT, but
took much longer to do so (due to the time needed to com-
pute D̂e or D̂m). To level the playing field, consider applying
the AMD-RRT to find the best Êe possible in a given amount
of time. Running a single trial of this problem takes much
longer than the hill climbing problem, and so evaluating the

Fig. 9. Measured success rate over 10 executions on HERB [35] (inset) of
trajectories as a function of exponential divergence, Êe. Most trials (shaded)
demonstrate a negative correlation between success rate and exponential diver-
gence. Outliers (open) are likely due to errors in the physics model.

AMD-RRT with 20000 total trials is infeasible. Instead, we
estimate the AMD-RRT performance based only on Table II.

For each condition we list the percent, K, of the success-
ful trials that finished with an Êe less than the best Êe over
all 100 KD-RRT trials. These trials of the KD-RRT took a
total of 1542s to plan and evaluate Êe, and in that time found
a min Êe = 1.66. Compare that to the b = 0.25 for example,
which took 4193s but found a better Êe in 4% of trials (K), for
an average of once every 1048s. Therefore we would expect to
find a better Êe with the B-RRT in less time than all 100 trials
of the KD-RRT would take. This result is encouraging although
not as conclusive as the result from the hill climbing example
and more experiments are needed.

5) Real Robot Experiments: In this section, we demonstrate
that trajectories with lower Êe succeed more often in execution
than trajectories with high Êe values. We use the KD-RRT to
find solutions to the rearrangement planning problem, however
here we plan for the full 7-DOF right arm of the HERB robot
[35] rather than only a hand. We use AprilTags [36] to detect
the pose of the box. Plans are evaluated using Êe calculated
with N = 100 and sampling the object poses from a Gaussian
distribution with standard deviation of 2 cm (computed from
AprilTag measurements).

Figure 9 shows the results of 11 plans with varying Êe each
executed 10 times on HERB. An execution is a success if the
final pose of the box is within 15 cm of the planned final pose.
The trials shaded in blue demonstrate a negative correlation
between success rate and Êe, i.e. trajectories with lower Êe,
like those generated by the convergent planners, are more likely
to succeed. Two trials, not shaded, do not follow the expected
trend. A closer look at these paths attributes the discrepancy to
unrealistic behavior in the physics simulator used to calculate
Êe. As the focus of this letter is not the realism of the physical
model, we have left these outliers.

V. CONCLUSION

The problem of uncertainty is pervasive in robotics, and must
be carefully considered in order to have reliable systems. The
most common way to reduce uncertainty is to use a closed-
loop feedback controller to measure and correct errors that
may accumulate. However there are many settings where a
closed-loop trajectory is not enough, as there is insufficient
sensor information or control authority to correct all of the



JOHNSON et al.: CONVERGENT PLANNING 1051

uncertainty. We propose new convergent path planning methods
that can search for closed-loop trajectories that are inher-
ently robust to state uncertainty despite sensor or actuation
limitations. We introduce analytic and numerical divergence
metrics that the convergent planners seek to minimize. Using
the strongest of these planners and metrics, we show the first
planning based method to find contraction regions where all
states converge to a single trajectory.

The convergent planning methods presented here are rela-
tively simple, but there are many ways to use the divergence
metrics to guide planning. In the future we plan to apply these
metrics to trajectory optimization techniques, e.g. [3], [4], that
can locally search for the lowest-divergence path. The exam-
ples in this letter were all quasi-static but these ideas can also be
applied to dynamic problems [34]. Furthermore, the divergence
metrics provide a nice compliment to the ideas of geometric
mechanics, e.g. [37], which aims to extract feasible trajectories
from the geometry of the system’s vector field.

The divergence metrics are fundamental properties of the
underlying vector field, and motion planning will be most effec-
tive when it considers these properties. Convergent motion
planners, like those presented here, provide a new way to gen-
erate behaviors that are robust to the uncertainty that is always
present when running robots in the real world.
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