
Toward Fieldable Human-Scale Mobile Manipulation Using RoMan

Chad C. Kessensa, Jonathan Finka, Arnon Hurwitza, Matthew Kaplana, Philip R. Osteena,
Trevor Rocksa, John Rogersa, Ethan Stumpa, Long Quangb, Michael DiBlasib, Mark Gonzalezb,
Dilip Patelb, Jaymit Patelb, Shiyani Patelb, Matthew Weikerb, Joseph Bowkettc, Renaud Detryc,

Sisir Karumanchic, Joel Burdickc, Larry Mathiesc, Yash Ozad, Aditya Agarwald, Andrew Dornbushd,
Maxim Likhachevd, Karl Schmeckpepere, Kostas Daniilidise, Ajinkya Kamatf, Sanjiban Choudhuryf,

Aditya Mandalikaf, and Siddhartha S. Srinivasaf
aUS Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, USA 20783
bGeneral Dynamics Land Systems, 1231 Tech Court, Westminster, MD, USA 21157

cNASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, USA 91109
dCarnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA 15213

eUniversity of Pennsylvania, 472 Levine Hall, 3330 Walnut St, Philadelphia, PA, USA 19104
fUniversity of Washington, 185 E Stevens Way NE, Seattle, WA, USA 98195

ABSTRACT
Robots are ideal surrogates for performing tasks that are dull, dirty, and dangerous. To fully achieve this ideal, a robotic
teammate should be able to autonomously perform human-level tasks in unstructured environments where we do not want
humans to go. In this paper, we take a step toward realizing that vision by introducing the integration of state of the art
advancements in intelligence, perception, and manipulation on the RoMan (Robotic Manipulation) platform. RoMan is
comprised of two 7 degree of freedom (DoF) limbs connected to a 1 DoF torso and mounted on a tracked base. Multiple
lidars are used for navigation, and a stereo depth camera visualizes point clouds for grasping. Each limb has a 6 DoF
force-torque sensor at the wrist, with a dexterous 3-finger gripper on one limb and a stronger 4-finger claw-like hand on
the other. Tasks begin with an operator specifying a mission type, a desired final destination for the robot, and a general
region where the robot should look for grasps. All other portions of the task are completed autonomously. This includes
navigation, object identification and pose estimation (if the object is known) via deep learning or perception through search,
fine maneuvering, grasp planning via grasp library, arm motion planning, and manipulation planning (e.g. dragging if the
object is deemed too heavy to freely lift). Finally, we present initial test results on two notional tasks: clearing a road of
debris such as a heavy tree or a pile of unknown light debris, and opening a hinged container to retrieve a bag inside it.

Keywords: Autonomy, Mobile Manipulation, Grasping, Field Robotics, Unstructured, Debris, Robust, Full-stack

1. INTRODUCTION
While robots have proven extraordinarily useful for tasks that are dull, dirty, and even dangerous, real applications have
remained limited for the most part to environments that are controlled. However, many of the most dangerous tasks we
would like robots to perform require operation in uncontrolled environments, meaning that there is no ability to change
factors (e.g. lighting, weather, terrain) to overcome potential deficiencies of the robot. The robot must meet the challenge
where it is and cannot be "met halfway". Disasters have inspired several competitions toward that end, such as RoboCup
Rescue1 and the DARPA Robotics Challenge,2 the latter of which focused on the need for robots to perform human-scale
manipulation tasks to solve some of the challenges that the nuclear disaster at Fukushima presented. Beyond disaster
response, robots with human-scale manipulation capabilities could also prove vital to increasing safety in military and law
enforcement scenarios.3

Whereas challenge formats provide one avenue of progress, alternative forms of effort are useful due to their com-
plementary strengths. In 2010, the US Army Research Laboratory (ARL) formed the Robotics Collaborative Technology
Alliance (RCTA), a consortium of government, academic, and industry researchers, to advance the state of autonomous
ground robot technologies. The program conducts leading edge research in basic and applied ground robotics technologies,

E-mail correspondence to: chad.c.kessens.civ@mail.mil

with an overarching goal of transitioning from tele-operation to more robust autonomy. The research addresses the US
Army’s manned-unmanned teaming (MUMT) requirement, particularly for the dismounted team. However, the research
is also applicable to other MUMT scenarios including larger platforms and systems. The program’s four research focus
areas are: Perception, Intelligence, Human-Robot Interaction, and Dexterous Manipulation & Unique Mobility. Each area
addresses critical technology gaps in achieving key autonomous robotic capabilities, such as high-speed perception and
mobility in rough terrain, situational awareness in unstructured environments, collaborative human-robot mission planning
and execution, multi-modal human-robot dialogue, and dexterous manipulation in cluttered environments. This paper
focuses on this last gap, particularly when the manipulators are on a mobile platform. A robot capable of completing
human-scale mobile tasks with little supervision would free up the dismounted soldier to focus on soldier tasks and serve
as an important force multiplier.

Although the military has deployed thousands of field robots, a market survey early in the effort led us to conclude
that current systems suffer from at least one of four problems. 1) Their mobility is insufficiently robust to the types of
terrains on which the military may wish to deploy them.4,5 2) They are of insufficient size and/or strength to perform
human-scale manipulation tasks.6,7 3) They are not commercially available.8,9 4) They are insufficiently open-source to
easily integrate new hardware and test experimental autonomous research techniques, especially for a team with foreign
national participants. Therefore, we chose to leverage work done on the Robosimian platform9 for the DARPA Robotics
Challenge due to its strength, but modifying its base to fit on a tracked, Talon-like base for improved speed and robustness.
We call the system RoMan (Robotic Manipulator), and we produced 4 complete systems to facilitate the work.

This paper summarizes the essential features, development, and initial testing of RoMan. We begin with a general
description of the system, including its hardware, sensors, computational abilities, overall software architecture, and
calibration techniques. We then describe each of the component capabilities that must work together seamlessly to perform
each entire task. These include base navigation, object and pose estimation (if object is known), grasp planning, and arm
planning and manipulation of various objects. Next, we describe some initial experiments for our scenarios, which included
clearing heavy and stacked light debris, as well as opening a container and retrieving a bag from inside. Finally, we offer
our concluding thoughts and future directions.

2. ROBOT DESCRIPTION
We begin by describing the overall system design of RoMan, including the hardware components, software architecture,
and system calibration techniques that enable the system to seamlessly function.

2.1 System Hardware
To carry out human-scale manipulation tasks (e.g. lifting objects, interacting with human-made infrastructure, etc.), a
platform close to human scale and ability was necessary. Therefore, RoMan’s foundation is comprised of a tracked base for
mobility, two limbs for dual arm manipulation, a torso, end effectors for dexterous and powerful tasks, a sensor head and
suite to provide situational awareness, and the necessary computational hardware. A mechanical drawing of the platform
with basic dimensions can be found in Fig. 1.

2.1.1 Mobile Base
To provide better traction on unpaved roads, terrain involving soft material such as sand or loose gravel, and urban
environments that involve partially destroyed infrastructure and debris, a tracked design was selected to take advantage of
lower ground pressures throughout transport. QinetiQ NA provided the TL1 base platform, a non-ITAR variant of their
TALON® platforms, which served as the foundation of RoMan’s ground mobility. The drive-train consists of 2 independent
electric motors for skid steering capability coupled with a 40:1 gearbox, capable of outputting a total 182.4 N-m of torque.
Each motor is controlled via a Gold Cello 50/100 (ELMO Motion Control) motor controller located within the power
distribution box centered on RoMan. The motor controllers maintain a master/slave configuration and utilize an Ethercat
communication protocol with the primary computing system.

Figure 1. RoMan mechanical drawing with basic dimensions.

2.1.2 Manipulators
The RoMan limb design is derived from Jet Propulsion Laboratory’s Robosimian,10 with modifications made to the choice
of end effectors. Each limb is offset by 45 degrees from the sagittal plane on a torso plate approximately 0.7 m from the
ground, allowing the platform to reach objects that may rest on a shelf up to 1.5 m high. A previous configuration maintained
a 90 degree offset, but this produced a lesser effective work area and required frequent base adjustments prior to executing
object grasp attempts. The entire upper torso assembly rests upon a similar actuator found within the limbs to provide
lateral access for manipulation and sensing and to minimize base reorientation, especially within narrow environments.

Two types of end-effectors were selected for the scope of objects the platform is expected to manipulate. RobotiQ’s
3-Finger Gripper was selected for delicate to light-duty manipulation involving small and medium sized objects (e.g. bags,
light debris, fuel containers, etc.). To fully utilize the limb’s lift strength, the left arm was outfitted with Motiv Robotics’
Camhand gripper for heavy duty manipulation tasks.

2.1.3 Sensors
Visual sensors are located on the anterior of the platform, primarily within the head assembly. A Velodyne Lidar® system
(VLP-16) and an Intel® Realsense™ Depth and Tracking Camera (D435) were integrated together in a head assembly that
provides perception from a single vantage point to maximize the short range and long range 3D- mapping capabilities. Both
sensors are mounted on a 2-DoF actuation system developed by FLIR (D47), providing panning and tilting functionality
to better view its surroundings and objects to be manipulated. For low ground obstacle avoidance, a Hokuyo single line
LIDAR (UTM-30LX-EW) is installed at the height of to the drive wheel axles to detect obstacles larger than its radius,
which it would have difficulty navigating over. Positioning sensors are located amongst the computing hardware near the
caudal end of the platform. An Inertial Measurement Unit (IMU,Microstrain® 3DM-GX5-25) is located near the geometric
center of the platform, and the Global Positioning System (GPS, Ublox EVK-M8T) antenna is mounted on a mast for
reduced interference. Force/Torque sensors (ATI Mini-58) are equipped within the wrist of each limb to provide feedback
for force-controlled manipulation.

2.1.4 Power
RoMan’s track base contains the battery system andmain power distribution system. The platform is powered by nine 9.9 Ah
MIL-Spec Lithium-Ion batteries (Bren-tronics, BB-2590) arranged in a 3s3p configuration to provide 2200 Watt-hours of

power. The modular design of the battery system allows the platform to remain operational while users remove and replace
discharged batteries for un-tethered operations. For tethered operations, the platform is provided shore power from a single
power supply (Keysight, N5769A); however only stationary tasks were recommended while tethered.

The platform’s main operating voltage nominally runs between 72-83 V and provides bus voltages of 12 V and 16.5 V to
support sensors and computational hardware, respectively. During operation, the system’s power consumption is dependent
on the activity performed. Typical operation consisting of base platform movement and object manipulation allows for 1̃-2
hours of periodic operation. Nominal and peak power demands of the system can be found in Table 1.

Power Bus Component Distribution Location Consumption (W)
12V Netgear Switches Computer Tray 24

HRI E-Stop Computer Tray 8
Wifi Network Computer Tray 7
FLIR PTU Sensor Head 70
Velodyne Sensor Head 8

Hokuyo Lidar Torso 8
16.5V 7 DoF Limb (Logic) Chestplate 70

Nuvo, AM1 Computer Tray 63.6
Brix, AM2 & AM3 Computer Tray 33.6
Robotiq Gripper Limb 50
Torso DoF (Logic) Torso 10

19V Zotac Computer Tray 33.4 - 124.3
72-83V Tracks Base 54.2 - 346.1

7 DoF Limb Chestplate 778 - 2780
Camhand Limb 66

Torso Actuator Torso 111 - 397
Table 1. Power budgets for various components on RoMan.

2.1.5 Computing
RoMan’s computational demands are typically met utilizing three computers but can be distributed among more depending
on the application and available power. The main computer (AM1, NUVO-5002LP) performs all tasks involving actuating
the track motors, manipulators, and Pan-Tilt unit. All of the actuation on the platform utilizes EtherCAT and USB
communication protocols and are directly sent to AM1 for latency purposes. For developing the platform’s world model,
a second computer (AM2, GB-BXi78550) compiles sensor data from the on-board network and direct feed from the depth
sensors. Perception development requiring GPU processing is performed on the third computer (AM3/AM4, ZBOX-
QK7P5000) to execute neural network solutions. This perception computational hardware emphasizes raw sensor data
processing towards classifying and detecting various objects, key-points, and other desirable attributes.

2.2 Software Architecture
The system’s software stack is distributed across the aforementioned heterogeneous set of small form factor PCs, denoted
AM{1, 2, 3, 4}. This is supplemented by a remote system connected via WiFi, typically a laptop termed roman-ops, from
which an operator may issue behavior calls as well as inspect sensor data and plans from algorithms running on-board the
platform. However, all computing required for RoMan to perform the given tasks is contained on the platform without
connection to external computing resources. The architecture employs the common horizontal stratification of functional
modules by level of hardware abstraction, as depicted in Fig. 5. This approach is taken, as opposed to the alternative
vertical stratification,11 due to the system’s functional layers being furnished by different institutions within the program,
necessitating distinct ownership of components within each level.

The majority of system modules are comprised of nodes within a network of the common robotics middleware ROS
(Robot Operating System).12 Each node is represented by one distinct rectangle within Fig. 5, with arrows depicting
inter-process communication (IPC) between modules. The prime exception to this is at the lowest level of the stack, the
drivers that interface with motor controllers and sensors, where the interface to hardware is provided by proprietary code
from the Jet Propulsion Laboratory (JPL). A bridge between the ROS network and the underlying JPL drivers is provided in

Figure 2. RoMan’s major components labeled.

Figure 3. Sensors found within (left) head assembly and (right) selected end-effectors.

Figure 4. RoMan system diagram.

the form of the RoMan Client module, seen at the far right of Fig. 5, which exposes motor controller primitives and status
feedback. Successive layers of abstraction are built upon this driver interface within the ROS framework (pictured right to
left), beginning with limb controllers and intrinsic coordination, local and global planning, and the highest module layer
comprised of behaviors.

To consolidate the arm movement through various planners and movement profiles, all robot movements are passed
through a centralized “Whole Body Planner” (WBP) ROS node, with the exception of coarse base navigation over long
distances. Through the WBP, a behavior can control the arms, neck, and base of RoMan for various manipulation and
perception tasks. This allows for interchangeability between planners and controllers without modifications to the top level
behavior modules. This simplifies integration of behaviors from various institutions by ensuring that all high level hardware
control uses the same message to communicate with the various low level planners. The WBP currently communicates
with two arm planners, one designed at Carnegie Mellon University (CMU) and the other at the University of Washington
(UW). The former uses the MoveIt! framework13 and the latter uses the Aikido Framework. The WBP then arbitrates
between the two planners and passes the chosen plan on to the Joint Trajectory Controller, which executes the motion.

Information about the objects RoMan encounters are stored in the World Model. For this experiment, the World Model
is used to hold information about objects discerned by perception algorithms or entered by the user. All of this data is stored
centrally in the World Model and is available to the various behaviors running on RoMan. This allows multiple behaviors
to utilize data from a single source, as opposed to each behavior using a bespoke perception algorithm.

To synthesize compound tasks, such as clearing debris or opening containers, these top level modules are sequenced
using a “Mission Executor” capable of parsing through and executing a behavior tree architecture. For the purposes of the
tests in this paper, the Mission Executor is used to run a simple script of component behaviors in a serial fashion, affording
binary outcome responses from each, and upon failure may either re-attempt the given behavior or fail the task in its entirety.
These behaviors made use of the ROS Actionlib to report status updates to the Mission Executor, including failures or
successes of behaviors. Later work will detail the extension of this structure to enable behavior branches, allowing greater
deliberation to be captured within the task representation.

Figure 5. Block diagram of modules within the RoMan software architecture.

2.3 Calibration
To appropriately create a unified understanding of the world and RoMan’s pose within it, we used twomethods of calibration.
Hand-eye calibration ensured data delivered from the joint encoders accurately localized the position of each end effector
frame relative to the base frame. In addition, because some sensors were located on an articulated pan-tilt “head”, calibration
was critical to resolving the egomotion of the robot relative to the data perceived about the world.

2.3.1 Hand-Eye Calibration
Initial experiments indicated that vibrations from the mobile base could cause the transform between the pan-tilt unit (PTU)
and the RealSense™ camera to drift over time. Therefore, we implemented an automated hand-eye calibration algorithm
to correct for this drift when needed.

The hand-eye calibration involves finding a rigid transform between the pan-tilt unit and the RealSense™ camera,
20<4A0)%)* . We first attached an AprilTag to the gripper such that the rigid transform between the gripper and the
AprilTag �?A8;) 06)6A8??4A was accurately known. The position of the gripper in the camera frame could then be calculated
using the perceived pose of the AprilTag. The transformation from the PTU to the gripper 6A8??4A)%)* was calculated
using the ROS TF tree using the URDF for the robot.

All of the joints in the kinematic chain from the PTU to the gripper were calibrated prior to running the hand-eye
calibration routine to maximize the accuracy of 6A8??4A)%)* . To increase the robustness of our algorithm, we utilized a
point cloud based approach. The arm was moved to locations throughout the workspace, and the transforms were captured
at every location. They were then converted into point clouds. Finally, we used Iterative Closest Point (ICP) to find the
appropriate transforms 20<4A0)%)* .

2.3.2 Articulated Sensor Calibration
To facilitate the calibration of the articulated sensors, we extended prior work in multi-sensor calibration.14 While most
sensor calibration systems consume raw input data and calibrate between sensors with no regard to where they fit within
the larger robot definition, our calibration directly considers the information contained in the URDF model and ROS tf
tree as part of the optimization, shown in Fig. 7 (left). The URDF definition is particularly important here, as it defines the
non-fixed joints of the system, which the calibration framework uses to optimize both sensor and actuator positions. The
resulting calibration graph is implemented as a tree of coordinate frames that are constrained by corresponding detections
of a calibration object, which is shown in Fig. 7 (right). Specifically, the optimization graph contains the following entities:

• Pose: 6 Degree-of-Freedom (DoF) relative pose of a coordinate frame with respect to the parent frame. Sensor and
Actuator types derive from Pose, and all existing tf coordinate frames are included as Poses.

Figure 6. Hand-Eye Calibration Sample Result. Left: Before performing calibration, the point cloud (in orange) and the Robot Gripper
are misaligned. Right: After hand-eye calibration, the alignment is significantly improved.

• Actuator State: 1 DoF state of the parent actuator at a given observation. This serves a similar function to the
joint_states message in ROS, providing dynamic updates of the actuated poses.

• Observation: The geometric definition of the calibration object as seen from a given sensor at a given time.
The three types of observations are Line, Plane, and Tag. Line represents an observation of a 2D lidar; Plane
observations are derived from both camera and 3D point cloud sensors; and Tag observations are generated from the
location of each individual fiducial tag pose, providing stronger optimization constraints for camera-camera sensor
pairs.

Figure 7. (Left) Optimization graph auto-generated from calibration performed on a RoMan. (Right) Corresponding data fusion
visualization. The calibrated entities are a 2D lidar, 3D lidar, actuated camera and associated actuator (shown in green). Line
observations (shown in orange) and plane observations (shown in blue) define the graph constraints for calibration.

3. COMPONENT ACTIONS
Having established the details of the system hardware and overarching software in section 2, we now provide an overview
of the algorithms that plan and execute RoMan’s component actions including navigation, object recognition and pose
estimation, grasping, and manipulation under various conditions. While space limitations prevent in-depth descriptions of
these algorithms, references in each subsection contain finer detailed descriptions for each component.

3.1 Coarse Base Navigation
RoMan is equipped with a set of navigational capabilities to enable safe traversal in a cluttered environment. This set of
capabilities consists of three major components: 1) A metric simultaneous localization and mapping (SLAM) system keeps
track of the location of obstacles relative to the robot’s location. 2) A long range global planner generates coarse overall
plans. 3) A local planner optimizes local control commands to faithfully follow the global plan while safely avoiding
collision with fast moving obstacles.

The SLAM system is based upon the OmniMapper.15 Briefly, this system localizes the robot and builds maps of
obstacles by constructing a graph of measurements. These measurements consist of relative poses between adjacent frames
along the robot’s trajectory. A new frame is initialized with a LiDAR point cloudwhen the robot has traveled 0.5meters from
the last frame. Platform odometery and iterated closest point (ICP)16 point cloud alignment each contribute measurements
in the graph. Additionally, longer distance loop-closure measurements are added through ICP when revisiting a previously
mapped area. The posterior trajectory estimate is given by optimizing this graph of measurements using the nonlinear
least-squares optimization framework GTSAM.17 Sensor frames are rendered along the robot’s optimized trajectory into an
occupancy grid using a negative log-odds updating rule. This occupancy grid is then sent to the global planner where it is
used to identify free paths around obstacles.

Navigation goals are sent to the global planner in the form of a region specified by a goal location and a radius. The
global planner samples locations within that region to identify a safe place where the robot’s footprint will fit without
coming into contact with obstacles. The global planner then identifies a kinematically feasible path by searching a sequence
of motion primitives via the search-based planning library (SBPL).18

Finally, a local controller module converts the next segment of the global plan into a series of control commands in the
form of left and right track velocities. In addition to the global plan, the latest LiDAR point cloud is used to identify moving
obstacles not yet incorporated into the global map. The continuous trajectory segment that the local planner executes tries
to match the global plan while avoiding obstacles and respecting velocity limits. Taken together, the SLAM system, global
planner, and local controller allow RoMan to develop and execute coarse plans for navigating its environment to goals.

3.2 Object Recognition and Pose Estimation
While performing work in unstructured environments generally necessitates the ability to interact with unknown objects,
some missions may involve interacting with predictable objects that can be known and trained on a priori. In these circum-
stances, performance improvements in terms of both speed and robustness are possible. Under varying circumstances, one
approach to object recognition and pose estimation may outperform another. For RoMan, we integrated two complementary
approaches to this perception problem: a neural network-based approach and a search-based approach.

3.2.1 Neural Network Approach
Although RoMan was equipped with numerous sensors including Lidar and RGB-D cameras, the Lidar data quickly became
sparse at longer ranges, with few beams intersecting smaller or thinner objects of interest at longer ranges. Therefore, only
RGB input from the RGB-D sensor was used for pose estimation by the neural network-based estimation pipeline, which
is comprised of several components. First, object instances are detected in an image. For each object instance, we detect
semantic keypoints and use them to estimate the 6-DOF pose of the object. The pose estimates and keypoint locations
are then combined across timesteps using semantic SLAM. Both the object detection and pose estimation components of
this pipeline are dependent on neural networks, making data collection and training important for the performance of the
system.

For object detection, we used the maskrcnn-benchmark19 implementation of the Faster-RCNN pipeline20 to detect
objects in RGB images. This pipeline was trained on a dataset21 collected for objects that RoMan could reasonably be
expected to know for its assigned tasks, namely a Czech hedgehog and a known toolbox. Our keypoint-based pose estimation
pipeline is based upon work by Pavlakos.22 We detect class-specific semantic keypoints for each object detection using a
stacked-hourglass network. The detected keypoints are matched to a deformable model of the object class. The model’s
pose and deformations are then optimized using expectation maximization to match the detected keypoint locations.

To fuse object positions across multiple timesteps, we use a semantic SLAM algorithm.23 This algorithm proba-
bilistically assigns detected keypoints to object instances, and optimizes the pose of the robot and the detected keypoint
locations across multiple timesteps. To improve keypoint annotation collection speeds for training our pose estimator,

we use a pipeline that reconstructs a three-dimensional mesh of the object of interest, allowing the annotator to label the
three-dimensional model and project the keypoint locations onto each image. This allows an annotator to label hundreds of
images with a single click. More details of this pipeline are available in a companion paper.21

3.2.2 Perception Via Search Approach
PErception Via SeaRCH or PERCH refers to an approach that searches for the best possible explanation of the observed
scene in a space of rendered scenes. On RoMan, PERCH was deployed for the task of object articulation wherein RoMaN
is required to open a known container with a hinged lid. Specifically, PERCH estimates the 3-DoF pose of the crate (G, H,
yaw) to be opened, which then serves as an input for the manipulation planner.

The task of opening a hinged lid imposes stringent accuracy requirements on estimated pose due to workspace limitations
and the need to locate the handle, which occupies a limited area with respect to the entire container. In addition, the size
of the container and its close proximity to the robot for the task of opening occludes large regions of the space from the
camera, thus making accurate pose estimation considerably more difficult. To counter scenarios such as these, PERCH
formulates the pose estimation task as a search over a specially constructed tree of rendered scenes in different 3-DoF poses
and uses the input depth data to converge to a global optimum solution corresponding to the accurate pose.

Given the input point cloud �, PERCH estimates poses of $1: objects in the scene by seeking to find a rendered point
cloud ' 9 having 9 (≤) objects, such that every point ? in � has an associated point in ' 9 and vice-versa. In other words,
PERCH seeks to minimize the following objective :

� ($1::) =
∑
?∈�

OUTLIER(? |':)︸ ︷︷ ︸
�>1B4AE43 ($1:) or �>

+
∑
?∈':

OUTLIER(? |�)︸ ︷︷ ︸
�A4=34A43 ($1:) or �A

(1)

in which OUTLIER(? |�) for a point cloud � and point ? is defined as follows:

OUTLIER(? |�) =
{

1 if min?′∈� | |?′ − ? | | > X
0 otherwise

(2)

where X is the sensor noise resolution. To counter the intractability of this joint global optimization problem owing to a
large search comprising of all possible joint poses of all objects, PERCH decomposes the cost function over individual
objects added to the rendered scene. The decomposition is subject to the constraint that the newly added object does not
occlude those already present. This allows the optimization to be formulated as a tree search problem where a successor
state is added to the tree whenever a new object is added to the rendered scene. An important implementation detail in
PERCH is that every time a successor state is generated with a new object pose, local-ICP24 is used to refine the pose of
that object to account for discretization artifacts. Then, the successor state is re-rendered with the refined pose$ 9 to obtain
Δ '̃ 9 (the ICP adjusted point cloud containing points of ' 9 that belong exclusively to object $ 9), which is then used to
compute the edge cost.

3.3 Local Base Control
The intrinsic controller executes short movements of the platform. While the SLAM solution described in Section 3.1
allows for accurate long distance travel including obstacle avoidance, manipulation requires exact short movements to
approach graspable objects. The intrinsic controller utilizes track odometry and IMU sensor data to achieve localization. It
is not exposed to the map frame of the transformation tree, nor is it exposed to the occupancy grid generated by the SLAM
solution. The intrinsic controller also reads the force and torque data from the wrists of the robot to determine the current
forces applied to the end effector.

Goals are sent to the intrinsic controller in the form of a limb, a desired end effector location, and a maximum wrench
threshold that can be applied to the end effector. The intrinsic controller then determines the twist to reach that goal and
iterates over the current location until it has reached the goal location. If the end effector exceeds the force or torque
thresholds during the movement, the base will stop and return an error indicating the wrench reading. This ensures the end
effector and arm will not be damaged during the movement of large heavy objects, and informs higher level planners of the
applied wrench.

Figure 8. Left: RGB image of example debris pile containing aluminum truss segment, safety barrier, 4x4 wood section, and pallet.
Center: Point cloud of workspace captured with RealSense D435. Right: Singulated object candidates with geometric adjacency from
Locally Convex Connected Patches algorithm.25

3.4 Grasp Planning
To affect prehensile manipulation of objects within the task scene, the platform must be capable of both identifying grasp
regions compliant with the specified task, and synthesizing end-effector poses within that region that are geometrically
suited to the gripper. These are divided into two distinct processes, termed region of interest selection, and grasp pose
synthesis, as described below.

3.4.1 Region of Interest Selection
As manipulation focuses on objects within the reachable workspace of the platform, the grasp planner solely utilizes the
colored pointcloud from the near-sighted PTU RGB-D camera to both infer task context and plan grasp poses in geometric
space. This provides both an RGB image (Fig. 8, left), and a pointcloud representation from IR stereo (Fig. 8, center).

When operating in unstructured environments with little to no a priori information on the objects that may comprise it,
this geometric and color information may be all that is available to reason about the suitability of regions within the scene.
The computer vision community has proposed a wide variety of algorithms to address this particular problem, and one such
algorithm was employed to infer geometric structure within the pointclouds, namely Locally Convex Connected Patches.25
This abstracts points within the scene into “super-voxels”, aggregated point clusters across regions with similar normals,
and then seeks to group them into convex regions by comparing the mean normals of adjacent regions. Points may then be
labelled as belonging to particular assumed convex regions, as depicted with a label to color mapping (see Fig. 8, right).

These segmented regions may then have meta-parameters calculated, such as center of mass (mean point value), volume
(from convex hull), or edge points, that can be formulated into a region selection criteria based on the manipulation task at
hand. In the example of removing objects from a pile, for instance, a naïve approach that proved effective for simple piles
was to designate a “priority point” at an R3 point above the workspace, then select the object centroid closest to this point,
which was therefore the topmost with respect to gravity. The points belonging to the select region are then provided to the
geometric planner as the target object, along with the greater pointcloud, which is used to ensure grasp candidates will not
collide with surrounding objects.

3.4.2 Grasp Pose Synthesis
Once a task suitable grasping region within the workspace has been determined, end-effector positions that will allow
the selected gripper to achieve a mechanically stable grasp (termed candidate grasp points) must be found for the points
comprising the region. This is achieved through application of a library of known suitable grasp positions for the given
gripper, entries which are comprised of geometric object primitives and their associated hand positions, as in Fig. 9. These
pairs form a set of grasp prototypes that may be fit to a given task scene to produce candidate grasp poses. Points within
the region of interest are sampled, and geometric object primitives randomly chosen from the library (or a subset) fitted to
the surrounding points to produce a “grasp score” via kernel methods,26 which represents the quality of match between the
prototype and the candidate pose.

After each candidate grasp is sampled, it is checked against a range of additional criteria for viability, each of which
may be a function of task specific parameters that are specified in the call to the grasp planner. These include allowed
approach angle of the gripper (such as to prevent grasping from underneath), which is defined as an R3 approach vector

and R deviation angle tuple; and R3 position within the workspace. Grasp candidates that pass these less computationally
intensive checks are subject to collision checking with the gripper model (depicted as grey regions in Figure 9) against
pointcloud elements surrounding the region of interest. Finally, candidates that will not result in collisions are checked for
reachability via a call to an external Inverse Kinematics solver, such as MoveIt!.

All grasps passing the full set of checks are then returned by the grasp planner to the module that requested them,
in a vector ordered by grasp score, such that the grasps with closest match to a prototype may be prioritized in higher
level planning. In the context of removing items from a pile, or grasping anti-vehicle barriers, this processing takes the
form of attempting to plan joint-space trajectories from the present configuration to the desired end-effector pose, offset
along the grasp direction from the candidate pose by 13 cm so as to prevent the target object being considered a collision.
Upon finding a plan and moving the arm to this pregrasp pose, a Jacobian-based Cartesian motion controller may then be
employed to linearly move the gripper towards the object until contact is detected, at which time the gripper is closed.

Figure 9. Geometric object primitives (in white) and their associated hand positions (in grey). These pairs form a set of grasp prototypes
that may be fitted to a given task scene to produce candidate grasp poses.

3.5 Arm Planning and Manipulation
3.5.1 Free Trajectory Planning
RoMan’s motion planning framework provides it the capability of fast and feasible manipulation planning for both arms in
cluttered environments. Given a set of goal poses by the grasp planner, RoMan invokes multiple motion planning algorithms
in parallel threads until a solution is successfully computed: Anytime Repairing A* (ARA*)27 and Generalized Lazy Search
(GLS)28 search for a feasible solution on a graph in the 8-dimensional configuration space of the arm.
ARA*27 is an anytime heuristic search algorithm which runs A* with inflated heuristics in succession while search time

is available. ARA* efficiently reuses search efforts from previous iterations and continuously reduces the inflation factor
to lower the sub-optimality bound over the solution. Our implementation is based on the Search-based Motion Planning
Library (SMPL)∗ and MoveIt!13 framework.
GLS28 is a computationally efficient, lazy shortest path planning algorithmic framework. Lazy search algorithms delay

collision checking until absolutely necessary. GLS operates with the key insight that interleaving lazy search and collision
checking reduces the total computational time stemming from search efforts as well as collision checks before terminating
with the shortest path. We use the open source implementation of GLS† with the AIKIDO‡ framework.

The planning algorithms check for path feasibility by collision checking against a voxelized representation of the debris
and obstacles around RoMan. An arbiter receives feasible plans from the planners and returns the first available plan for
execution.

∗https://github.com/aurone/smpl
†https://github.com/personalrobotics/gls
‡https://github.com/personalrobotics/aikido

3.5.2 Articulated Object Manipulation
RoMan also has the ability to manipulate articulated objects. The underlying motion planner used to generate a joint space
trajectory for the arm is an Experience-graph (E-graph) based algorithm.29 We embed a user-generated demonstration in
the E-graph, and compute a joint-space trajectory based on this graph that can be used for manipulating articulated objects.

Experience graphs - An experience graph, �4, contains a set of previously planned paths. The original planning
problem is represented using a graph �. The heuristic function �4 is computed such that the planner is biased towards
picking edges from �4, than from �. It does so by explicitly penalizing the planner when an edge from � is chosen, rather
than from �4. Formally, this is stated as

ℎ� (B>) = min
c

_−2∑
8=1

min{Y�ℎ� (B8 , B8+1), 2� (B8 , B8+1)} (3)

where ℎ� (B>) is the E-graph heuristic for a state B>, ℎ� is the heuristic function for �, c is a path 〈B0...B_−1〉 and
B_−1 = B6>0; , 2� is the cost of an edge in �� , and Y� is a scalar ≥ 1. The benefit of using edges from �4 is that it reduces
the amount of exploration of �, which is typically a much bigger graph then �4.

Demonstration-based Experiences - The E-graph framework can be used to incorporate user-generated demonstra-
tions30 in�4. Since the demonstration shows how to manipulate objects, we increase the state-space by one, where the new
dimension tracks the state of the object being manipulated. As a result of this, both� and�4 are updated to account for this
added dimensionality in the state space. In addition, the heuristic, �4 is updated to account for the added dimenstionality.
The planToManipulate algorithm shows the high-level framework.

Algorithm 1: planToManipulate
planToManipulate(�, �, BBC0AC , I6>0; , >1 9);
1:) =)>1 9 ∈ � ;
2: �<0=8? = 1D8;3�A0?ℎ(�,)) ;
3: �� = 2A40C4��A0?ℎ());
4: c = 5 8=3%0Cℎ(�<0=8? , �� ,), BBC0AC , I6>0;) ;
5: A4CDA= c ;

First, the demonstrations corresponding to the object that is to be manipulated are obtained. Here, � = 〈)1...)<〉, where
each)8 is a set of discretized trajectories corresponding to the 8Cℎ object in the environment. Using these demonstrations,
the graph �<0=8? is constructed, which consists of the updated state-space and heuristic definition, based on the task
specified. The 2A40C4��A0?ℎ function uses the demonstration to create the Experience Graph �� . Finally, a planner is
run on the two graphs as described in the original E-graph paper.29

3.5.3 Heavy Object Dragging
When manipulating large or heavy objects (e.g “czech hedgehog” anti-vehicle barrier), moving the end-effector with an
object in-hand can cause large reaction forces to be exerted on the digits, potentially exceeding strength limits and damaging
the system. To account for this, local Cartesian motions of the end-effector may utilize live measurements from the
wrist-mounted force-torque sensor to reorient the gripper to reduce these reaction forces, in essence creating “software
compliance”. This is achieved by deflecting the goal pose of the Cartesian motion as a linear function of the measured wrist
torque and a pre-specified compliance parameter.

An illustrative example is when one support of the anti-vehicle barrier is lifted prior to executing a drag behavior. When
the leg of the barrier closest to the platform base is grasped and raised, the barrier’s center of mass is distal to the grasp
point, causing a torque to be exerted upon the end-effector as it begins to support the barrier’s weight (in the positive Y
direction of the Forward Left Up coordinate base frame). By actively rotating the end-effector about the Y axis during the
motion, this torque can be reduced, allowing the rear legs of the barrier to support more of the barrier’s weight.

To provide an intuitive means of specifying compliance, deflection is calculated in a hybrid frame (denoted ℎH1), located
at the origin of the end-effector frame (44), but with an orientation matching that of the platform base frame. By specifying
non-zero torsional compliance about the Y-axis, for example, the gripper will only allow rotation about the Y-axis in the

base frame (A>1>C) during a motion, rather than in a frame attached to the instantaneous orientation of the end-effector.
This is achieved by transforming the wrench , (force torque pair) measured at the wrist into the hybrid frame through
equation 4, where �3)

120 is the transposed adjoint transformation of a wrench from frame 0 to frame 1,31 and 'A>1>C244 is
the rotation between the instantaneous end-effector frame and the robot base frame.

�3ℎH1244 =

[
'A>1>C244 0

0 'A>1>C244

]
, ,ℎH1 = �3

)
ℎH1244�3

)
442 5 C, 5 C . (4)

Compliance may then be specified anisotropically via a 6x6 diagonal matrix, �ℎH1 , which converts the hybrid frame
wrench into a deflection in twist coordinates (the dual space of wrenches).31 This is then transformed back into the end-
effector frame to produce �4424434 5 ; , which is the homogeneous transform representing the deflection of the end-effector
from its goal pose due to the software compliance:

�ℎH1 := 3806(2 5G , 2 5H , 2 5I , 2gG , 2gH , 2gI) ,)
34 5 ;

ℎH1
= �ℎH1,ℎH1 (5a)

)
34 5 ;
44 = �3442ℎH1)

34 5 ;

ℎH1
, �4424434 5 ; = 4

)̂
34 5 ;
44 (5b)

The net result is an allowance for deviations from the goal in directions that are not critical to achieving the task, which
limits internal forces and reduces the risk of damage or task failure.

4. TESTING AND RESULTS
To determine RoMan’s effectiveness at autonomously performing human-scale tasks, two notional scenarios were used for
testing. First, RoMan can be used to clear debris in the form of multiple stacked objects that RoMan can move freely, or a
heavy object that RoMan must drag, such as a downed tree or Czech hedgehog anti-vehicle obstruction. Second, RoMan
can be deployed to retrieve an object, including one inside of a hinged container. The sections below provide results on
initial testing of each of these scenarios.

4.1 Debris Clearing
The scenario motivating the Debris Clearing Task is as follows:

A robotic vehicle was deployed on a scouting mission. While performing route reconnaissance, it en-
countered debris, both light and heavy, blocking its path. With no obvious way around the debris, the vehicle
deployed RoMan to clear the path so that the larger vehicle could safely continue its mission. RoMan is given
a desired goal position. It proceeds along a path to that goal until it encounters an obstacle. It determines that
there is no way around the obstacle, so it grasps the obstacle and attempts to move it. The result of the attempt
is either: a) RoMan determines that it cannot move the obstacle, b) RoMan determines the obstacle is too heavy
to lift freely, so it attempts to drag the obstacle out of the way, or c) RoMan is able to lift the obstacle and carry
it. After removing the first debris object, RoMan continues to clear debris until the path is clear, and it can get
to the desired goal position. The cleared space is wide enough for the larger vehicle to move through.

Debris was composed of one or more objects considered to be relevant to the task, either vertically stacked or adjacently
placed, but not interlocking or unstable. Individual objects were chosen to represent a range of masses and geometries,
both primitive (e.g. prisms, cylinders) and complex (e.g. tree branch), rigid (e.g. metal truss) and soft (e.g. cone, bag).
Table 2 provides a list of sample objects and their specifications.

4.1.1 Debris Clearing Integration
Our progression, shown in Table 3, was planned for increasing complexity, from removal of a single, low-mass object to
dismantling a stack containing multiple objects. As we integrated the required behaviors (component actions), we further
improved them with new features as needed in each subsequent sprint. Behaviors were tested individually, in parts of a
sequence, and end-to-end, where the full workflow is shown in Fig. 10. Note that strict inter-dependencies among behaviors
required parallel testing with development and integration.

Item Mass Dimensions
Short Aluminum Truss Segment 6 kg 0.5 m x 0.3 m x 0.3 m

Safety Barrier 7.5 kg 1 m x 0.45 m diameter
PVC Pipe 2.2 kg/m 0.1 m diameter x various lengths

Small Traffic Cone 3.2 kg 0.36 m x 0.36 m x 0.71 m
Wooden Blank 2 kg 0.05 m x 0.05 m x 0.61 m
Czech Hedgehog 18 kg 1.3 m x 1.3 m x 1.3 m
Tree Branch unknown unknown

Table 2. Debris pile item candidates with their estimated masses and dimensions.

Figure 10. Debris Clearing Workflow.

Beginning with sprint 2, we endeavored to reduce the grasp behavior execution times, which included optimizations
in grasp planning such as reducing number of selected grasps to filter via inverse kinematics (IK) and reducing candidate
grasps given to the arm planner. Multiple debris objects also presented challenges in prioritizing the regions of the pile to
pursue (see section 3.4). Arm planning with obstacle avoidance, which considerably increased planning times, was also
desired to prevent collisions with non-targeted debris. This emphasized the need for planning optimizations (see section
3.5).

For the final sprint, the pipeline was tested for heavy objects that RoMan was incapable of lifting entirely off the ground.
This sprint relied on changing grasp behavior parameters to prioritize grasps in lower regions. We also incorporated force
and torque feedback in the local controllers to enforce safety stops and “software compliance” when manipulating heavy
objects (see section 3.5.3). Several attempts were made to remove a single heavy object, but no complete end-to-end
successful run was achieved in the testing for this paper. That said, RoMan succeeded in all portions of the task in pieces,
but required retuning the grasp behavior and adding new prototypes. Still, grasping the hedgehog proved difficult with
the Robotiq hand due to the lack of accuracy in the tool frame placement (as compared to the Camhand). Releasing the
large tree branch during placement was also an occasional issue, as the hand would sometimes fail to open due to internal
forces resulting from the drag process. Simple placement using straight backward base movement was sufficient to remove
the heavy objects from the path without base planning; though, more end-to-end testing is required to test navigation after
dragging.

4.1.2 Debris Clearing Task Results
We started with 8 single test runs for Sprint 1. Unfortunately, we later discovered wheel encoder errors caused unreliable
state estimation, thus invalidating our Sprint 1 test results.

Sprint 2 was successful overall, especially with certain objects, such as the truss. The component action sequences were
streamlined, and several new behaviors were added to both ease transitions between runs and remove wrapped executors
into more standalone behaviors. This helped restructure the mission logic through quicker configuration changes and made
the debris clearing mission easier to repeat. There were 110 single object clearing runs, mostly consisting of portions of
the full run, with an overall test success rate of 30%.

Several runs were attempted for Sprint 3; though, while grasping stacked objects in a small pile (2-3 items) was
successful in steps, a full run ending with navigation to goal was not achieved. There were 11 multiple debris object runs
with 64% success on grabbing at least 1 object.

Finally, we had 15 heavy object runs for Sprint 4, including both the Czech hedgehog and tree branch, with 60%
success; although, we manually stepped through the behaviors instead of using the scripted sequences. As shown in Fig. 12,
our success rates increased as we progressed through the sprints, indicating that our changes succeeded in improving

Sprint Component Actions Additional Features Complexity
1 Go to the end of the street and

stop at an immovable obstacle.
Coarse Base Navigation Goto object Low

2 Go to the end of the street and re-
move a single light obstacle from
the path.

Coarse Base Navigation, Local
Base Control, Local Arm Control,
Arm Planning, Grasp Planning

Neck controller, Gripper
Control, Force/Torque
triggers

Moderate

3 Go to the end of the street and
remove multiple light obstacles
from the path.

Coarse Base Navigation, Local
Base Control, Local Arm Control,
Arm Planning, Grasp Planning

ROI generation, OA in
Arm Planning, Neck
planning

Moderate

4 Go to the end of the street and
remove a single heavy obstacle
from the path.

Coarse Base Navigation, Local
Base Control, Local Arm Control,
Arm Planning, Grasp Planning

Wrench reactive control High

Table 3. Debris Clearing Sprints

robustness. Fig. 13 shows the distribution of our errors, which helped identify the subsystems with the highest frequency of
failures. In sprints 2, 3, and 4, the local maxima were either around 0 (no errors) or 3-3.5 (actions and behaviors). We also
noticed a slight decrease from 0.5 to 0.3 as we progressed through the sprints, which again is an indication of the steady
improvements.

Figure 11. Results of the first 5 debris clearing experiments of Sprint 2. Each was for a single truss object.

Description of Variables:

• date and time: the recorded date and time of each test run.

• test_type: these are categorized as single behavior, multiple behaviors, or end-to-end runs.

• obj_count: the number of items in the debris pile.

• obj_types: available object types are from Table 2.

• <behavior>_success: the number of successful attempts. The criterion for success is suggested in the aforementioned
sections for the respective behavior.

• test_result: the overall success or fail of the run.

• errors: these are categorized based on where the error resides in the successive layers of abstraction (see Section 2.2).
An error score of 0 to 5 is given as follows: 0 means no errors observed; 1 indicates error due to hardware failure or
damage; 2 indicates error due to controller logic; 3 indicates error due to logic in action planner; 4 indicates error in
behavior (component action); 5 indicates configuration and/or operational error.

4.2 Container Opening and Object Retrieval
This task was based on a notional mission to retrieve a valued item from inside a known container in an unsafe area. Thus,
RoMan needed to be able to locate the container, navigate to it, open it, and retrieve the item from within. This workflow,
illustrated in Fig. 14, was implemented as a behavior tree using the RCTA intelligence architecture’s Mission Executor.

Figure 12. Debris Clearing Sprint Results. Behavior success rates are displayed above their respective bar, and the overall test success
rate is the rightmost bar in each plot. Transparent bars represent number of attempts. Left: Navigate to the end of the street, removing
a single light obstacle. Center: Navigate to the end of the street, removing multiple obstacles. Right: Navigate to the end of the street,
removing a single heavy obstacle.

Figure 13. Debris Clearing Error Results. Distribution of error scores showing the Kernel Density Estimation (blue line) and the normal
distribution (red line), one sprint in each plot. Left: Navigate to the end of the street, removing a single light obstacle. Center: Navigate
to the end of the street, removing multiple obstacles. Right: Navigate to the end of the street, removing a single heavy obstacle.

Figure 14. Container Opening and Item Retrieval Workflow.

4.2.1 Container Task Manipulation Integration
Work began integrating the Container Task component behaviors without a usable perception solution. Thus, the pipeline
was initially tested with only known container poses. The container pose was taken in 2D, as it was assumed that container
and robot were on flat ground and that the height of the container was constant. The object manipulation planner (container
opener) was determined to be fairly sensitive to errors in container pose estimation. Initial testing at the University of
Pennsylvania indicated a 5% success rate for the object manipulation planner when the actual pose deviated from the
estimated pose by more than 2 cm.

Preset container poses were directly input into the object manipulation planner via ROS messages during initial
integration. When the container could be opened this way with some degree of reliability, three fiducial markers (AprilTags)
were added to the container in known locations in the container frame. Due to the unreliability of AprilTag orientation,
the AprilTag container detector relied solely on tag position. As long as the torso-mounted camera had a view of two
unoccluded tags, it was able to determine container pose yaw with sufficient accuracy to regularly open the container.

With the system able to open the container, the next task was to retrieve the bag from within. The grasp planner module
was fairly mature at this time, and integrated easily into the behavior. However, initial attempts to use the same limb to both
open the container and remove the item were rarely successful, as the open container lid became a significant obstacle for
that limb to plan around without knocking the lid closed. Fortunately, the dual-arm RoMan configuration became available
around this time, and using the second limb to grab the item out of the bag resulted in a higher success rate, speed, and
improved visual appeal.

4.2.2 Container Task Perception Integration
Once the available perception modules were more mature, work began on integrating a close-up (fine) container pose
estimation solution to eliminate the need for AprilTags. Two candidate algorithms were considered – the neural network
semantic keypoint detector (see section 3.2.1, and the perception through search (PERCH) approach (see section 3.2.2).
The keypoint detector, while faster than PERCH, proved to be highly susceptible to minor occlusions, and rarely provided a
container pose accurate enough at close range to allow the container opening to succeed. With this realization, work focused
on improving the performance of PERCH. By moving the CPU-based PERCH algorithm onto the fastest machine available
on-board RoMan, and severely limiting the container search space based on task invariants and prior pose information,
integrators achieved a 10X speed-up of PERCH, resulting in an acceptable solution.

4.2.3 Container Task Results
Unfortunately, container pose errors from the far-field neural network object detection and pose estimation combined with
the inaccuracy of the coarse base navigation resulted in RoMan rarely being able to drive up to the container within the tight
tolerances required by the container opening algorithm. However, the remainder of the pipeline, including the near-field
search-based perception algorithm, succeeded in opening a container placed directly in front of the platform and removing
the bag with a success rate near 80%.

5. CONCLUSIONS AND FUTURE WORK
RoMan is a robotic mobile manipulation platform capable of autonomously performing human-scale work in unstructured
environments. In this paper, we provided a detailed account of the overall hardware system and outlined the software
architecture and the integration of its component actions including coarse and local base navigation, two approaches to
object recognition and pose estimation, grasping, planning, and manipulation of free, heavy, and constrained objects.
We also tested and provided initial results for RoMan’s performance on two notional tasks: debris clearing and object
retrieval from a hinged container. The advances we have made in each of these areas bring us one step closer to realizing a
fieldable mobile manipulation surrogate that can protect humans by performing human-scale tasks in potentially dangerous
environments.

Despite this, significant gaps in robustness remain. We intend to continue bridging these gaps by transforming our
currently scripted mission executor into a behavior tree approach with condition checking. This will enable the system to
more adequately determine when and how it has failed to perform a sub-task, and be more likely to correct the fault without
relying on human intervention. Time continues to be an issue as well, with RoMan under-performing human speeds for
most tasks by at least an order of magnitude. Algorithms will be assessed for bottlenecks and further parallelized where

possible. Finally, we intend to explore dynamic whole-body actions using multi-body dynamics analysis, providing the
potential to achieve larger forces and more varied tasks without requiring an increase in system mass.

ACKNOWLEDGMENTS
This research was sponsored by the U.S. Army Research Laboratory (ARL) under Cooperative Agreement W911NF-10-
2-0016. The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of ARL or the U.S. Government.

REFERENCES
[1] Jacoff, A., Messina, E., Weiss, B. A., Tadokoro, S., and Nakagawa, Y., “Test arenas and performance metrics for urban

search and rescue robots,” Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003)(Cat. No. 03CH37453) 4, 3396–3403, IEEE (2003).

[2] Krotkov, E., Hackett, D., Jackel, L., Perschbacher, M., Pippine, J., Strauss, J., Pratt, G., and Orlowski, C., “The
DARPA robotics challenge finals: Results and perspectives,” Journal of Field Robotics 34(2), 229–240 (2017).

[3] Nguyen, H. G. and Bott, J. P., “Robotics for law enforcement: Applications beyond explosive ordnance disposal,”
Enabling Technologies for Law Enforcement and Security 4232, 433–454, International Society for Optics and
Photonics (2001).

[4] Bohren, J., Rusu, R. B., Jones, E. G., Marder-Eppstein, E., Pantofaru, C., Wise, M., Mösenlechner, L., Meeussen,
W., and Holzer, S., “Towards autonomous robotic butlers: Lessons learned with the PR2,” 2011 IEEE International
Conference on Robotics and Automation , 5568–5575, IEEE (2011).

[5] Fitzgerald, C., “Developing baxter,” 2013 IEEE Conf on Technologies for Practical Robot Applications (TePRA) , 1–6
(2013).

[6] Yamauchi, B. M., “Packbot: a versatile platform for military robotics,”Unmanned ground vehicle technology VI 5422,
228–237, International Society for Optics and Photonics (2004).

[7] Wells, P. and Deguire, D., “TALON: a universal unmanned ground vehicle platform, enabling the mission to be the
focus,” Unmanned Ground Vehicle Technology VII 5804, 747–757, International Society for Optics and Photonics
(2005).

[8] Stentz, A., Herman, H., Kelly, A., Meyhofer, E., Haynes, G. C., Stager, D., Zajac, B., Bagnell, J. A., Brindza, J., et al.,
“Chimp, the CMU highly intelligent mobile platform,” Journal of Field Robotics 32(2), 209–228 (2015).

[9] Karumanchi, S., Edelberg, K., Baldwin, I., Nash, J., Reid, J., Bergh, C., Leichty, J., Carpenter, K., Shekels, M., Gildner,
M., et al., “Team RoboSimian: semi-autonomous mobile manipulation at the 2015 DARPA robotics challenge finals,”
Journal of Field Robotics 34(2), 305–332 (2017).

[10] Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., Bergh, C., Borders, J., Frost, M., Hagman, M.,
et al., “Mobile manipulation and mobility as manipulation—design and algorithms of robosimian,” Journal of Field
Robotics 32(2), 255–274 (2015).

[11] Brooks, R. A., “A Robust Layered Control System For A Mobile Robot,” IEEE Journal on Robotics and Automa-
tion 2(1), 14–23 (1986).

[12] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y., “ROS: an open-source
Robot Operating System,” ICRA workshop on open source software (2009).

[13] Chitta, S., Sucan, I., and Cousins, S., “Moveit![ROS topics],” IEEE Robotics & Automation Magazine 19(1), 18–19
(2012).

[14] Owens, J. L., Osteen, P. R., and Daniilidis, K., “MSG-cal: Multi-sensor graph-based calibration,” 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) , 3660–3667 (Sep. 2015).

[15] Trevor, A. J., Rogers, J. G., and Christensen, H. I., “Omnimapper: A modular multimodal mapping framework,” IEEE
International Conference on Robotics and Automation (ICRA) , 1983–1990 (2014).

[16] Segal, A., Haehnel, D., and Thrun, S., “Generalized-ICP,” (2009).
[17] Dellaert, F. and Kaess, M., “Square root sam: Simultaneous localization and mapping via square root information

smoothing,” The International Journal of Robotics Research 25(12), 1181–1203 (2006).
[18] Likhachev, M. and Stentz, A., “R * Search,” Proceedings of the National Conference on Artificial Intelligence (AAAI)

(2008).

[19] Massa, F. and Girshick, R., “maskrcnn-benchmark: Fast, modular reference implementation of instance segmentation
and object detection algorithms in pytorch,” (2018).

[20] Ren, S., He, K., Girshick, R., and Sun, J., “Faster R-CNN: Towards real-time object detection with region proposal
networks,” Advances in Neural Information Processing Systems (NIPS) (2015).

[21] Narayanan, P., Yeh, B., Holmes, E., Martucci, S., Schmeckpeper, K., Mertz, C., Osteen, P., and Wigness, M., “An
integrated perception pipeline for robot mission execution in unstructured environments,” SPIEDefense +Commercial
Sensing (2020).

[22] Pavlakos, G., Zhou, X., Chan, A., Derpanis, K. G., and Daniilidis, K., “6-dof object pose from semantic keypoints,”
Proceedings of 2017 IEEE international conference on robotics and automation (ICRA) , 2011–2018, IEEE (2017).

[23] Bowman, S. L., Atanasov, N., Daniilidis, K., and Pappas, G. J., “Probabilistic data association for semantic SLAM,”
Proceedings of 2017 IEEE International Conference on Robotics and Automation (ICRA) , 1722–1729, IEEE (2017).

[24] Chen, Y. and Medioni, G., “Object modelling by registration of multiple range images,” Image and vision comput-
ing 10(3), 145–155 (1992).

[25] Stein, S. C., Schoeler, M., Papon, J., and Worgotter, F., “Object partitioning using local convexity,” Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition , 304–311 (2014).

[26] Detry, R., Papon, J., and Matthies, L., “Task-oriented grasping with semantic and geometric scene understanding,” in
[2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)], (2017).

[27] Likhachev, M., Gordon, G. J., and Thrun, S., “ARA*: Anytime A* with provable bounds on sub-optimality,” in
[Advances in neural information processing systems], 767–774 (2004).

[28] Mandalika, A., Choudhury, S., Salzman, O., and Srinivasa, S., “Generalized lazy search for robot motion planning:
Interleaving search and edge evaluation via event-based toggles,” Proceedings of the International Conference on
Automated Planning and Scheduling 29(1), 745–753 (2019).

[29] Phillips, M., Cohen, B. J., Chitta, S., and Likhachev, M., “E-graphs: Bootstrapping planning with experience graphs.,”
(2012).

[30] Phillips, M., Hwang, V., Chitta, S., and Likhachev, M., “Learning to plan for constrained manipulation from demon-
strations,” Autonomous Robots 40(1), 109–124 (2016).

[31] Murray, R. M., Li, Z., and Sastry, S. S., [A Mathematical Introduction to Robotic Manipulation], CRC Press (1994).

