
Unobservable Monte Carlo Planning
for Nonprehensile Rearrangement Tasks

Jennifer E. King, Vinitha Ranganeni, Siddhartha S. Srinivasa
The Robotics Institute, Carnegie Mellon University

{jeking, vrangane, ss5}@andrew.cmu.edu

Abstract— In this work, we present an anytime planner
for creating open-loop trajectories that solve rearrangement
planning problems under uncertainty using nonprehensile ma-
nipulation. We first extend the Monte Carlo Tree Search
algorithm to the unobservable domain. We then propose two
default policies that allow us to quickly determine the potential
to achieve the goal while accounting for the contact that is
critical to rearrangement planning. The first policy uses a
learned model generated from a set of user demonstrations.
This model can be quickly queried for a sequence of actions that
attempts to create contact with objects and achieve the goal. The
second policy uses a heuristically guided planner in a subspace
of the full state space. Using these goal informed policies, we
are able to find initial solutions to the problem quickly, then
continuously refine the solutions as time allows. We demonstrate
our algorithm on a 7 degree-of-freedom manipulator moving
objects on a table.

I. INTRODUCTION

In this work we generate open-loop trajectories that solve

the rearrangement planning problem [1]–[5] using nonpre-

hensile manipulation. In these problems, a robot must plan

in a cluttered environment, reasoning about moving multiple

objects in order to achieve a goal.

Nonprehensile interactions have proven to be a powerful

strategy for pregrasp manipulation [6]–[8], manipulating

large or heavy objects [1] and manipulating in clutter [9]–

[12]. However, open-loop execution of trajectories that in-

corporate nonprehensile actions are prone to failure due to

uncertainties in object and robot pose and in the physical

modeling of the interactions.

Prior work has shown that nonprehensile interactions such

as the push-grasp [1], [13] can be inherently uncertainty re-

ducing and successfully executed open-loop if the uncertain-

ties in pose and interaction are considered when generating

the motion. This analysis of pushing under uncertainty has

been limited to short simple motions such as a straight line

push. In this work we consider the following question: How
do we generalize this analysis to create robust open-loop
pushing trajectories for use in rearrangement tasks?

This generalization to full rearrangement trajectories in-

troduces three inherent challenges. First, rearrangement plan-

ning occurs in a continuous high dimensional state space that

describes the state of the robot and movable objects. This

requires our planner search across an infinite dimensional

belief space in order to account for state uncertainties.

tree policy tree extension back propagationdefault policy

Informed

Computational Complexity

random learned planned

Fig. 1. Unobservable Monte Carlo Planning based on Monte Carlo Tree
Search. The planner relies on a default policy to compute the potential for
goal achievement from a node in the tree. We propose two policies: learned
and planned. These policies trade-off additional computational complexity
for better informed decision making that improves the efficiency of tree
growth.

Second, contact between robot and objects causes physics

to evolve in complex, non-linear ways and quickly leads

to multimodal and non-smooth distributions. This makes

methods that rely on closed form representation of the

stochastic dynamics inapplicable [14].

Third, most actions in the continuous action space fail

to make and, importantly, sustain meaningful contact with

objects. Unlike grasping, the motion of a pushed object can-

not be modeled as rigidly attached to the robot. Instead, the

motion is directly governed by the physics of the interaction

between robot and object. Once contact is made, only a small

subset of the continuous action space will sustain this contact

and move the object.

In this work, we propose an Unobservable Monte Carlo

Planner (UMCP) that extends Monte Carlo Tree Search

(MCTS) methods into unobservable domains. MCTS meth-

ods naturally deal with the first two challenges. The algo-

rithm focuses the search to beliefs reachable from a known

initial belief state and uses Monte Carlo simulations to

approximate the unknown stochastic dynamics.

Central to MCTS algorithms is the use of a default policy
to guide a simulation, or rollout, that quickly evaluates the

potential value from a state. The simplest default policies

perform random rollouts, drawing action sequences from a

2017 IEEE International Conference on Robotics and Automation (ICRA)
Singapore, May 29 - June 3, 2017

978-1-5090-4633-1/17/$31.00 ©2017 IEEE 4681

Tree policy Default policy

Random

Learned

Planned

Fig. 2. An example path computed with the random default policy, learned default policy and planned default policy after t = 45 s of planning time. The
portion of the paths extracted using the tree policy look similar. However, the random policy quickly breaks contact with objects and is unable to move
any portion of the belief to the goal. The learned and planned policies are able to use knowledge of the problem to maintain contact and achieve the goal.

distribution over the control space defined for the robot. In

rearrangement planning, random rollouts will rarely be in-

formative, as most action sequences fail to make meaningful

contact with objects. Relying on this default policy restricts

the amount of information the planner can use to guide tree

growth.

Our insight is that by carefully selecting a goal informed
default policy that generates actions with the goals of rear-

rangement planning and nonprehensile interaction in mind,

we can extract useful trajectories from the planner much

earlier to better guide the search. We propose two such

policies. The first uses user demonstrated trajectories to learn

a mapping from state to control space. This mapping can then

be used in place of random selection to generate rollouts.

The second uses a planner that can solve rearrangement

planning in the lower dimensional subspace containing only

objects critical for goal achievement. The sequence of actions

generated by the planner is then used to perform a rollout in

the full state space.

These policies trade-off addition computational complex-

ity for more informed decision making to guide tree growth

(Fig.1). We test both policies on a manipulation task requir-

ing a robot to push objects on a table. Our results show the

learned default policy is useful when working in low clutter

(Fig.2) while the planned default policy better guides the

search through high clutter.

The remainder of this paper is structured in the following

way. In Sec.II we formalize the rearrangement planning

problem. In Sec.III we outline the UMCP planner and our

proposed default policies. We demonstrate the effectiveness

of the algorithm in Sec.V. Finally, we discuss limitations and

areas for future work in Sec.VI.

II. THE REARRANGEMENT PLANNING PROBLEM

A. Terminology

Our environment contains a robot R, a set, M, of objects

that the robot is allowed to manipulate and a set, O, of

obstacles which the robot is forbidden to contact. We define

the state space of the planner X as the Cartesian product

of the state spaces of the robot and all objects in M:

X = XR ×X1 × · · · ×Xm. We define the free state space

Xfree ⊆ X as the set of states where the robot and objects

are not contacting the obstacles and are not penetrating

themselves or each other. Note that this definition specifically

allows contact between robot and movable objects, which is

critical for manipulation.

We consider pushing interactions. Thus, the motion of

the movable objects is governed by the physics of the

environment and the contact between the objects and the

robot. As a result, the state x evolves non-linearly based on

the physics of the manipulation. We describe this evolution

as a non-holonomic constraint:

ẋ = f(x, u) (1)

where u ∈ U is an instantaneous control input to the robot.

The task of rearrangement planning is to find a feasible
trajectory ξ : R≥0 → Xfree from an initial state x0 ∈ Xfree

to any state in a goal region XG ⊆ Xfree. A path is feasible

if there exists a mapping π : R≥0 → U such that Eq.(1)

holds throughout the duration T of the trajectory: ξ̇(t) =
f(ξ(t), π(t)) for all t = [0, . . . , T].

B. Uncertainty

We wish to generate open-loop plans robust to the un-

certainties prevalent when executing trajectories in the real

world. In general, open-loop plans are susceptible to failure

due to uncertainty in initial state and poor modeling of

both the motion of the manipulator and the physics of the

interaction (Fig.3).

4682

Fig. 3. Three sources of uncertainty in rearrangement planning with
nonprehensile interaction: (left) Initial state. (center) Manipulator motion.
(right) Physical interaction.

We represent initial state uncertainty as a belief b0 = p(x0)
that describes a probability distribution over possible initial

states x0 ∈ Xfree. We represent modeling errors by assum-

ing our state evolves as a stochastic non-holonomic system.

This induces a distribution p(ξ|π, x) over the trajectories that

result from executing a control sequence π from a state x
under the stochastic transition dynamics.

We represent the rearrangement problem as an instance

of conformant probabilistic planning [15] where the goal is

to maximize the probability that executing a sequence of

actions π results in goal achievement. We can express this

probability as an expectation:

pπ(x) =

∫
Ξ

1G(ξ)p(ξ|π, x)dξ (2)

where Ξ is the set of all trajectories from a state x and

1G : ξ → {0, 1} is the indicator function that returns 1 if

the endpoint of ξ is in XG. Our goal is to generate a control

sequence π∗ ∈ Π that maximizes the total probability of π∗

achieving success (pπ∗) given all uncertainties:

π∗ = argmax
π∈Π

pπ (3)

= argmax
π∈Π

∫
x∈X

b0(x)pπ(x)dx (4)

In this work, we consider mappings π instantiated as a

sequence of discrete actions π = {a1, . . . , aj} where each

action ai = (ui,Δt) represents a control input to the robot

and a duration to apply the control.

III. MONTE CARLO TREE SEARCH

In our domain, the evolution of the uncertainty when using

nonprehensile interactions is non-smooth and non-Gaussian.

These characteristics make closed form representation of the

system dynamics difficult. As a result, exact computation

of Eq.(2) is not possible.

Monte Carlo methods have been used widely when the

exact dynamics are unknown or difficult to model [16]–[20].

These methods use a generative model, G, or black-box

simulator, to sample successor states given a current state

and an action: x′ ∼ G(x, a).
Monte Carlo Tree Search [19], [21] (MCTS) is one such

algorithm that uses this paradigm. The MCTS algorithm

iteratively builds a tree using Monte Carlo simulations. The

tree estimates the value of action sequences by tracking the

mean reward obtained from simulations of the sequences.

MCTS is a good fit for our problem. We can use a physics

model to perform the black-box simulations. These physics

simulations have some computational expense. The MCTS

framework efficiently focuses computational resources to

Algorithm 1 Unobservable Monte Carlo Planning

1: s0 ← GenerateInitialSamples()
2: while not timeout do
3: x ← SampleState(s0)
4: Simulate(x, {}, 0)
5: function Simulate(x, h, d)
6: if γd < ε then return 0

7: if NotVisited(h) then
8: InitializeHistory(h)
9: return DefaultPolicy(x)

10: a ← TreePolicy(h)
11: x′ ← G(x, a)
12: r ← R(x, a)+
13: γ· Simulate(x′, h ∪ {a}, d+ 1)
14: B̂(h) ← B̂(h) ∪ {x}
15: N(h) ← N(h) + 1
16: Q̂(h, a) ← Q̂(h, a) + r
17: return r

relevant regions of state space. In addition, the algorithm

is anytime and highly parallelizable.

IV. UNOBSERVABLE MONTE CARLO PLANNING (UMCP)

The POMCP [19] algorithm applies the MCTS framework

to partially observable environments. We use a similar ap-

proach to plan in our unobservable environment. We build

a tree such that each node represents a unique history, h =
{a1, . . . at}. Three values are stored for each node: N(h) -

the number of times the history, or action sequence, has been

explored, Q̂(h, a) - an estimate of the value of taking action

a after applying history h, and B̂(h) - an estimate of the true

belief achieved when applying the actions in h from known

initial belief b0.

Alg.1 shows the UMCP algorithm which applies MCTS

to an UMDP. The tree is rooted with an initial belief state s0
that contains a set of states drawn from an initial distribution

defined on the state space. Then, during the search an initial

state x ∼ s0 is drawn from the belief state (Line 3). This

state is propagated through the tree by using the tree policy
to select actions (Line 10) and using a noisy physics model

to forward propagate the state under the selected actions

(Line 11). After applying the physics model, the new state is

added to the belief state of the history (Line 14). The search

recurses through the tree, propagating a single state through

the noisy transition dynamics. Over time, the belief states

represented at the nodes of the tree grow to represent the

true belief distribution.

Once the search reaches a previously unvisited history, a

default policy is used to rollout the remainder of a simulation

and accumulate reward (Line 9). This reward is propagated

back through the tree to update the value function estimate

stored for each history.

A. Reward model

As stated in Sec.II, our goal is to generate paths that

maximize the probability of successful execution. We encode

4683

this goal in our reward model:

R(x, a) = 1G(x) (5)

Here the indicator function returns 1 if x ∈ XG.

B. Action set

MCTS-based planners search across a discrete action set.

The naive method for generating a discrete action set from

our continuous space U is to divide the space into partitions,

or bins, and select a single representative control from each

bin and create an action that applies this control for a fixed

duration: a = (u,Δt). These basic actions are context

agnostic: they ignore the goal of the planning instance.

We know contact is critical for goal achievement in rear-

rangement problems. We augment the action set to account

for this by generating specific contact actions aimed at main-

taining contact with objects important to goal achievement.

These contact actions are state dependent and must be

dynamically generated for each node, or history, in the tree.

We instantiate contact actions using the first state in the

estimated belief x ∈ B̂(h) for each history. A contact action

is generated by solving the two-point BVP in the robot’s

state space that moves the robot to a pose in contact with an

object based on the object’s pose in x. We create one contact
action for each object in x defined in the goal.

The result is a discrete action set Ah = Abasic ∪ Acont

for each history h composed of a set Abasic of basic actions

that move the robot without the explicit intent of creating

contact with objects and a set Acont of contact actions that

explicitly contact important objects in the scene.

C. Tree Policy

The tree policy is used to select actions, or edges, in the

UMCP tree to traverse. On the first visit to a given node

in the tree corresponding to history h, the method from the

previous section is used to generate a discrete set of actions

Ah. On subsequent visits, we follow the UCT algorithm [17]

and use UCB1 [22] to select a single action from this set to

traverse as follows:

at = argmax
a∈Ah

Q̂(h, a)

N(h ∪ {a}) + c

√
logN(h)

N(h ∪ {a}) (6)

where c > 0 is an exploration constant. Note that this

selection method requires all actions are tried at least once.

The use of such a method is ideal because it provides a

formal method for trading between exploration and exploita-

tion.

D. Default policy

Each time the search reaches a leaf in the tree, the default

policy is used to estimate the reward that will be obtained

if we follow a path that leads through this leaf. The most

common default policy is to randomly select a sequence of

actions to apply. For our rearrangement planning problem,

this policy will rarely be informative: most action sequences

fail to create and maintain the contact with objects that is

critical to goal achievement.

(a) (b) (c)

Fig. 4. An example of MCTS applied to rearrangement planning using the
planned default policy. (a) A tree policy is used to select initial actions. (b)
The default policy plans in the lower dimensional space containing only
objects important to goal achievement. (c) The resulting path is propagated
through the full space to generate a reward.

Instead, we define two informed default policies that are

capable of evaluating the potential to achieve the goal. The

first uses a model learned from user demonstrated trajectories

to generate a rollout. The second uses a heuristically guided

planner in a subspace of the full state space. In the following

sections we outline these policies.

Learned default policy
Our intuition is that we can use human judgment to learn

a good default policy. Our goal is to learn a mapping: ρ :
X → U from a state x ∈ X to a control u ∈ U from a

set of human demonstrations. We can use any method for

collecting these demonstrations and learning the mapping.

We discuss a specific choice in the experiments.

Once we have learned a mapping ρ, we can use it as a

default policy by creating a fixed length rollout. To do this

we repeatedly use ρ to generate a control and G to forward

propagate the control for a fixed duration Δt:

xt+1 = G(xt, (ρ(xt),Δt))

We compute the reward achieved by the rollout using the

final state of the rollout.

Planned default policy
The learned default policy attempts to generalize demonstra-

tions to solve an instance of rearrangement planning. In this

section we explore an alternative approach: we apply a state

space planner to quickly search for a solution to the specific

rearrangement problem.

We perform the search in the lower dimensional subspace

containing only the elements of the full state space that are

defined in the goal.

After generating a sequence of actions that solve the

problem in the lower dimensional subspace, the actions are

then forward simulated through the full state space using G
and reward is calculated from the final reached state. Fig.4

illustrates this method.

By reducing the dimensionality of the state space in

the default policy search, we allow for the possibility of

using fast planners or exact solvers that provide much more

information than random action sequences. We discuss a

specific example in the experiments.

E. Path extraction

We use our tree to create an anytime algorithm for

extracting paths. Upon request, a path π is extracted from the

4684

tree as follows. First, we extract πtree by repeatedly picking

the action at such that:

at = argmax
a∈Ah

Q̂(h, a)

Once a leaf is encountered, we query the belief represented

by the history B̂(h) to obtain an estimated probability of

success p̂πtree =
∑

x∈B̂(h) 1G(x). If this probability is lower

than the estimated probability of success of the best path

found so far, p̂π∗ , we randomly select a state from the belief

x ∈ B̂(h) and use the default policy to generate a path πdef

from x to the goal. If successful, all remaining samples in

B̂(h) are forward propagated through this path to get an

updated probability of success p̂π of the combined path π
formed from appending πdef to πtree. If p̂π > p̂π∗ the path

is returned. Otherwise, the previous best path π∗ is returned.

The use of a goal informed default policy means we can

often find path segments πdef that achieve the goal with

non-zero probability. Our insight is that these path segments

can be particularly useful when there is not enough planning

time to deeply grow the tree, i.e. p̂πtree
= 0.

V. EXPERIMENTS AND RESULTS

To test the capabilities of the UMCP algorithm, we task

our robot HERB [23] with pushing a box on a table to a

goal region of radius 0.1m using the 7-DOF right arm. We

test three hypotheses:

H.1 Using explicit contact actions allows the UMCP

planner to generate paths with higher probability than

a planner that uses a basic action set formed by

discretization of each dimension of the control space.

H.2 The UMCP planner using the goal informed
learned or planned default policy generates paths with

higher probability of success than the UMCP planner

with a random default policy.

H.3 The UMCP planner that uses contact actions and

the goal informed default policy is able to produce

paths that exhibit higher probability of success com-

pared to baseline state space planners.

H.1 tests the need for actions that explicitly try to create

contact with goal critical objects. H.2 verifies our intuition

that using a goal informed default policy will guide tree

growth better than a random default policy. Finally, H.3
verifies the need to track the evolution of uncertainty through

sequences of actions during planning.

In the following sections we detail our planning setup and

provide results for each hypothesis.

A. Test setup

We run each version of the UMCP planner 50 times

in simulation on a scene with only one movable object

(denoted low clutter in all results) and a scene with six

movable objects (denoted high clutter in all results). The

scenes are depicted in Fig.6-top. In each scene, we generate

Fig. 5. An example interface used to collect user demonstrated rearrange-
ment trajectories

the initial belief s0 by sampling noise into the initial pose

of each object from a Gaussian with distribution μ =
0,Σ1/2 = diag{2cm, 2cm, 0.1rad}. This distribution was

selected to reflect the actual distribution of noise from the

object detection system used on HERB. We allow the UMCP

planner to run for 300 s. We request and record a path every

15 s.

Following [12] we constrain the end-effector to move in

the xy-plane parallel to the table in order to create motions

likely to pushing objects. This allows us to define our control

space U as the set of feasible velocities for the end-effector.

We convert these end-effector velocities to full arm velocities

using the Jacobian psuedo-inverse:

q̇ = J†(q)u+ h(q)

where q is the current arm configuration, u is the end-effector

velocity and h : R7 → R
7 is a function that samples the

nullspace.

B. Learned default policy

We collect workspace trajectories from 97 users using

Amazon Mechananical Turk. To collect these trajectories, we

generate a set of seven scenes that require a robot to push

an object on a table to a goal region. Each user is asked

to solve each scene twice, for a total of 14 demonstrations

from each user. For each demonstration, we record and save

the sequence of state/action pairs, (xt, at) used to solve the

scene.

We provide users with an interface that allows them to

apply discrete actions using keyboard input. Fig.5 shows an

example interface. To simplify the user task, we render only

the end-effector of the robot. In the example shown, the user

must guide the robot hand to push the green box into the

green circle. The action corresponding to the keyboard input

from the user is pushed through a physics model to generate

an updated pose of the robot and objects.

We identify and extract a set of relevant features Φ of a

state x ∈ X . Example features are the number of objects

blocking a direct path to the goal or the distance to the

goal. Then, for each of the 112,928 state/action pairs (xi, ai)

4685

collected from users, we create feature vectors φi from state

xi labeled by the action ai to use as training data for a multi-

class classifier. We train a random forest classifier using the

scikit-learn python package [24]. This classifier serves as the

mapping ρ needed to perform rollouts.

C. Planned default policy
We use a weighted A* search [25] with w = 5.0 for our

planned default policy. The search uses the same discrete

action set used to build the UMCP tree, including the contact
actions critical to achieving success.

The search runs in the lower dimensional subspace con-

taining only the robot and the box the robot must push

to the goal. To guide the search, we compute the cost of

an action a as the distance in workspace the robot moves

during the action. Then we define an admissible heuristic,

h(x) = dcont(x) + dmove(x), where dcont is the minimum

workspace distance the robot must move to make contact

with the box and dmove is the minimum workspace distance

the box must move to achieve the goal.
The planner is allowed 1 s to search. The result of the

search is a sequence of actions {a1, . . . , ak} that describe

robot motions to achieve the goal in the lower dimensional

subspace. The action sequence is then applied in the full state

space to check for validity and compute reward.

D. Baseline planners
We compare the estimated success rate of the paths

generated by the UMCP algorithm to an anytime version of

the B-RRT from [26]. Briefly, the B-RRT planner generates

rearrangement plans by using a Rapidly-exploring Random

Tree (RRT) [27] to search through state space. During

tree growth, each action is evaluated for its robustness to

uncertainties and this evaluation is used to bias tree growth–

robust actions are more likely to be selected for extensions.

Importantly, the planner does not track uncertainty through

sequences of actions. Instead it makes local decisions about

the robustness of each action. We test against two versions

of the algorithm. First, we set b = 0.0 to eliminate all bias.

This reduces the planner to a search over state space that

does not consider uncertainty. Second, we set b = 2.0. This

biases the search to prefer uncertainty reducing actions.
To create an anytime version of the planner, we make as

many repeated calls to the planner as possible within 300 s.

When a call completes we perform a set of 100 noisy rollouts

on the resulting control sequence π to generate an estimate

p̂π of the probability of success. We generate these noisy

rollouts using the same noise parameters used to create the

initial belief s0 in the UMCP planner. We keep π only if

it has higher estimated success probability than all previous

paths generated by the planner. This is a similar algorithm to

the AMD-RRT described in [26] though we use probability

of success rather than performance of the path under a

divergence metric.

E. Effect of contact actions
We compare the UMCP planner with contact actions

to the UMCP planner with only the basic actions formed

0 100 200 300

Planning Time (s)

0

20

40

60

80

100

P
ro
b
a
b
il
it
y
o
f

S
u
cc
es
s
(p̂
π
∗
)

0 100 200 300

Planning Time (s)

0

20

40

60

80

100

P
ro
b
a
b
il
it
y
o
f

S
u
cc
es
s
(p̂
π
∗
)

Fig. 6. Using contact actions () allows for finding better paths sooner
than using only basic action () on both a low clutter scene (left) and a
high clutter scene (right).

from discretization of the control space. Both version of the

planner use the planned default policy.

Fig.6 compares the probability of success p̂π∗ of the path

returned by the planner at each time step. In low clutter

scenes, the usefulness of the contact actions is limited (Fig.6-

left). The UMCP planner with the contact actions finds paths

only slightly faster. This is due to the use of the planned
default policy to complete paths extracted from the tree.

Examination of the generated paths shows that the default

policy is heavily relied upon to generate the contact needed

for success when using only the basic action set.

The benefit of these actions is much more prevalent in

high clutter scenes (Fig.6-right). Here, the planned default

policy fails to be applied without first moving either the bowl

or bottle. The basic action set is not rich enough to create

useful contact. In contrast, the contact action easily moves

both objects out of the way in order to make contact with

the box. Then the planned default policy can be applied to

achieve the goal. Fig.9 depicts an example path found by the

UMCP planner with contact actions.

These results support H.1: Using explicit contact actions

allows the planner to generate paths with higher probability

than a planner that uses a basic action set formed by

discretization of each dimension of the control space.

F. Effect of default policy

1) Low clutter scene: Next we examine the effect of

our choice of default policy. Fig.7-left shows the estimated

probability of success of the path output by the UMCP

planner, p̂π∗ , as a function of planning time for a low clutter

scene. As can be seen, the use of the planned default policy

allows us to generate path with high probability of success

faster than the planner with the random default policy. This is

despite the planned default policy taking almost 10x longer

to compute than the random default policy (mean time 0.5 s

and 0.06 s respectively). The learned default policy also

outperforms the random default policy on this scene, finding

solutions nearly as good as the planned policy.

Perhaps more interesting are the qualitative aspects of the

results. Fig.2 shows an example path at t = 45 s for the

4686

0 100 200 300

Planning Time (s)

0

20

40

60

80

100
P
ro
b
a
b
il
it
y
o
f

S
u
cc
es
s
(p̂
π
∗
)

0 100 200 300

Planning Time (s)

0

20

40

60

80

100

P
ro
b
a
b
il
it
y
o
f

S
u
cc
es
s
(p̂
π
∗
)

Fig. 7. Use of goal informed default policies such as the planned () and
learned () result in overall better paths when compared to using a policy
that randomly selects actions () for both low clutter (left) scenes and high
clutter scenes (right).

UMCP planner with each version of the default policy. The

left column shows the portion of the path πtree extracted

from the tree. The right column shows the portion of the

path πdef extracted using the default policy.

The tree paths for the planned and random default

policies are similar, though the UMCP planner that uses the

planned default policy finds a more robust sequence (Fig.2-

top). This is because the default policy is more informative

and allows better estimates of Q̂(h, a) early in the tree.

The main difference in the two results comes from the

portion of the path extracted using the default policy. The

planned default policy maintains contact with the goal object

and eventually moves the full belief either into or near the

goal region. The random default policy loses contact with

the object quickly and fails to move any of the belief to

the goal. Interestingly, the learned default policy is fast and

informative enough that the tree is able to grow almost all

the way to the goal within the 45 s.

2) High clutter scene: Fig.7-right shows results for a high

clutter scene. Again, the planned default policy performs

well, returning paths with higher probability of success

than the planner using the random policy. Interestingly, the

learned default policy struggles to find solutions to this scene

and performs worse than the random policy. This scene is

difficult. The bottle blocks direct access of the box. It must

be moved or avoided. The random policy fails to find any

valid sequences of actions that achieve the goal for most of

the search. As a result, no reward is propagated through the

tree, and the tree fails to grow deep. Similarly, the learned
policy fails to find good solutions, resulting again in a tree

with almost no reward. Conversely, the planned policy is

able to explicitly search for and find valid solutions for this
problem. As a result, the tree contains sufficient reward to

properly guide the search and find robust paths. Fig.9 depicts

a solution found by the planner.common failure by

Our results partially support H.2: The goal informed
planned default policy is useful in low and high-clutter

scenes.

G. Comparison to baseline planners

Finally, we compare the UMCP planner using contact
actions in the action set and the planned rollout policy to

the baseline planners described in Sec.V-D. Fig.8 shows the

estimated probability of success p̂π∗ of each planner as a

function of planning time.

0 100 200 300

Planning Time (s)

0

20

40

60

80

100

P
ro
b
a
b
il
it
y
o
f

S
u
cc
es
s
(p̂
π
∗
)

0 100 200 300

Planning Time (s)

0

20

40

60

80

100

P
ro
b
a
b
il
it
y
o
f

S
u
cc
es
s
(p̂
π
∗
)

Fig. 8. On simple scenes (left), the B-RRT with bias b = 2.0 () is able
to find better paths quickly. The UMCP algorithm () is able to find better
paths more quickly than the B-RRT with no bias (b = 0.0) (). On difficult
scenes (right), the UMCP outperforms both instances of the B-RRT.

For the low clutter scene both versions of the B-RRT are

easily able to find solutions (Fig.8-left). The B-RRT with

b = 2.0 performs exceptionally well here because there exists

a solution comprised almost entirely of uncertainty reducing,

or low divergence, actions. These solutions are also found by

the UMCP planner (Fig.2-top).
The advantage of the UMCP algorithm can be seen for the

high clutter scene (Fig.8-right). Here, the B-RRT performs

poorly because the actions that reduce uncertainty in the box

increase uncertainty in the pose of other objects, such as the

bottle or bowl (Fig.9). Such actions perform poorly under

the divergence metrics used to bias the B-RRT. As a result,

the B-RRT is slow to explore and find solutions. The UMCP

allows for increasing uncertainty along dimensions that are

not important for goal achievement. This allows the planner

to find solutions more easily.
Overall, for planning time budgets greater than 30 s the

UMCP algorithm finds solutions as good as the solutions

found by the B-RRT algorithms in the low clutter scene. The

UMCP algorithm outperforms both baseline planners in the

high clutter scene. This supports H.3: Our UMCP planner

that uses contact actions and the planned default policy

is able to produce paths that exhibit higher probability of

success compared to anytime versions of baseline planners.

VI. DISCUSSION

In this work we propose an Unobservable Monte Carlo

Planner. This algorithm extends MCTS to the unobservable

domain. We show that by carefully selecting an informative

default policy and an action set capable of generating contact

with important objects in the scene, we are able to plan

solutions that are robust to uncertainty. The result is an

anytime algorithm that quickly returns good solutions in the

example scenarios.
Our experiments show that the planned default policy

performed exceptionally well on the rearrangement tasks we

consider. We concede that this task is particularly well suited

for the planned default policy: only a single movable object

is described in the goal, making the reduced state space

containing only this object easy to search using a heuristic

planner. More complicated rearrangement tasks that contain

several objects defined in the goal, such as those in [28],

may benefit less from this approach as the lower dimensional

planning problem will be quite difficult to solve. We believe

the learned default policy, trained with a sufficiently large

and representative data set, may be more effective in these

4687

(a) Tree policy (b) Planned rollout policy

Fig. 9. In high clutter scenes, the UMCP algorithm with contact actions performs well. The algorithm allows for increasing uncertainty in the pose of
the bowl, as long as it does not inhibit goal achievement.

tasks. To generate such a data set, we can supplement

the human demonstrations with synthetic demonstrations

generated from random simulations.

This algorithm represents a step toward planning rear-

rangement tasks using nonprehensile manipulation in belief

space. We believe there are three promising directions that

may improve the quality of the planner. First, we can improve

the reward function. The binary nature of our current reward

function makes it difficult to evaluate incremental progress

during the search. Including additional information such

as contact between manipulator and objects may allow for

identifying promising search directions earlier. Second, we

can expand the set of actions considered by the planner

by using gradient free methods to make local adjustments

to the action set [29]. Finally, we believe this algorithm

could be extended to closed-loop planning by incorporating

feedback as observations in a full POMDP formulation.

Careful thought must be applied to allow us to maintain

tractability under the exponential increase in histories due

to the introduction of observations. However, recent work in

using contact sensing [30] during push-grasping shows this

may be possible.

REFERENCES

[1] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,”
in Robotics: Science and Systems, 2011.

[2] D. Nieuwenhuisen, A. Stappen., and M. Overmars, “An effective
framework for path planning amidst movable obstacles,” in Workshop
on the Algorithmic Foundations of Robotics, 2008.

[3] J. Scholz and M. Stilman, “Combining motion planning and opti-
mization for flexible robot manipulation,” in IEEE-RAS International
Conference on Humanoid Robots, 2010.

[4] M. Stilman. and J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” in IEEE-RAS Interna-
tional Conference on Humanoid Robots, 2004.

[5] J. van den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha,
“Path planning among movable obstacles: a probabilistically complete
approach,” in Workshop on the Algorithmic Foundations of Robotics,
2008.

[6] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Manip-
ulation with multiple action types,” in International Symposium on
Experimental Robotics, 2012.

[7] L. Chang, S. Srinivasa, and N. Pollard, “Planning pre-grasp manipula-
tion for transport tasks,” in IEEE International Conference on Robotics
and Automation, 2010.

[8] J. King, M. Klingensmith, C. Dellin, M. Dogar, P. Velagapudi,
N. Pollard, and S. Srinivasa, “Pregrasp manipulation as trajectory
optimization,” in Robotics: Science and Systems, 2013.

[9] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning
for object placement on cluttered table surfaces,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2011.

[10] M. Dogar, K. Hsiao, M. Ciocarlie, and S. Srinivasa, “Physics-based
grasp planning through clutter,” in Robotics: Science and Systems,
2012.

[11] M. Gupta and G. Sukhatme, “Using manipulation primitives for brick
sorting in clutter,” in IEEE International Conference on Robotics and
Automation, 2012.

[12] J. King, J. Haustein, S. Srinivasa, and T. Asfour, “Nonprehensile
whole arm rearrangement planning on physics manifolds,” in IEEE
International Conference on Robotics and Automation, 2015.

[13] M. Dogar and S. Srinivasa, “Push-grasping with dexterous hands:
Mechanics and a method,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010.

[14] J. van den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” in Robotics: Science and Systems, 2010.

[15] N. Hyafil and F. Bacchus, “Conformant probabilistic planning via
CSPs,” in International Conference on Automated Planning and
Scheduling, 2003.

[16] B. Bonet and H. Geffner, “Labeled RTDP: Improving the convergence
of real-time dynamic programming,” in International Conference on
Automated Planning and Scheduling, 2003.

[17] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in European Conference on Machine Learning, 2006.

[18] J. Tsitsiklis, “On the convergence of optimistic policy iteration,”
Journal of Machine Learning Research, vol. 3, pp. 59–72, 2002.

[19] D. Silver and J. Veness, “Monte-carlo planning in large POMDPs,” in
Conference on Neural Information Processing Systems, 2010.

[20] S. Thrun, “Monte Carlo POMDPs,” in Conference on Neural Infor-
mation Processing Systems, 2000.

[21] G.-B. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-Carlo Tree
Search: A new framework for game AI,” in Artificial Intelligence
Interactive Digital Entertainment Conference, 2008.

[22] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[23] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet,
R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. Weghe,
“HERB: A Home Exploring Robotic Butler,” Autonomous Robots,
vol. 28, no. 1, pp. 5–20, 2010.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[25] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artificial
Intelligence, 1970.

[26] A. Johnson, J. King, and S. Srinivasa, “Convergent planning,” IEEE
Robotics and Automation Letters, vol. 1, no. 2, pp. 1044–1051, 2016.

[27] J. Kuffner and S. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in IEEE International Conference on
Robotics and Automation, 2000.

[28] A. Krontiris and K. Bekris, “Dealing with difficult instances of object
rearrangement,” in Robotics: Science and Systems, 2015.

[29] K. Seiler, H. Kurniawati, and S. Singh, “An online and approximate
solver for POMDPs with continuous action space,” in IEEE Interna-
tional Conference on Robotics and Automation, 2015.

[30] M. Koval, N. Pollard, and S. Srinivasa, “Pre- and post-contact policy
decomposition for planar contact manipulation under uncertainty,” in
Robotics: Science and Systems, 2014.

4688

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

