
Toward a deeper understanding of
motion alternatives via an equivalence
relation on local paths

The International Journal of
Robotics Research
31(2) 167–186
© The Author(s) 2011
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364911430418
ijr.sagepub.com

Ross A Knepper1, Siddhartha S Srinivasa2 and Matthew T Mason2

Abstract
Many problems in robot motion planning involve collision testing a set of local paths. In this paper we propose a novel
solution to this problem by exploiting the structure of paths and the outcome of previous collision tests. Our approach
circumvents expensive collision tests on a given path by detecting that the entire geometry of the path has effectively
already been tested on a combination of other paths. We define a homotopy-like equivalence relation among local paths
to detect this condition, and we provide algorithms that (1) classify paths based on equivalence, and (2) circumvent
collision testing on up to 90% of them. We then prove both correctness and completeness of these algorithms and provide
experimental results demonstrating a performance increase up to 300% in the rate of path tests. Additionally, we apply
our equivalence relation to the navigation problem in a planning algorithm that takes advantage of information gained
from equivalence relationships among collision-free paths. Finally, we explore applications of path equivalence to several
other mechanisms, including kinematic chains and medical steerable needles.

Keywords
AI reasoning methods, cognitive robotics, mobile and distributed robotics, nonholonomic motion planning, path planning
for manipulators, SLAM.

1. Introduction

Planning bounded-curvature paths for mobile robots is an
NP-hard problem (Reif and Wang, 1998). Many nonholo-
nomic mobile robots thus rely on hierarchical planning
architectures (Kelly et al., 2006; Allen et al., 2007; Knep-
per and Mason, 2008; Marder-Eppstein et al., 2010), which
decompose the problem into at least two layers: a slow
global planner and fast local planner (Figure 1). We focus
on the local planner (Algorithm 1 and Algorithm 2), which
iterates in a tight loop searching through a set of paths and
selecting the best path among them for execution. Within
each loop, the planner tests many paths before making
an informed decision. The bottleneck in path testing is
collision checking (Sánchez and Latombe, 2002). In this
paper we introduce a novel approach that delivers a signif-
icant increase in path set collision-testing performance by
exploiting the fundamental geometric structure of paths.

We introduce an equivalence relation intuitively resem-
bling the topological notion of homotopy. Two paths
are path homotopic if a continuous, collision-free defor-
mation with fixed start and end points exists between
them (Munkres, 2000). Like any path equivalence rela-
tion, homotopy partitions paths into equivalence classes.

Different homotopy classes make fundamentally different
choices about their routes among obstacles. However, two
constraints imposed by mobile robots translate poorly into
homotopy theory: limited sensing and constrained action.

The robot may lack a complete workspace map, which
it must instead construct incrementally from sensor data.
Since robot perception is limited by range and occlu-
sion, a robot’s understanding of obstacles blocking its
movement evolves as it moves. A variety of sensor-
based planning algorithms have been developed to han-
dle such partial information. Obstacle avoidance methods,
such as potential fields (Khatib, 1985), vector field his-
tograms (Borenstein and Koren, 1991), and the curvature-
velocity method (Simmons, 1996), are purely reactive. The
bug algorithm (Lumelsky and Stepanov, 1987), which gen-
erates a path to the goal using only a contact sensor,

1 Computer Science and Artificial Intelligence Lab, Massachusetts Insti-
tute of Technology, Cambridge, USA
2 Robotics Institute, Carnegie Mellon University, Pittsurgh, USA

Corresponding author:
Ross A. Knepper, Computer Science and Artificial Intelligence Lab, Mas-
sachusetts Institute of Technology, 32 Vasser St, Cambridge, MA 02139,
USA.
Email: rak@csail.mit.edu

http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364911430418&domain=pdf&date_stamp=2011-12-21

168 The International Journal of Robotics Research 31(2)

Fig. 1. An example hierarchical planning scenario. The local
planner’s path set expands from the robot, at center, and feeds
commands to the robot based on the best path that avoids obstacles
(black squares). The chosen local path and corresponding global
path (lower left) combine to form a proposed path to the goal.

is complete in two-dimensional spaces. A planner using
the hierarchical generalized Voronoi graph, a roadmap
with global line-of-sight accessibility (Choset and Burdick,
1995), achieves completeness in higher dimensions using
range readings of the environment. Yu and Gupta (2000)
propose a planner that iteratively constructs a probabilis-
tic roadmap in response to partial sensed information about
the world. Actions are selected on the basis of maximizing
information gain for future plan steps. Our local planner
resembles these algorithms in that it reacts to local obsta-
cles while receiving global guidance about the direction to
the goal.

If a robot is tasked to perform long-range navigation, then
it must plan a path through unsensed regions. A low-fidelity
global planner (i.e. one ignoring constraints) generates this
path because we prefer to avoid significant investment in
this plan, which will likely be invalidated later. Path homo-
topy, in the strictest sense, requires global knowledge of
obstacles because homotopy-equivalent paths must connect
fixed start and goal points.

Relaxing the endpoint requirement of homotopy avoids
reasoning about the existence of far-away, unsensed obsta-
cles. In naively relaxing a fixed endpoint, our paths might
be permitted to freely deform around obstacles, making
all paths equivalent. To restore meaningful equivalence
classes, we propose an alternate constraint based on path
shape. Such path shape constraints stem from the nonholo-
nomic motion constraints inherent to many mobile robots.
Laumond (1986) first highlighted the importance of non-
holonomic constraints and showed that feasible paths exist
for a mobile robot with such constraints. Barraquand and
Latombe (1993) created a grid-based planner that innately
captures these constraints. LaValle and Kuffner (2001) pro-
posed the first planner to incorporate both kinodynamic
constraints and random sampling. In contrast to nonholo-
nomic constraints, true homotopy forbids restrictions on
path shape; two paths are equivalent if any path deformation
exists between them. By restricting our paths to bounded

Fig. 2. Left: Paths from a few distinct homotopy classes between
the robot and the goal. The distinctions between some classes
require information that the robot has not yet sensed (the gray
area is out of range or occluded). Middle: With paths restricted
to the sensed area, they may freely deform around visible obsta-
cles. Right: After restricting path shape to conform to motion
constraints, we get a handful of equivalence classes that are
immediately applicable to the robot.

curvature, we represent only feasible motions while limit-
ing paths’ ability to deform around obstacles. The resulting
set of path equivalence classes is of immediate importance
to the planner (Figure 2). The number of choices repre-
sented by these local equivalence classes relates to Farber’s
topological complexity of motion planning (Farber, 2003).

Various planners have employed equivalence classes to
reduce the size of the search space. In task planning, recent
work has shown that equivalence classes of actions can
be used to eliminate redundant search (Gardiol and Kael-
bling, 2007). In motion planning, path equivalence often
employs homotopy. A recent paper by Bhattacharya et al.
(2010) provides a technique based on complex analysis
for detecting homotopic equivalence among paths in 2D.
Two papers employing equivalence classes to build proba-
bilistic roadmaps (Kavraki et al., 1996) are Schmitzberger
et al. (2002) and Jaillet and Simeon (2008). The latter paper
proposes the visibility deformation, a departure from true
homotopic equivalence that restricts continuous deforma-
tion to line-of-sight visibility between paths. We propose
here a different variation on homotopy. Not only do we
restrict continuous deformation between paths, but we also
fix path length to create a purely local path equivalence
relation.

Our key insights are twofold: first, that this local path
equivalence reveals shared outcomes among a set of paths;
and second, that this relation enables a planner to reason
collectively about such path sets instead of considering each
path in isolation. These insights are based on the observa-
tion that two equivalent neighboring paths represent swept
volumes of the robot that cover some common ground in the
workspace. Between them lies a continuum of paths whose
swept volumes are covered by the two bounding paths.

This paper makes several contributions relating to local
path equivalence. We develop the mathematical foundations
to detect equivalence relations among all local paths based
on a finite precomputed path set. We utilize these tools
to devise an efficient algorithm for detecting equivalence
among a discretely sampled path set. By mapping local
equivalence of discrete paths to the underlying continuum,
we give an algorithm for implicitly collision testing local

Knepper et al. 169

paths, thus circumventing the usual expensive test. Further-
more, we propose a navigation algorithm for mobile robots
that utilizes local path equivalence to improve overall exe-
cution success rates by understanding route alternatives and
selecting routes most likely to permit safe execution.

1.1. Outline

The remainder of the paper is organized as follows. We
provide an implementation of the basic classification algo-
rithm in Section 2 and present the fast collision testing
technique. Next, Section 3 explores the implications of
local path equivalence for improving mobile robot naviga-
tion performance. Section 4 then delves into the theoretical
foundations of our path equivalence relation. Section 5 pro-
vides some experimental results. Finally, Section 6 briefly
explores several promising applications to other robotic
systems, including kinematic chains such as manipulator
arms, and steerable needles used in medical procedures.

2. Path classification and safety algorithms

In this section we present two new algorithms for path clas-
sification and implicit path collision testing. We also bor-
row a path set generation routine from prior work. All of
the algorithms presented here run in polynomial time with
respect to path count. Throughout this paper, we use p to
refer to a path and P to refer to a set of paths.

Definition 1 (path space). The path space is a metric space
(P , μ) in which the metric μ is used to measure the distance
between a pair of paths in P . Paths may vary in shape and
length.

2.1. Path set generation

We use the greedy path set construction technique of Green
and Kelly (2007). The algorithm iteratively builds a path
set sequence {P1,P2, . . . ,PN } by drawing paths from a
densely sampled source path set, PN ⊂ X . X , the contin-
uum path space, is the set of all output paths corresponding
to all possible control inputs. This set is never explicitly
represented.

Instead, we compute the set PN , which can be created
for any continuous system by finely discretizing the input
parameters and varying them in combination. The requi-
site granularity of input discretization depends on charac-
teristics of the particular system’s mapping between input
parameters and output paths. Note that in the construction
of path set PN , no care need be given to uniformity of
sampling among path shapes; with sufficient initial density,
the Green–Kelly algorithm will provide approximate uni-
formity (based on some metric μ) at a range of sampling
resolutions.

At step i, the Green–Kelly algorithm selects the path
p ∈ PN that minimizes the dispersion of Pi = Pi−1 ∪ {p}.
Borrowing from Niederreiter (1992):

Algorithm 1 Local_Planner_Algorithm(w, x, h, P)

Input: w – a costmap object;
x – initial state;
h – a heuristic function for selecting a path to execute;
P – a fixed set of paths

Output: Moves the robot to the goal if possible
1: while not at goal and time not expired do
2: Pfree ← Test_All_Paths(w, x,P)
3: j← h.Best_Path(x,Pfree)
4: Execute_Path_On_Robot(j)
5: x← Predict_Next_State(x, j)
6: end while

Algorithm 2 Pfree ←Test_All_Paths(w, x, P)

Input: w – a costmap object;
P – a fixed set of paths

Output: Pfree, the set of paths that passed collision test
1: Pfree ← ∅
2: while time not expired and untested paths remain do
3: p← Get_Next_Path(P)
4: collision← w.Test_Path(x, p) // collision is boolean
5: if not collision then
6: Pfree ← Pfree ∪ {p} // non-colliding path set
7: end if
8: end while
9: return Pfree

Definition 2 (dispersion). Given a bounded metric space
(X , μ) and a set P = {x1, . . . , xn} ∈ X , the dispersion of
P in X is defined by

δ(P ,X)= sup
x∈X

min
p∈P

μ(x, p) . (1)

The dispersion of P in X equals the radius of the biggest
open ball in X containing no points in P . By minimiz-
ing dispersion, we ensure that there are no large voids in
path space. Thus, dispersion reveals the quality of P as an
“approximation” of X because it guarantees that for any
x ∈ X , there is some point p ∈ P such that μ(x, p)≤
δ(P ,X). Note that all paths in X are of fixed length and
share a start state. This condition is sufficient to assure that
X is bounded for a wide variety of path metrics.

The Green–Kelly algorithm generates a sequence of path
sets Pi, for i ∈ {1, . . . , N}, that has monotonically decreas-
ing dispersion. In seeking a path to execute, the local plan-
ner algorithm (Algorithm 1) searches paths in this order,
thus permitting early termination while ensuring that a low-
dispersion set of paths is collision tested. Note that although
the source set PN is of finite size—providing a lower bound
on dispersion at runtime—it can be chosen with arbitrarily
low dispersion in X a priori.

170 The International Journal of Robotics Research 31(2)

Fig. 3. A simple path set, in which obstacles (black) eliminate
colliding paths. The collision-free path set has three equivalence
classes (red, green, and blue). In the corresponding graph rep-
resentation, at right, adjacent nodes represent proximal paths.
Connected components indicate equivalence classes of paths.

2.2. Path classification

We next present Algorithm 3, which classifies collision-free
members of a path set. The Hausdorff metric is central to the
algorithm. Intuitively, this metric returns the largest amount
of separation between two paths in the workspace. From
Munkres (2000):

μH(pi, pj)= inf
ε
{pi ⊂(pj)ε and pj ⊂(pi)ε }, (2)

where (p)r denotes dilation of p by r: {t ∈ R
2 : ‖tp− t‖L2 ≤

r for some tp ∈ p}. Note that μH satisfies all properties of a
metric (Henrikson, 1999). We similarly define a normalized
Hausdorff metric as

μH(pi, pj, d)= inf
ε
{pi ⊂(pj)εd and pj ⊂(pi)εd }. (3)

These two Hausdorff metric notations are equivalent for
now, but we exploit the normalized format in Section 6,
where we replace the constant d with a function of path
length. For our fixed path set generated by Green–Kelly and
a given d, we precompute each pairwise path metric value of
(3) and store them in a lookup table for rapid online access.

Algorithm 3 performs path classification on a set of paths
that have already tested collision-free at runtime. We form
an equivalence graph G = (V , E) in which node vi ∈ V
corresponds to path pi. Edge eij ∈ E exists, joining nodes vi

and vj, when this relation holds:

μH(pi, pj, d)≤ 1, (4)

where d is the diameter of the robot. This condition is true
when two paths are separated by at most one robot diameter.
Taking the transitive closure of this relation, two paths pa

and pb are equivalent if nodes va and vb are in the same
connected component of G (Figure 3).

In effect, this algorithm constructs a probabilistic
roadmap (PRM) in the path space instead of the conven-
tional configuration space. A query into this PRM tells
whether two paths are equivalent. As with any PRM, a

Algorithm 3 D←Equivalence_Classes(Pfree, d)

Input: Pfree – a set of safe, appropriate paths; d – the
diameter of the robot

Output: D – a partition of Pfree into equivalence classes (a
set of path sets)

1: Let G =(V , E)←(∅,∅)
2: D← ∅ // Partition of paths into classes (represented

by a set of sets)
3: for all pi ∈ Pfree do // This loop discovers adjacency
4: V .add(pi) // Add a graph node corresponding to

path pi

5: for all pj ∈ V \ {pi} do
6: if μH(pi, pj, d)≤ 1 then
7: E.add(i, j) // Connect nodes i and j with an

unweighted edge
8: end if
9: end for

10: end for
11: S ← Pfree // Unclassified paths
12: while S 	= ∅ do // This loop finds the connected

components
13: C ← ∅ // Next connected component
14: p← a member of S
15: L← {p} // List of nodes to be expanded in this

class
16: while L 	= ∅ do
17: p← a member of L
18: C ← C ∪ {p} // Commit p to class
19: S ← S \ {p}
20: L←(L ∪ V .neighbors(p))∩S
21: end while
22: D← D ∪ {C}
23: end while
24: return D

query is performed by adding two new graph nodes vs

and vg corresponding to the two paths. We attempt to join
these nodes to other nodes in the graph based on (4).
The existence of a path connecting vs to vg indicates path
equivalence.

2.3. Implicit path safety test

There is an incessant need in motion planning to accelerate
collision testing, which may take up to 99% of total CPU
time (Sánchez and Latombe, 2002). During collision test-
ing, the planner must verify that a given swath is free of
obstacles.

Definition 3 (swath). A swath is the workspace area of
ground or volume of space swept out as the robot traverses
a path.

Definition 4 (safe). A path is safe if its swath contains no
obstacles.

Knepper et al. 171

Algorithm 4 b←Test_Path_Implicit(p, w, S, d)

Input: p is a path to be tested;
w is a costmap object; // used as a backup when path
cannot be implicitly tested
S is the set of safe paths found so far;
d is the diameter of the robot

Output: b – boolean indicating whether path is safe
1: for all pi, pj ∈ S such that μH(pi, pj, d)≤ 1 do
2: if p.Is_Between(pi, pj) then // p’s swath has been

tested previously
3: sf ← p.Get_End_Point()
4: collision← w.Test_Point(sf) // endpoint may

not be covered by swaths
5: return collision
6: end if
7: end for
8: return w.Test_Path(p) // Fall back to explicit path

test

In testing many swaths of a robot passing through space,
most planners effectively test the free workspace many
times by testing overlapping swaths. We may test a path
implicitly with significant computational savings by recall-
ing recent collision testing outcomes and circumventing
new collision tests whenever possible. We formalize the
idea in Algorithm 4, which is designed to be invoked from
Algorithm 2, line 4 in lieu of the standard path test routine.

The implicit collision test condition resembles the neigh-
bor condition (4) used by Algorithm 3, but it has an addi-
tional Is_Between check, which indicates that the swath of
the path under test is fully covered by two collision-free
neighboring swaths. The betweenness trait can be precom-
puted and stored in a lookup table. Given a set of safe
paths, we can quickly discover whether any pair covers the
path under test. By precomputing eligible paths in the path
set and efficiently tracking collision-free paths, the planner
promises to realize significant performance gains, produc-
ing several times as many paths per second as conventional
collision test algorithms.

3. Route selection

Thus far, we have shown that local path equivalence can
produce significantly more collision-free paths per unit
time than traditional collision testing. However, an earlier
result (Knepper and Mason, 2008) found surprisingly that
if a planner is given additional safe paths, its performance
could actually decline. Given a coarsely sampled path set C
and a densely sampled path set D, we believe this effect is
due to the fact that D is expected to contain a more optimal
path than C that approaches closer to obstacles. In particu-
lar, D is likely to find risky narrow corridors that C might
miss entirely. Therefore, we must establish that the addi-
tional safe paths can in fact be put to use in increasing

navigation performance. We use path equivalence to help
achieve this goal.

Since the local planner has a limited horizon, the result-
ing planned route is a concatenation of paths from the local
and global planners. Only the local paths are feasible to exe-
cute directly on the robot, so the local planner must replan at
regular intervals to allow continued progress. Thus, Algo-
rithm 1 outputs a sequence of paths, the concatenation of
which forms the true route. At the end of each replan cycle,
the planner executes the beginning of the route representing
the least cost to the goal, a heuristic known as Best_Path.
Using this heuristic, traditional hierarchical planners pro-
duce strongly goal-directed behavior that comes with two
drawbacks: temporal incoherence and excessive obstacle
proximity.

3.1. The temporal incoherence problem

Temporal incoherence occurs because Best_Path does not
generate consistent behavior between replan cycles, mean-
ing that there is no deliberate process to maintain cer-
tain decisions throughout navigation. Often, in hierarchical
planning (Kelly et al., 2006; Allen et al., 2007), the ultimate
route executed by the local planner algorithm is an emergent
behavior because the planner lacks any continuity of intent
between consecutive replan cycles. We propose local path
equivalence as a means of representing such continuity. In
choosing a sequence of local paths, local planners implicitly
also select a sequence of equivalence classes. This obser-
vation provides another perspective in which to view local
path equivalence: based on information available to the
local planner within a given replan cycle, the planned routes
of all equivalent paths are homotopic. We propose a new
algorithm to improve navigation performance by explicitly
considering continuity within each replan cycle.

In general, we would like each replan cycle to select a
new path that closely resembles the previous path, but such
is not always the case. In prior work (Knepper and Mason,
2009), we proposed increasing the chance of such an out-
come with the Best_Path heuristic by preserving the unex-
ecuted remainder of the previous path as a continuation,
which is considered along with the ordinary path set within
subsequent cycles. Even so, on some occasions, consecutive
replan cycles may switch equivalence classes, thus select-
ing a new planned route. Best_Path does not distinguish
between classes, so such switches may happen arbitrarily
often. Frequent switching is typically associated with per-
ception noise. In especially noisy systems, or where two
planned routes are about equally costly, the planner may
rapidly alternate between routes, thus effectively follow-
ing an unplanned and undesirable path directly toward the
obstacle separating the two routes.

3.2. The obstacle proximity problem

Obstacle proximity, the second drawback incurred by
Best_Path, risks the safety of the robot in cases of outside

172 The International Journal of Robotics Research 31(2)

Fig. 4. A navigating robot faces both discrete decisions (left)
about which corridor to follow and continuous optimization (right)
over where in the corridor to drive. A planner or controller should
be able to consider these choices separately.

disturbance or internal prediction error. From a planning
perspective, nearby obstacles also substantially reduce the
quantity and diversity of safe paths available in subsequent
replan cycles.

Two related approaches to the problem of decreasing
robot proximity to obstacles have been in use for many
years. The first approach involves “growing” the obstacles
using a hard buffer (Buhmann et al., 1995), which runs
the risk of closing off narrow openings. This problem is
partially ameliorated by making the obstacle growth radius
vary in proportion to robot speed.

The second approach involves placing a soft buffer
around each obstacle in the form of a gradient of elevated
cost (Thorpe, 1984), such that cost varies inversely with
obstacle proximity. Although this approach does not elim-
inate options from consideration, it is difficult to predict
how a given cost function will affect decisions between
corridors.

The drawback of both approaches is that they couple two
distinct decisions: which route (equivalence class) to fol-
low, and how to proceed (which path in the class) along that
route. These decisions are of qualitatively different char-
acter because continual fine-tuning is possible throughout
the traverse of a corridor, but the choice of corridor to be
traversed requires a discrete decision that soon becomes
irreversible (Figure 4).

We introduce a new multi-stage path selection algorithm
that separates these two decisions, thus allowing them to
be weighed individually and traded off against one another.
This process in turn improves planning and control flex-
ibility, increasing continuity of plans, and retaining goal-
directedness. Through application of a set of rules based
on path equivalence (applied both within and across replan
time steps), the algorithm selects paths for execution that

guide the robot sufficiently far from obstacles while moving
consistently toward the goal.

3.3. Logical succession path relation

Having already demonstrated the value of path equivalence
in a single replan cycle, we now introduce a relation on
path equivalence classes to detect logical succession across
multiple replan cycles.

Definition 5 (logical succession). Logical succession is a
strict partial ordering among equivalence classes A � B
such that some paths pA ∈ A and pB ∈ B exist for which
μH(pA, pB, d)≤ 1 and A was generated in an earlier replan
time step than B.

This definition establishes that two paths covering largely
the same terrain but produced by different replan cycles can
be said to follow the same route. The definition assumes a
small time increment between replan cycles, such that little
ground is covered in the interim. For larger steps, the defi-
nition would instead need to compare the end of pA to the
start of pB. Of course, the pairwise logical succession prop-
erty can be precomputed for our fixed path set in order to
optimize performance.

In considering a new path for execution, logical succes-
sion provides a powerful tool for a planner to distinguish
between paths that represent major and minor alterations
to the prior plan. Suppose the planner just executed path
pi at time step t − 1. We may initially choose to con-
sider at time t only those paths pj such that [pi] � [pj],
where [p] describes the equivalence class containing p. This
restriction provides continuity of plan. Often, each equiva-
lence class has only one logical successor at the following
replan time step. However, merges and splits may occur at
critical points along the robot’s traverse (Figure 5). When
the planner detects a split, it is important to select the
branch that maximizes success, given the locally available
information.

3.4. Multistage path selection algorithm

We introduce the multistage local planner algorithm (Algo-
rithm 7) to make principled path selections that trade off
between the issues of logical succession, safety, and esti-
mated path length to the goal. At a high level, the algorithm
consists of two stages. Stage One selects for consideration a
subset of Pfree comprising one or more equivalence classes
in order to ensure progress, safety, and consistency. Stage
Two selects from among the chosen subset one path for
execution that trades off safety and cost of the path, while
retaining goal-directedness.

3.4.1. Stage One: Solving the decision problem In gen-
erally preferring to execute a new path that is a logical
successor to the previously chosen equivalence class, we
largely eliminate sensitivity to noisy perception data. Two

Knepper et al. 173

Fig. 5. Between replan cycles, safe paths are associated by a logical succession of equivalence classes. This strict partial ordering
relation is represented by a directed acyclic graph. Graph edges represent the relationship P1 � P2. Graph node colors (and matching
equivalence class path colors) are conserved in consecutive replan cycles only for the largest logical successor class. Between cycles,
we may detect a termination, split, merge, or continuation of the previous equivalence classes. By preferring the logical successor to the
previously-commanded path, subsequent path selections give better performance.

Fig. 6. These four equivalence classes are annotated as to whether
each is narrow or wide and progressing or non-progressing. Width
is measured by the number of paths in the class as a fraction of all
surviving paths, whereas progressivity describes whether its paths
make progress toward the goal at left.

exceptions arise in which the algorithm will not execute
a logical successor path. First, if a non-successor equiva-
lence class predicts a significantly lower cost to the goal,
then the planner switches classes on the assumption that
the magnitude of the change exceeds that of likely per-
ception noise. Second, we allow the algorithm to consider
broader alternatives—whether more or less costly—if all
logical successor classes terminate or become narrow.

Definition 6 (narrow, wide). A narrow equivalence class
contains few paths. We employ path count as a proxy for
the measure of a corridor in path space. Thus, a low path

count indicates little space to maneuver the robot through a
narrow corridor. Non-narrow classes are called wide.

We define a constant fraction, MIN_PATH_THRESH,
which adaptively selects the cutoff in corridor width as a
percentage of the number of paths in Pfree. Thus, the more
densely we sample the space of paths, proportionately more
paths are required to constitute a wide corridor. Even when
densely sampling the path space, a highly cluttered envi-
ronment may eliminate all but a few paths through collision
with obstacles. In such a case, a passage containing rela-
tively few paths may still be to be considered “wide” in
comparison to others with fewer paths.

This concept of wide and narrow corridors closely resem-
bles that of Borenstein and Koren (1991). Their vector field
histogram represents obstacle density projected down to
one dimension corresponding to heading. Sparse regions
of the histogram indicate corridors but, due to the pro-
jection, only the component of corridor width perpendic-
ular to that projection is recorded. Our approach to corri-
dor detection and width estimation is more general since
it closely approximates the full capabilities of the robot
and is not limited to a particular obstacle configuration or
observational perspective.

Although Algorithm 7 displays a preference for wide log-
ical successor classes, it strictly selects only progressing
paths within a class for consideration.

Definition 7 (progressing). A progressing path is one for
which both of the following two points are nearer to the goal
than is the current robot position, according to the global
planner:

1.the point one replan time step in the future; and
2.the end point of the local path.

174 The International Journal of Robotics Research 31(2)

Algorithm 5 (W ,N)←Divide_Wide_Narrow(C, t)

Input: C – candidate set of classes; t – threshold size of
class

Output: W – set of paths in wide classes; N – set of paths
in narrow classes

1: W ← ∅
2: N ← ∅
3: for all C ∈ C do
4: if |C| > t then
5: W ←W ∪ C // Paths in wide classes
6: else
7: N ← N ∪ C // Paths in narrow classes
8: end if
9: end for

10: W ← Cull_Nonprogressing_Paths(W) // Omit paths
that move robot away from the goal

11: N ← Cull_Nonprogressing_Paths(N)
12: return (W ,N)

Figure 6 illustrates equivalence classes that are wide,
narrow, progressing, and non-progressing. The progress-
ing property is often shared by all paths in an equivalence
class, but certain large classes in the absence of clutter can
have mixed progressivity. By executing only progressing
paths, we ensure that the robot monotonically approaches
the goal, thus guaranteeing termination. Furthermore, by
eliminating non-progressing paths during Stage One, we
are free to ignore goal-directedness in Stage Two while still
guaranteeing progress.

When testing progressivity in a real implementation, it
may be preferable to consider only criterion 2, a path’s end-
point, and ignore the next step. Recognizing that curvature-
constrained local paths need more space to maneuver than
global grid paths, this relaxation provides the planner addi-
tional safety and flexibility when navigating around sharp
corners, at the expense of termination guarantees.

In our implementation, Algorithm 5 is used to eliminate
nonprogressing paths and divide the rest according to the
narrow/wide dichotomy. Algorithm 7 uses it as a helper
function in establishing an order of preference in select-
ing S, the set of paths for consideration. The net order of
preference is:

1. All wide, progressing, logical successor classes;
2. Any wide, progressing class;
3. All narrow, progressing, logical successor classes;
4. Any narrow, progressing class;
5. Return failure.

After choosing a preliminary S, we must check if the plan-
ner has found a highly suboptimal subset of paths; the algo-
rithm compares the best path in S against the best path
in Pfree. A difference above a certain SCORE_THRESH
provokes a mid-course correction. Such a switch of equiva-
lence class should be a rare event.

Algorithm 6 p←Optimize_Path(x, h, e, p)

Input: x – initial state;
h – a heuristic function for selecting a path to execute;
e – equivalence object
p – seed path for optimization

Output: Return a path similar to p but safer
1: repeat
2: N ← e.Get_Neighbors(p)∪{p}
3: p← h.Farthest_Obstacle_Path(x,N) // Select path

in set farthest from nearest obstacle
4: until p converges or p.obstacle_proximity > 3

2
robot_diameter

5: return p

Note that we are making a choice with global implica-
tions based on unreliable information from a low-fidelity
global planner. Lacking detailed knowledge of the com-
plete path to the goal, we instead consider a calculation
based solely on the statistics of this environment’s aver-
age obstacle density, which predict that a narrow corridor
“pinch point” should occur periodically at some frequency
during traversal. Given a distance remaining to reach the
goal, we can estimate an expected number of risky narrow
corridors remaining. SCORE_THRESH should be chosen
so that the decreased risk (stemming from the shorter path
length) of getting stuck in a future narrow corridor out-
weighs the immediate risk involved in the current route
change, which may itself jump to a narrower corridor.

3.4.2. Stage Two: Solving the optimization problem After
establishing a final set of candidate paths S, the algorithm
moves on to Stage Two, which selects a single path for
execution. Initially, it finds the greedy Best_Path option in
S, but this path may come unsafely close to an obstacle.
Within the equivalence class containing the shortest path,
the subroutine Optimize_Path performs a local, gradient-
descent-type optimization in path space by traversing the
equivalence graph. This optimization, which generates a
soft safety buffer around obstacles, seeks to maximize
the distance to the one nearest obstacle as described in
Algorithm 6.

In especially wide corridors, the robot should be free
to follow a reasonably short path, so the obstacle proxim-
ity penalty decays to zero beyond 1.5 robot diameters. The
proximity penalty function is only defined with respect to
the one nearest obstacle, so in a narrow corridor the penalty
is locally minimized by the path most nearly following the
center of the corridor, thus maximizing both safety and
future planning options. Note that the algorithm will follow
even an extremely narrow corridor, provided that the route
represents the best means to progress toward the goal.

Ultimately, the algorithm we describe here improves on
the original local planner algorithm by executing an action
that is safe, maximizes future planning/control options, and

Knepper et al. 175

Algorithm 7 (p,L)←Multistage_Local_Planner_
Algorithm (w, x, h, e, P , L)

Input: w – a costmap object;
x – initial state;
h – a heuristic function for selecting a path to execute;
e – equivalence object;
P – a fixed set of paths;
L – equivalence class of path selected in prior call
(initially ∅)

Output: p – a path progressing safely toward the goal;
L – equivalence class of p

1: Pfree ← Test_All_Paths(w, x,P) // May invoke
implicit path test

2: b← h.Best_Path(x,Pfree) // Greedy shortest path
// Stage 1: select equivalence classes for consideration;
trade off succession and corridor width

3: if L 	= ∅ then // Compute successor path candidates
4: C← e.Get_Logical_Successor_Classes(L)

// Returns a set of classes
5: (Ws,Ns)← Select_Classes(C, MIN_PATH_THRESH
× |Pfree|)

6: else
7: (Ws,Ns)←(∅,∅)
8: end if
9: E← e.Compute_Equivalence_Classes(Pfree)

10: (W ,N)← Select_Classes(E, MIN_PATH_THRESH×
|Pfree|) // Non-successor classes

11: if Ws 	= ∅ then
12: S ←Ws // Consider the set of wide successor

classes if some exist
13: else if W 	= ∅ then
14: S ←W // Prefer any wide, progressing class over a

narrow successor
15: else if Ns 	= ∅ then
16: S ← Ns // Narrow successors are better than other

narrow classes
17: else if N 	= ∅ then
18: S ← N // Last resort: take any path
19: else
20: return failure
21: end if
22: p← h.Best_Path(x,S)
23: if p.score− b.score > SCORE_THRESH then
24: S ← Pfree // Jump equivalence classes to a

significantly shorter route
25: end if //

// Stage 2: Select one path from the set, trading off path
length with safety

26: p← h.Best_Path(x,S)
27: p← Optimize_Path(x, h, e, p) // Find safe enough

path in selected path set
28: L← e.Class_Of (p)
29: return (p,L)

remains consistent across replan cycles, all while retaining
goal-directedness.

4. Foundations

In this section we establish the foundations of an equiv-
alence relation on path space based on continuous defor-
mations between paths. We then provide correctness proofs
for our algorithms for classification and implicit collision
testing.

We are given a kinematic description of paths. All paths
are parametrized by a common initial pose, common fixed
length, and individual curvature function. Let κi(s) describe
the curvature of path i as a function of arc length, with
max0≤s≤sf |κi(s) | ≤ κmax. Typical expressions for κi include
polynomials, piecewise constant functions, and piecewise
linear functions. The robot motion produced by control i is
a feasible path given by

⎡
⎣ θ̇i

ẋi

ẏi

⎤
⎦ =

⎡
⎣ κi

cos θi

sin θi

⎤
⎦ . (5)

Definition 8 (feasible). A feasible path has bounded curva-
ture (implying at least C1 continuity) and fixed length. The
set F(sf , κmax) contains all feasible paths of length sf and
curvature |κ(s) | ≤ κmax.

As an aside, one may also consider piecewise C1 con-
tinuous paths, such as paths with cusps as followed by the
motion model of Reeds and Shepp (1990). Such paths may
be equivalent provided that each follows the same sequence
of forward and backward motions. Then, a conservative
means of testing equivalence of the whole path is to per-
form pairwise tests on each C1-continuous path segment.
Thus, the following proofs may assume full C1 continuity.

4.1. Properties of paths

In this section we establish a small set of conditions under
which we can quickly determine that two paths are equiv-
alent. We constrain path shape through two dimension-
less ratios relating three physical parameters. We may then
detect equivalence through a simple test on pairs of paths
using the Hausdorff metric.

These constraints ensure a continuous deformation
between neighboring paths while permitting a range of
useful actions. Many important classes of action sets
obey these general constraints, including the line seg-
ments common in RRT (LaValle and Kuffner, 2001) and
PRM (Kavraki et al., 1996) planners, as well as con-
stant curvature arcs. Figure 1 illustrates a more expressive
action set (Knepper and Mason, 2008) that adheres to our
constraints.

The three related physical parameters are: d, the diam-
eter of the robot; sf , the length of each path; and rmin, the
minimum radius of curvature allowed for any path. Note
that 1/rmin = κmax, the upper bound on curvature. For
non-circular robots, d reflects the minimal cross-section
of the robot’s swath sweeping along a path. We express

176 The International Journal of Robotics Research 31(2)

Fig. 7. At top: several example paths combining different values
of v and w. Each path pair obeys (4). The value of v affects the
“curviness” allowed in paths, whereas w affects their length.
At bottom: this plot, generated numerically, approximates the set
of appropriate choices for v and w. The gray region at top right
must be avoided, as we show in Lemma 2. Such choices would
permit an obstacle to occur between two safe paths that obey (4). A
path whose values fall in the white region is called an appropriate
path.

relationships among the three physical quantities by two
dimensionless parameters:

v = d

rmin
w = sf

2πrmin
.

We only compare paths with like values of v and w. Figure 7
provides some intuition on the effect of these parameters
on path shape. Due to the geometry of paths, only certain
choices of v and w are appropriate.

Definition 9 (appropriate path). An appropriate path is a
feasible path conforming to appropriate values of v and
w from the proof of Lemma 2. Figure 7 previews the
permissible values.

When the condition in (4) is met, the two paths’ swaths
overlap, resulting in a continuum of coverage between the
paths. This coverage, in turn, ensures the existence of a con-
tinuous deformation, as we show in Theorem 1, but first we
formally define a continuous deformation between paths.

Definition 10 (continuous deformation). A continuous
deformation between two safe, feasible paths pi and pj

in F(sf , κmax) is a continuous function f : [0, 1] →
F(s−f , κ+max), with s−f slightly less than sf and κ+max slightly
more than κmax. f (0) is the initial interval of pi, and f (1) is
the initial interval of pj, both of length s−f .

Definition 11 (equivalent). We write pi ∼ pj to indicate
that a continuous deformation exists between paths pi and
pj, and they are therefore equivalent.

The length s−f depends on v and w, but for typical values,

s−f is fully 95–98% of sf . For many applications, this is suffi-
cient, but an application can quickly test the remaining path
length if necessary. Nearly all paths f (c) are bounded by
curvature κmax, but it turns out that in certain geometric cir-
cumstances, the maximum curvature through a continuous
deformation is up to κ+max = 4

3κmax.

Definition 12 (guard paths). Two safe, feasible paths that
define a continuous deformation are called guard paths
because they protect the intermediate paths.

In the presence of obstacles, it is not trivial to deter-
mine whether a continuous deformation is safe, thus main-
taining equivalency. Rather than trying to find a defor-
mation between arbitrary paths, we propose a particular
condition under which we show that a bounded-curvature,
fixed-length, continuous path deformation exists,

μH(p1, p2, d)≤ 1 =⇒ p1 ∼ p2. (6)

This statement, which we prove in the next section, is the
basis for Algorithm 3 and Algorithm 4. The overlapping
swaths of appropriate paths p1 and p2 cover a continuum
of intermediate swaths between the two paths. The equiv-
alence relation, of which (6) detects local instances, is a
proper equivalence relation because it possesses each of
three properties:

• reflexivity μH(p, p, d)= 0; p is trivially deformable to
itself.

• symmetry The Hausdorff metric is symmetric.
• transitivity Given μH(p1, p2, d)≤ 1 and

μH(p2, p3, d)≤ 1, a continuous deformation can
be constructed from p1 to p3 passing through p2.

4.2. Equivalence relation

We now prove (6); that is, we show that shape constraints
indicated by v and w combined with Hausdorff distance
constraints are sufficient to ensure the existence of a con-
tinuous deformation between two neighboring paths. Our
approach to the proof will be to first describe a feasible
continuous deformation, then show that paths along this
deformation are safe.

Given appropriate guard paths pi and pj with common
origin, let pe be the shortest curve in the workspace con-
necting their endpoints without crossing either path (pe may
pass through obstacles). The closed path B = pi + pe + pj

creates one or more closed loops (the paths may cross each
other). By the Jordan curve theorem (Munkres, 2000), each
loop partitions R

2 into two sets, only one of which is com-
pact. Let I , the interior, be the union of these compact sets
with B, as in Figure 8.

Knepper et al. 177

Fig. 8. Paths pi, pj, and pe form boundary B. Its interior, I , con-
tains all paths in the continuous deformation from pi to pj. The
set of paths in I illustrates the betweenness trait described in
Section 2.3.

Definition 13 (between). A path pc is between paths pi and
pj if pc ⊂ I.

Lemma 1. Given appropriate paths pi, pj ⊂ F(sf , κmax)
with μH(pi, pj, d)≤ 1, a path sequence exists in the form of
a feasible continuous deformation between pi and pj.

Proof. We provide the form of a continuous deformation
from pi to pj such that each intermediate path is between
them. With t a workspace point and p a path, let

γ (t, p) = inf
ε

t ∈(p)ε (7)

g(t) =
{

[0, 1] if γ (t, pi)= γ (t, pj)= 0{
γ (t, pi)

γ (t, pi)+ γ (t, pj)

}
otherwise,

(8)

where g(t) is a set-valued function to accommodate inter-
secting paths. Each level set g(t)= c for c ∈ [0, 1] defines
a weighted generalized Voronoi diagram (GVD) forming a
path as in Figure 9. We give the form of a continuous defor-
mation using level sets g−1(c); each path is parametrized
starting at the origin and extending for a length s−f in the
direction of pe.

Let us now pin down the value of s−f , the length of inter-
mediate paths pc. Every point ti on pi forms a line segment
projecting it to its nearest neighbor tj on pj (and vice versa).
Their collective area is shown in Figure 10. Equation (4)
bounds each segment’s length at d. s−f is the greatest value

such that no intermediate path of length s−f departs from the
region covered by these projections.

For general-shaped generators in R
2, the GVD forms a

set of curves meeting at branching points (Sampl, 2001).
In this case, no GVD cusps or branching points occur in
any intermediate path. Since d < rmin, no center of cur-
vature along either guard path can fall in I (Blum, 1967).
Therefore, each level set defines a unique path through the
origin.

Each path’s curvature function is piecewise continuous
and everywhere bounded. A small neighborhood of either
guard path approximates constant curvature. A GVD curve
generated by two constant-curvature sets forms a conic sec-
tion (Yap, 1987). Table 1 reflects that the curvature of pc is
everywhere bounded with the maximum possible curvature
being bounded by 4

3κmax. For the full proofs, see Knepper
et al. (2010a). Thus, each intermediate path pc is a feasible
path.

Fig. 9. In a continuous deformation between paths pi and pj, as
defined by the level sets of (8), each path takes the form of a
weighted GVD. Upper bounds on curvature vary along the defor-
mation, with the maximum bound of 4

3κmax occurring at the
medial axis of the two paths.

Fig. 10. Hausdorff coverage (overlapping shapes in center) is a
conservative approximation of swath coverage (gray). The Haus-
dorff distance between paths pi and pj is equal to the maximum-
length projection from any point on either path to the closest
point on the opposite path. Each projection implies a line seg-
ment. The set of projections from the top line and bottom line
each cover a solid region between the paths. These areas, in turn,
cover a slightly shorter intermediate path pc, in white, with its
light-colored swath. This path’s length, s−f , is as great as possible
while remaining safe, with its swath inside the gray area.

Table 1: Conic sections form the weighted Voronoi diagram. κ1
and κ2 represent the curvatures of the two guard paths, with
κ1 the lesser magnitude. Let κm = max(|κ1|, |κ2|). For details,
see Knepper et al. (2010a).

Type Occurrence Curvature bounds
of intermediate paths

line κ1 = −κ2 |κ| ≤ κm
parabola κ1 = 0, κ2

	
= 0 |κ| ≤ κm

hyperbola κ1κ2 < 0, κ1

	
= −κ2 |κ| ≤ κm

ellipse κ1κ2 > 0 |κ| < 4
3κm

Lemma 2. Given safe, appropriate guard paths pi, pj ∈
F(sf , κmax) separated by μH(pi, pj, d)≤ 1, any path pc ⊂
F(s−f , 4

3κmax) between them is safe.

178 The International Journal of Robotics Research 31(2)

Proof. We prove this lemma by contradiction. Assume an
obstacle lies between pi and pj. We show that this assump-
tion imposes lower bounds on v and w. We then conclude
that for lesser values of v and w, no such obstacle can exist.

Let sl(p, d)= {t ∈ R
2, tp = nn(t, p) : tpt ⊥ p and ‖t −

tp‖L2 ≤ d
2 } define a conservative approximation of a swath,

obtained by sweeping a line segment of length d with its
center along the path. tpt is the line segment joining tp to t
and nn(t, p) is the nearest neighbor of point t on path p. The
two swaths form a safe region, U = sl(pi, d)∪sl(pj, d).

Suppose that U contains a hole, denoted by the set h,
which might contain an obstacle. Now, consider the shape
of the paths that could produce such a hole. Beginning
with equal position and heading, they must diverge widely
enough to separate by more than d. To close the loop in U ,
the paths must then bend back toward each other. Since the
paths separate by more than d, there exist two open intervals
ph

i ⊂ pi and ph
j ⊂ pj surrounding the hole on each path such

that (at this point) ph
i 	⊂(pj)d and ph

j 	⊂(pi)d . To satisfy (4),

there must exist later intervals pe
i ⊂ pi such that ph

j ⊂(pe
i)d

and likewise pe
j ⊂ pj such that ph

i ⊂(pe
j)d , as in Figure 11a.

How long must a path be to satisfy this condition? Con-
sider the minimum length solution to this problem under
bounded curvature. For each point t ∈ ph

j , the inter-
val pe

i must intersect the open disk D = int((t)d), as
in Figure 11b. Since ph

j grows with the width of h, and
pe

i must intersect all of these open neighborhoods D, the
path becomes longer with larger holes. We will therefore
consider the minimal small-hole case.

Vendittelli et al. (1999) solve the shortest path problem
for a Dubins car to reach a line segment. We may approxi-
mate the circular boundary of D by a set of arbitrarily small
line segments. One may show from this work that given
the position and slope of points along any such circle, the
shortest path to reach its boundary (and thus its interior)
is a constant-curvature arc of radius rmin. In the limit, as
v approaches one and the size of h approaches zero, the
length of arc needed to satisfy (4) approaches π/2 from
above, resulting in the condition that w > 0.48. Thus, for
w ≤ 0.48 and v ∈ [0, 1), pc is safe. For smaller values of v,
D shrinks relative to rmin, requiring longer paths to reach,
thus allowing larger values of w as shown in the plot in
Figure 7.

We have shown that there exist appropriate choices for v
and w such that (4) implies that U contains no holes. Since
U contains the origin, any path pc ∈ I emanating from the
origin passes through U and is safe.

Theorem 1. Given safe, appropriate guard paths pi, pj ∈
F(sf , κmax), and given μH(pi, pj, d)≤ 1, a safe continuous
deformation exists between pi and pj.

Proof. Lemma 1 shows that (8) gives a continuous defor-
mation between paths pi and pj such that each intermediate
path pc ⊂ I is feasible. Lemma 2 shows that any such path
is safe. Therefore, a continuous deformation exists between

Fig. 11. (a) With bounded curvature, there is a lower bound on
path lengths that permit a hole, h, while satisfying (4), indicated
by pe

i , the blue highlight. Shorter path lengths ensure the existence
of a safe continuous deformation between paths. (b) We compute
the maximal path length that prevents a hole using Vendittelli’s
solution to the shortest path for a Dubins car. Starting from the
dot marked s, we find the shortest path intersecting the circle D
of radius rmin. The interval pe

i illustrates path lengths permitting a

hole to exist. Shorter paths leave some part of ph
j uncovered.

pi and pj. This proves the validity of the Hausdorff metric
as a test for path equivalence.

By chaining together continuous deformations between
neighboring paths, we can demonstrate that a continuous
deformation exists between any pair of paths within an
equivalence class by following the correct sequence of
edges of the equivalence graph. This property holds for any
paths in our discretely sampled set. It also applies for any
other pair of paths satisfying the shape constraints, provided
that the discrete sampling is sufficiently dense. The exis-
tence of a sufficiently dense path sampling is the subject of
the next section.

4.3. Resolution completeness of path classifier

In this section, we show that Algorithm 3 is resolution-
complete. Resolution completeness commonly shows that
there exists a sufficiently high discretization of each dimen-
sion of the search space such that the planner finds a path
exactly when one exists in the continuum space. We instead
show that there exists a sufficiently low dispersion sampling
in the infinite-dimensional path space such that the approx-
imation given by Algorithm 3 has the same connectivity as
the continuum safe, feasible path space.

Let F be the continuum feasible path space and Ffree ⊂
F be the set of safe, feasible paths. Using the Green–Kelly
algorithm, we sample offline from F a path sequence PN of
size N . At runtime, using Algorithm 2, we test members of
PN in order to discover a set Pfree ⊂ PN of safe paths.

The following lemma is based on the work of LaValle
et al. (2004), who prove resolution completeness of deter-
ministic roadmap (DRM) planners, which are PRM plan-
ners that draw samples from a low-dispersion, determin-
istic source. Since we use a deterministic sequence pro-
vided by Green–Kelly, the combination of Algorithm 2 and
Algorithm 3 generates a DRM in path space.

Knepper et al. 179

Lemma 3. For any given configuration of obstacles and
any path set PN generated by the Green–Kelly algorithm,
there exists a sufficiently large N such that any two paths
pi, pj ∈ Pfree are in the same connected component of Ffree

if and only if Algorithm 3 reports that pi ∼ pj.

Proof. LaValle et al. (2004) show that by increasing N , a
sufficiently low dispersion can be achieved to make a DRM
complete in any given C-Space. By an identical argument,
given a continuum connected component C ⊂ Ffree, all
sampled paths in C∩PN are in a single partition of Pfree. If q
is the radius of the narrowest corridor in C, then for disper-
sion δN < q, our discrete approximation exactly replicates
the connectivity of the continuum freespace.

Lemma 4. Under the same conditions as in Lemma 3, there
exists a sufficiently large N such that for any continuum
connected component C ⊂ Ffree, Algorithm 2 returns a Pfree

such that Pfree ∩ C 	= ∅. That is, every component in Ffree

has a corresponding partition returned by Algorithm 3.

Proof. Let Br be the largest open ball of radius r in C. When
δN < r, Br must contain some sample p ∈ PN . Since C is
entirely collision-free, p ∈ Pfree. Thus, for dispersion less
than r, Pfree contains a path in C.

There exists a sufficiently large N such that after N sam-
ples, PN has achieved dispersion δN < min(q, r), where
q and r are the dispersion required by Lemmas 3 and
4, respectively. Under such conditions, a bijection exists
between the connected components of Pfree and Ffree.

Theorem 2. Let D = {D1| . . . |Dm} be a partition of Pfree

as defined by Algorithm 3. Let C = {C1| . . . |Cm} be a finite
partition of the continuum safe, feasible path space into
connected components. A bijection f : D → C exists such
that Di ⊂ f (Di).

Proof. Lemma 3 establishes that f is one-to-one, whereas
Lemma 4 establishes that f is onto. Therefore, f is bijective.
This shows that by sampling at sufficiently high density, we
can achieve an arbitrarily good approximation of the con-
nectedness of the continuum set of collision-free paths in
any environment.

Finally, we move on to show that we can detect path
safety while circumventing a collision test.

Theorem 3. A path interval pc may be implicitly tested safe
if it is between paths pi and pj such that μH(pi, pj, d)≤ 1
and a small region at the end of pc has been explicitly tested.

Proof. By Lemma 2, the initial interval of pc is safe because
its swath is covered by the swaths of the guard paths. Since
the small interval at the end of pc has been explicitly tested,
the whole of pc is collision-free.

5. Evaluation

We present some experimental results involving equiva-
lence class detection and implicit path collision testing.
All tests were performed in simulation on planning prob-
lems of the type described in previous work (Knepper and
Mason, 2008). Briefly, planning problems consist of a com-
bination of an environment and planning query. Environ-
ments were randomly generated within a room measuring
twenty meters on a side, in which 10 cm diameter obsta-
cles were randomly positioned until reaching the desired
workspace obstacle coverage fraction. A planning query
asks the 0.412 m diameter Nomad Scout robot to navigate
from a start to a goal configuration, each chosen randomly
so as to be separated by 14 m. Finally, candidate problems
were rejected if a 10 cm-resolution 8-connected grid plan-
ner was unable to solve the planning problem. Note that this
grid planner also serves as global guidance to the local plan-
ner. Unless otherwise stated, the local planner receives 0.1 s
per replan cycle. Each reported result is an average over 100
runs on a fixed set of different planning problems.

During navigation, the local planner is permitted to run
for a fixed amount of time within each replan cycle before
executing its chosen path. A variable number of paths will
be tested each cycle depending on factors such as obstacle
clutter and implicit path testing. In some experiments, we
vary the planning time allotted, whereas other experiments
explore the effects of obstacle density.

5.1. Classification performance overhead

Path classification imposes a computational overhead due to
the cost of searching for neighboring collision-free paths.
Collision rate in turn relates to the density of obstacles in
the environment. Figure 12 shows that the computational
overhead of our classification implementation is nearly 20%
in an empty environment but drops to 0.3% in dense clut-
ter. It is in precisely such high-clutter environments that the
usefulness of classification is maximized since two arbitrary
paths are less likely to be equivalent amongst many obsta-
cles. We now proceed to weigh these and other benefits of
path classification against its costs.

5.2. Collision testing

Regardless of obstacle density, implicit collision testing
more than compensates for the overhead of path classifi-
cation. In comparing collision test algorithms, the baseline
collision tester is among the most efficient for a rigid body
moving along a path. The algorithm performs successive
static collision tests at positions along the path. In order
to determine the interval between tests, the algorithm com-
putes the distance to the nearest obstacle and moves that
distance (or less) along the path. The algorithm thus simul-
taneously guarantees correctness (never missing a collision)
and efficient performance (computing a small number of
static collision tests). Note that this same idea can also be

180 The International Journal of Robotics Research 31(2)

Fig. 12. Path classification overhead is minimized in exactly those
densely cluttered problems where its contribution is most valuable.
In this plot, a constant time of 0.1 s is allotted to collision test and
classify paths at a range of obstacle densities. Note that with such
a fixed deadline, the planner finds more safe paths in lower-density
scenarios. If a fixed quantity of safe paths must be generated
regardless of elapsed time, this curve becomes significantly flatter.

extended to multibody kinematic chains (Schwarzer et al.,
2004).

Figure 13 shows the effect of implicit path testing on total
paths tested in the absence of obstacles. We compare the
implicit collision tester of Algorithm 4 against traditional
explicit collision testing. As the time allotment for testing
paths increases, the number of paths collision tested under
the traditional algorithm increases linearly at a rate of 8,300
paths per second. With implicit testing, the initial test rate
over small time allotments (thus small path set sizes) is over
22,500 paths per second. The marginal rate declines over
time due to the aforementioned overhead, but implicit path
testing still maintains its speed advantage until the entire
2,401-member path set is collision tested. Note that this
result occurs in the empty world case, where overhead is
most severe.

Figure 14 presents implicit collision testing performance
in the presence of clutter. As obstacle density increases,
we expect overhead to drop, but it simultaneously becomes
more difficult to satisfy the necessary conditions for implic-
itly testing a path. Fixing the replan rate at an intermediate
value of 10 Hz, we see that implicit path evaluation main-
tains an expected advantage across all navigable obstacle
densities. In high clutter, this advantage is statistically less
clear, yet implicit path testing still outperforms explicit path
testing with over 90% confidence at the maximum tested
obstacle density.

5.3. Route selection

We tested the multistage local planner algorithm (Algo-
rithm 7) over a variety of environments at a range of

Fig. 13. Paths tested per time-limited replan step in an obstacle-
free environment. Path testing performance improves by up to 3×
with the algorithms we present here. Note that an artificial ceiling
curtails performance at the high end due to a maximum path set of
size 2,401.

Fig. 14. Paths tested per 0.1 s time step at varying obstacle densi-
ties. Implicit collision testing allows significantly more paths to be
tested per unit time. Even in extremely dense clutter, implicit path
testing considers an extra six paths on average. The right edge of
the graph represents the maximum density at which environments
remain navigable. Error bars indicate 95% confidence.

obstacle densities in order to evaluate the effects on plan-
ner performance of awareness of local equivalence classes.
Experimental setup was the same as before, except that
here we tested the planner on 500 different planning prob-
lems for each obstacle density. Replan cycle times for these
experiments is 0.1 s.

Figure 15 shows success rate for the local planner
algorithm (greedy) and multistage local planner algorithm
(equivalence-aware). The latter produces a statistically sig-
nificant improvement of 7.6% at solving planning problems
in dense clutter. Path length increases only negligibly, and

Knepper et al. 181

Fig. 15. Improvement in planner success rate at solving queries.
In high clutter, Algorithm 7 performs significantly better than
Algorithm 1 at successfully completing navigation tasks.

Fig. 16. Ratio of Best_Path cost to multistage local planner algo-
rithm cost. Lower is better. The cost of an individual path from
either planner represents the path integral of the reciprocal of
obstacle proximity. The overall mean cost improvement (solid
line) is about a factor of two, meaning that during navigation
the robot stays twice as far from obstacles, on average. The scat-
ter plot (blue crosses) shows the individual results for the 1838
experiments in which both planners successfully reached the goal.

despite the extra path length, we find a decreased path
cost, expressed as

c(p)=
∫

p

ds

od(p(s))
, (9)

where od(s) is the distance to the nearest obstacle from the
given point along the path. Figure 16 shows the change in
cost between the two planners. The overall mean change,
shown with the solid line, indicates that the robot stays
about twice as far from obstacles. We compared perfor-
mance on each test problem separately so the individ-
ual data points (shown with blue crosses) represent cost
improvement normalized to the difficulty of the problem.

Fig. 17. Two paths of a spherical robot (gray) in a 3D workspace
are insufficient to establish equivalence. The bottom figure depicts
a cross-sectional slice through the swept volumes of the paths.
Although two paths may be separated by less than one robot diam-
eter, obstacles (black) may still prevent a continuous deformation
between the paths.

In contrast to the overall trend, a small fraction of the
experiments showed cost worsening. In roughly 2% of
cases, skewed heavily toward the less dense environments,
obstacle proximity increased with the equivalence-aware
planner. We attribute this phenomenon to the interplay
between choice and lookahead distance. In more open envi-
ronments, the increased choice makes it more tempting to
stray from a coherent plan. At a different lookahead dis-
tance, the planner may have understood its choices bet-
ter, but there are of course significant costs to increased
lookahead. Making this tradeoff dynamically presents an
interesting opportunity for future work.

6. Extensions and future work

Having thus far examined our equivalence relation in the
case of a mobile robot in the plane, we now briefly turn to
more complex systems and applications. Each system con-
sidered in this section has at least one of two attributes:
motion in three dimensions, and internal articulation (i.e.
it can change shape).

6.1. A rigid body in 3D

First, we address a rigid body in a 3D workspace, such as an
aircraft or spacecraft. Let us suppose this rigid body takes
the form of a sphere (or can be approximated as one). Two
different paths, no matter how close together, are never suf-
ficient to establish path equivalence, as is the case in two
dimensions. Figure 17 illustrates this fact.

182 The International Journal of Robotics Research 31(2)

Fig. 18. Three paths are required to establish path equivalence in
3D. The swept volumes of the three paths are shown. To estab-
lish equivalence, we require that the Hausdorff distance between
each pair of paths must not exceed the robot’s radius. Given such
proximity, one path may be continuously deformed to another by
following the dotted lines, without risk of intersecting the black
obstacles. Upon inspection, one might think that a looser bound
could be found because the radius–circles do not meet perpendic-
ularly in this condition. In the limiting case as depicted, the path
point and radius–circle intersections are collinear. Any relaxation
of the inter-path distance would result in a case where the obsta-
cles could squeeze into the corners at the intersection points and
prevent a continuous deformation from occurring. Implicit colli-
sion testing may be performed on any fourth path discovered to be
entirely inside the gray star-shaped region at center.

In three dimensions, three paths are equivalent if each of
their pairwise Hausdorff separations is not more than the
radius of the robot. Figure 18 depicts such a configuration
of three paths and also shows how to construct a continu-
ous deformation between any pair. As in the 2D case, with
three paths in 3D we can perform implicit collision testing
on a variety of paths. The region in which a fourth path
must reside to implicitly declare it collision-free is shown
in Figure 18.

One who is familiar with topology might question the
value of path equivalence in three dimensions because ordi-
nary bounded obstacles do not induce additional homotopy
classes. However, this is where local path equivalence really

Fig. 19. Mobile robot paths with variable radius. The nearest
point on the opposite path depends on both the position and radius
of each point along the path.

shines. Since the planner has only local knowledge, it can-
not distinguish between a finite, long, skinny obstacle and
an infinite, skinny obstacle. For all practical purposes, the
finite obstacle might as well be infinite. Given that the
hierarchical planner has no knowledge of paths that per-
form an end-run around the object, such choices are suf-
ficiently costly that the partition of local paths into separate
classes represents a more accurate depiction of the available
choices than the single class supplied by a true homotopy
relation.

In the application of local path equivalence to 3D prob-
lems, one concern arises in the relatively uncluttered nature
of most 3D environments. Such environments put the classi-
fication algorithm at the left end of the graph in Figure 12—
a high-overhead situation. However, the situation is not as
bad as it first appears. The data in that figure was gathered
with a very efficient 2D collision tester. By comparison,
collision testing in 3D is significantly more complex and
costly, whereas the complexity of the classification algo-
rithm increases only slightly. Classification becomes pro-
portionately much more efficient in three dimensions, thus
the gain from avoiding explicit path tests in 2D (Figure 13
and Figure 14) becomes more dramatic in 3D.

6.2. Variable-size robots in 2D

We begin by introducing a variant of the basic 2D mobile
robot in which the robot’s size—still approximated as a
disk—varies as a function of path length. This scenario
occurs in the mobile manipulation problem, in which a
mounted manipulator arm may extend out beyond the
robot’s own footprint. For example, the elastic strips of
Brock and Khatib (2002), when projected onto the floor,
closely resemble this variable-width robot. A radius func-
tion ri(�) expresses the robot’s radius with respect to point
pi(�) along path pi. We introduce the concept of propor-
tional dilation, in which the path width grows in accordance
with its radius function:

(p)ri = {t ∈ R
2 : ‖p(�)−t‖L2 ≤ ri(�) for some � ∈ IL},

(10)

where IL = [0, L], with L the path length. Now a pair of
nearby points on two neighboring paths may possess

Knepper et al. 183

distinct diameters, as in Figure 19, thus giving rise to a new
normalized Hausdorff metric,

μv
H(pi, pj, ri, rj)= max(argmin

ε

(∀�a ∈ IL, ∃�b ∈ IL

: (pi(�a))εri(�a) ∩(pj(�b))εrj(�b) 	= ∅) ,

argmin
ε

(∀�a ∈ IL, ∃�b ∈ IL

: (pj(�a))εrj(�a) ∩(pi(�b))εri(�b) 	= ∅)) . (11)

Intuitively, this variant of the Hausdorff metric finds the
minimal scale factor for the two paths’ radius functions
such that no gap remains between the two paths follow-
ing proportional dilation. Following dilation, each point on
either path is replaced by a disk. In order to ensure the above
condition, each disk on one path must intersect some disk
on the opposite path.

Given some appropriate constraints on the shape of paths
as well as their radius functions, the equivalence relation on
paths of variably-sized mobile robots then follows directly
from the fixed-diameter case:

μv
H(p1, p2, r1, r2)≤ 1 =⇒ p1 ∼ p2. (12)

Here, curvature bounds must apply to the boundary of the
variable-diameter robot swath in addition to the path itself.
However, in the case of a mobile manipulator, where the
reach of an arm is on the same order of magnitude as the
mobile base diameter, this distinction is rarely critical.

6.3. Articulated robots

We also apply path classification to the trajectories of
manipulator arms in 3D. At a high level, the situation
closely parallels the 2D mobile robot case we present in
Section 2. Two paths, separated by at most the diameter of
the arm, are equivalent under certain shape and proximity
constraints. In contrast to a 2D rigid body, the medial axis of
the arm sweeps out a 2D manifold or sheet in the workspace
(Figure 20 and Figure 21), so points along our path are
now parametrized by (s, �), where s ∈ IS = [0, sf], a dis-
tance along the arm’s motion in the configuration space, and
� ∈ IL = [0, L], a distance along the axis of the arm from
base to end-effector. Thus, p(s, �) corresponds to a particu-
lar workspace location along the arm’s axis while the arm is
in a certain configuration.

A function r(�) describes the radius of a disk circum-
scribing a cross-section of the arm at a point along its
length. Note that radius is now a function of arm length
rather than trajectory position. Note also that the disk is now
normal to the arm axis, whereas in the 2D shape-changing
robot, it is coplanar with the path. Though nearly identical
to (10), we define proportional dilation in the context of a
two-parameter path function,

(p)ri = {t ∈ R
2 : ‖p(s, �)−t‖L2 ≤ ri(�)

for some s ∈ Is and � ∈ IL}. (13)

Fig. 20. A kinematic chain such as a robot arm (gray) can be
likened to a mobile robot path with varying radius as in Figure 19.
When executing a trajectory, the arm’s medial axis (black) sweeps
out a two-dimensional sheet with varying radius in the spatial
dimension and fixed radius in the temporal dimension.

As in Section 6.2, we define a variant of the Hausdorff
distance in the context of arm paths,

μa
H(pi, pj, ri, rj)= max(argmin

ε

(∀(sal�a) , ∃(sb, �b) :

(pi(sa, �a))εri(�a) ∩(pj(sb, �b))εrj(�b) 	= ∅) ,

argmin
ε

(∀(sa, �a) , ∃(sb, �b) :

(pj(sa, �a))εrj(�a) ∩(pi(sb, �b))εri(�b) 	= ∅)) ,

where sa, sb ∈ IS and �a, �b ∈ IL. Note that this is a con-
servative expression for the distance separating two arm
trajectories.

In considering the possibility that an obstacle divides two
arm trajectories, the semantics of the application come into
play. For example, objects in human spaces do not levi-
tate, so in the absence of highly dynamic objects such as
a thrown ball, we may relax the tight constraints imposed
by μa

H. Instead, the two arm trajectories need only to com-
pletely surround a pocket of space, meaning that their
end-effector trajectories and end states overlap.

Next, we address constraints on arm path shape and
length. Such concepts are inherently much more nebu-
lous than their mobile-robot equivalents due to the arm’s
articulation—especially for arms with revolute joints. It is
difficult to pin down general, meaningful constraints on arm
path length and shape.

In principle, a useful measure of path length could be
obtained by computing swept volume of the arm. After all,
in the case of a rigid body mobile robot, all swaths of a given
length that do not cross over themselves have equal length.

184 The International Journal of Robotics Research 31(2)

(a) (b)

Fig. 21. When moving an arm between two configurations, many trajectories are possible. Each trajectory traces a unique path through
the workspace. (a) For two different trajectories represented by solid and dotted lines, the paths of the elbow and wrist are shown. (b)
Two sheets correspond to two distinct arm trajectories. These 2D manifolds embedded in a 3D workspace share many properties with
the 1D mobile robot paths embedded in a 2D workspace discussed earlier.

In the case of manipulator arms (especially those with revo-
lute joints), many useful motions do involve swept volumes
that “cross over themselves,” so an alternate formulation of
path length is needed. Just as the length of a mobile robot
path is found by integrating velocity, the length of an arm
path may be found by integrating a form of velocity as well.
Given an arm path pi executed with unit C-Space speed, let
vi(t, �) be the workspace velocity of point pi(t, �) along the
axis of the arm at time t. We propose two alternative path
length measures:

Lmean(i) = 1

L

∫ L

0

∫ sf

0
vi(s, �) ds d�, (14)

Lmax(i) =
∫ sf

0
max
�∈IL

vi(s, �) ds. (15)

In the case of a rigid body under arbitrary motion in R
3, the

mean and max path lengths are always related by a factor
between one and two. For an articulated chain, the factor
may be greater.

We now move on to address path shape constraints for an
arm. This issue is both complex and mechanism-dependent.
In previous work (Knepper et al., 2010b), we utilized path
sets comprising straight lines in C-Space. Of course, such
“straight” trajectories can involve arbitrarily high curva-
ture of some point on the arm within the workspace. Given
a sampling of such paths dense enough to establish path
equivalence, it is not clear that the planner would often dis-
cover multiple equivalence classes. It would therefore be
left to a given manipulation application to further constrain
path sampling to a set of tasks useful for a given problem.

A few approaches worth exploring further include
bounding the energy consumed in executing a given path
(after subtracting out torques associated with gravity com-
pensation), and retraction-based approaches. In the latter
case, we propose to compare paths by utilizing retraction-
like reductions in dimensionality of a search space, such
as those proposed by Sun and Lumelsky (1991) and

Choset and Burdick (1995). Under this reduction, any given
path in the free configuration space maps to a path in a
one-dimensional set, which is the deformation retract of the
freespace. We can then employ such retracts as a graph-
like roadmap and compare only paths whose correspond-
ing graph paths are similar. For general articulated sys-
tems, this approach raises some challenges of its own, such
as the fact that in three or more dimensions, these one-
dimensional retracts are necessarily either not connected or
have extra loops not corresponding to topological features
of the original freespace (Choset and Rizzi, 2005).

Despite these challenges, our path equivalence relation
holds promise in the domain of motion planning for artic-
ulated robots, such as manipulator arms. For instance, even
lacking constraints on path shape, it is possible to utilize μa

H
to accelerate collision testing. Although arms pose greater
challenges for satisfying the necessary conditions on prox-
imity and betweenness, the cost of each collision test is
significantly higher for articulated robots than it is for rigid
bodies, so the gains remain potentially significant.

6.4. Steerable needles

Steerable needles are long, flexible, hollow needles with a
bevel tip. Such needles can be used in medical procedures
to reach soft-tissue anatomical features that would other-
wise be inaccessible due to obstructing anatomy of a hard
(bone) or delicate (nerve, artery) nature. During insertion,
the bevel tip causes the needle to follow a constant curvature
path. Steerable needles are interesting from a motion plan-
ning perspective because they are underactuated, having
only two velocity controls. One may vary the rate of inser-
tion and the rate of rotation about the axis of the needle.
This twisting motion alters the plane in which the needle
bends (Webster III et al., 2006).

During needle motion, uncertainty is introduced to the
path primarily in the form of a random variable added to the

Knepper et al. 185

needle’s curvature. This uncertainty derives from the com-
plexities of interaction with human tissue. Instantaneously,
the uncertainty in position increases in the direction of the
vector normal to the needle within the plane of curvature.
Meanwhile, the instantaneous control inputs act primarily
in vectors along the needle and normal to the plane of cur-
vature. By duty-cycling the needle, steering control can be
applied to cancel out errors in curvature, thus the needle can
track arbitrary paths of bounded curvature (Minhas et al.,
2007).

Planners have been proposed for needle steering to
account for uncertainty in both motion (Alterovitz et al.,
2008) and localization (van den Berg et al., 2010). It
should be possible to extend many steerable needle plan-
ners using path equivalence. The equivalence algorithms in
this paper assume that any path under consideration may
be chosen deterministically. Thus, the distribution of paths
is purely a function of control inputs. In the steerable nee-
dles context, the distribution among paths is generated by
a combination of control and uncertainty. Consequently,
we must find equivalence between entire groups of paths
across a probability distribution instead of between indi-
vidual paths. Thus, steerable needles constitute both a the-
oretical extension and a promising application for future
work.

7. Conclusion

In this paper we propose an equivalence relation on local
paths based on the following constraints: fixed start posi-
tion and heading, fixed length, and bounded curvature. We
describe an algorithm for easily classifying paths using the
Hausdorff distance between them. Path classification is a
tool that permits collective reasoning about paths, leading
to more efficient collision testing.

We present a variety of applications for local path equiva-
lence, including implicit path testing to accelerate collision
testing. In this area, we demonstrate performance increases
of over 300% in paths collision tested per unit time. In addi-
tion to the strict implicit path-testing formalism we present,
many generalizations are possible such as implicitly testing
paths of varying length.

Of course, we must be able to make use of all those
additional paths, so our second application is in the area
of navigation. Equivalence classes are a powerful tool to
distinguish between discrete decision problems and contin-
uous optimization problems and to balance choices between
the two. In navigation, we show an increase in navigation
success of up to 7.6% for one class of long-range planning
problem. Meanwhile, our navigation algorithm reduces by
half the cost of obstacle proximity, indicating that these
paths are significantly safer.

Finally, we explore some extensions and real-world appli-
cations. Local path equivalence, when applied to three-
dimensional planning problems, is actually more meaning-
ful in a hierarchical planning context than is true homotopy

because it reflects choices that are locally discernible. We
discuss the strengths and weaknesses of local path equiv-
alence applied to three-dimensional kinematic chains. The
path equivalence formulation seems particularly well-suited
to the bevel-tipped steerable needle problem, since that
mechanism is naturally curvature-constrained.

Surveying these applications, we conclude that local path
equivalence is a formalism that provides valuable tools to
address motion planning problems involving hierarchical
planning, collision testing, and navigation for a variety of
two- and three-dimensional systems.

Acknowledgments

The authors thank Matthew Tesch, Laura Lindzey, Alberto
Rodriguez, Mehmet Doğar, and M. Jenae Lowe for valuable com-
ments and discussions. Thanks extend also to the anonymous
reviewers for their thoughtful and supportive feedback.

Funding

This work is sponsored by the Defense Advanced Research
Projects Agency under contract HR0011-07-1-0002. This work
does not necessarily reflect the position or the policy of the
Government. No official endorsement should be inferred.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

Allen T, Underwood J and Scheding S (2007) A path planning sys-
tem for autonomous ground vehicles operating in unstructured
dynamic environments. In: Proceedings of the Australasian
Conference on Robotics and Automation.

Alterovitz R, Branicky M and Goldberg K (2008) Motion plan-
ning under uncertainty for image-guided medical needle steer-
ing. International Journal of Robotics Research 27: 1361–
1374.

Barraquand J and Latombe JC (1993) Nonholonomic multibody
mobile robots: Controllability and motion planning in the
presence of obstacles. Algorithmica 10: 121–155.

Bhattacharya S, Kumar V and Likhachev M (2010) Search-
based path planning with homotopy class constraints. In: Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence.

Blum H (1967) A transformation for extracting new descriptors
of shape. In: Whaters-Dunn W (ed.) Proceedings of the Sympo-
sium on Models for the Perception of Speech and Visual Form
Cambridge, MA: MIT Press, 362–380.

Borenstein J and Koren Y (1991) The vector field histogram—
fast obstacle avoidance for mobile robots. IEEE Transactions
on Robotics and Automation 7: 278–288.

Brock O and Khatib O (2002) Elastic strips: A framework for
motion generation in human environments. International Jour-
nal of Robotics Research 21: 1031–1052.

Buhmann J, Burgard W, Cremers AB, Fox D, Hofmann T, Schnei-
der FE, et al. (1995) The mobile robot RHINO. AI Magazine
16: 31–38.

186 The International Journal of Robotics Research 31(2)

Choset H and Burdick J (1995) Sensor based planning, part I: The
generalized Voronoi graph. In: Proceedings of the International
Conference on Robotics and Automation, pp. 1649–1655.

Choset H and Rizzi AA (2005) Topology in motion planning.
In: Proceedings of the Eleventh International Symposium on
Robotics Research, pp. 90–99.

Farber M (2003) Topological complexity of motion planning.
Discrete & Computational Geometry 29: 211–221.

Gardiol NH and Kaelbling LP (2007) Action-space partitioning
for planning. In: Proceedings of the National Conference on
Artificial Intelligence.

Green C and Kelly A (2007) Toward optimal sampling in the
space of paths. In: Proceedings of the Thirteenth International
Symposium of Robotics Research.

Henrikson J (1999) Completeness and total boundedness of the
Hausdorff metric. MIT Undergraduate Journal of Mathematics
1.

Jaillet L and Simeon T (2008) Path deformation roadmaps: Com-
pact graphs with useful cycles for motion planning. Interna-
tional Journal of Robotics Research 27: 1175–1188.

Kavraki L, Svestka P, Latombe JC and Overmars M (1996) Proba-
bilistic roadmaps for path planning in high-dimensional config-
uration spaces. In: Proceedings of the International Conference
on Robotics and Automation, pp. 566–580.

Kelly A, Stentz A, Amidi O, Bode MW, Bradley D, Diaz-Calderon
A, et al. (2006) Toward reliable off road autonomous vehicles
operating in challenging environments. International Journal
of Robotics Research 25: 449–483.

Khatib O (1985) Real-time obstacle avoidance for manipulators
and mobile robots. In: Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 500–505.

Knepper RA and Mason MT (2008) Empirical sampling of path
sets for local area motion planning. In: Proceedings of the
International Symposium on Experimental Robotics.

Knepper RA and Mason MT (2009) Path diversity is only part of
the problem. In: Proceedings on the International Conference
on Robotics and Automation.

Knepper RA, Srinivasa SS and Mason MT (2010a) Curvature
bounds on the weighted Voronoi diagram of two proximal paths
with shape constraints. Technical Report CMU-RI-TR-10-25.
Robotics Institute, Carnegie Mellon University.

Knepper RA, Srinivasa SS and Mason MT (2010b) Hierarchical
planning architectures for mobile manipulation tasks in indoor
environments. In: Proceedings of the International Conference
on Robotics and Automation, pp. 1985–1990.

Laumond JP (1986) Feasible trajectories for mobile robots with
kinematic and environment constraints. In: Proceedings of the
International Conference on Intelligent Autonomous Systems,
pp. 346–354.

LaValle SM, Branicky MS and Lindemann SR (2004) On the
relationship between classical grid search and probabilistic
roadmaps. International Journal of Robotics Research 23:
673–692.

LaValle SM and Kuffner JJ (2001) Randomized kinodynamic
planning. International Journal of Robotics Research 20:
378–400.

Lumelsky V and Stepanov A (1987) Automaton moving
admist unknown obstacles of arbitrary shape. Algorithmica 2:
403–430.

Marder-Eppstein E, Berger E, Foote T, Gerkey B and Kono-
lige K (2010) The office marathon: Robust navigation in an

indoor office environment. In: Proceedings of the International
Conference on Robotics and Automation, pp. 300–307.

Minhas DS, Engh JA, Fenske MM, and Riviere CN (2007) Mod-
eling of needle steering via duty-cycled spinning. In: Proceed-
ings of the Conference of the IEEE Engineering in Medicine
and Biology Society, pp. 2756–2759.

Munkres JR (2000) Topology. Upper Saddle River, NJ: Prentice
Hall.

Niederreiter H (1992) Random Number Generation and Quasi-
Monte-Carlo Methods. Philadelphia: Society for Industrial
Mathematics.

Reeds JA and Shepp LA (1990) Optimal paths for a car that goes
both forwards and backwards. Pacific Journal of Mathematics
145: 367–393.

Reif J and Wang H (1998) The complexity of the two dimensional
curvature-constrained shortest-path problem. In: Third Interna-
tional Workshop on Algorithmic Foundations of Robotics, pp.
49–57.

Sampl P (2001) Medial axis construction in three dimensions and
its application to mesh generation. Engineering with Comput-
ers 17: 234–248.

Sánchez G and Latombe JC (2002) On delaying collision check-
ing in PRM planning: Application to multi-robot coordination.
International Journal of Robotics Research 21: 5–26.

Schmitzberger E, Bouchet J, Dufaut M, Wolf D and Husson R
(2002) Capture of homotopy classes with probabilistic road
map. In: Proceedings of the International Conference on Intel-
ligent Robots and Systems, pp. 2317–2322.

Schwarzer F, Saha M and Latombe J (2004) Exact collision check-
ing of robot paths. In: Proceedings of the Workshop on the
Algorithmic Foundations of Robotics, pp. 25–41.

Simmons R (1996) The curvature-velocity method for local obsta-
cle avoidance. In: Proceedings of the IEEE International Con-
ference on Robotics and Automation, pp. 3375–3382.

Sun K and Lumelsky VJ (1991) Motion planning for three-
link robot arm manipulators operating in an unknown three-
dimensional environment. In: Proceedings of the Thirtieth
IEEE Conference on Decision and Control, pp. 1019–1026.

Thorpe CE (1984) Path relaxation: Path planning for a mobile
robot. In: Proceedings of the National Conference on Artificial
Intelligence, pp. 318–321.

van den Berg J, Patil S, Alterovitz R, Abbeel P and Goldberg K
(2010) LQG-based planning, sensing, and control of steerable
needles. In: Proceedings of the Ninth International Workshop
on the Algorithmic Foundations of Robotics, pp. 373–389.

Vendittelli M, Laumond JP and Nissoux C (1999) Obstacle dis-
tance for car-like robots. IEEE Transactions on Robotics and
Automation 15: 678–691.

Webster III RJ, Kim JS, Cowan NJ, Chirikjian GS and Oka-
mura AM (2006) Nonholonomic modeling of needle steering.
International Journal of Robotics Research 25: 509–525.

Yap CK (1987) An O(n log n) algorithm for the Voronoi diagram
of a set of simple curve segments. Discrete & Computational
Geometry 2: 365–393.

Yu Y and Gupta K (2000) An information theoretic approach
to view point planning for motion planning of eye-in-hand
systems. In: Proceedings of the International Symposium on
Robotics, pp. 306–311.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

