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Abstract

We investigate the problem of using contact sensors to estimate the pose of an object during planar pushing by a fixed-

shape hand. Contact sensors are unique because they inherently discriminate between ‘‘contact’’ and ‘‘no-contact’’ config-

urations. As a result, the set of object configurations that activates a sensor constitutes a lower-dimensional contact

manifold in the configuration space of the object. This causes conventional state estimation methods, such as the particle

filter, to perform poorly during periods of contact due to particle starvation. In this paper, we introduce the manifold par-

ticle filter as a principled way of solving the state estimation problem when the state moves between multiple manifolds of

different dimensionality. The manifold particle filter avoids particle starvation during contact by adaptively sampling par-

ticles that reside on the contact manifold from the dual proposal distribution. We describe three techniques, one analytical

and two sample-based, of sampling from the dual proposal distribution and compare their relative strengths and weak-

nesses. We present simulation results that show that all three techniques outperform the conventional particle filter in both

speed and accuracy. In addition, we implement the manifold particle filter on a real robot and show that it successfully

tracks the pose of a pushed object using commercially available tactile sensors.
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1. Introduction

Humans effortlessly use their sense of touch to manipulate

objects. Imagine groping around on a nightstand for a glass

of water, or feeling around a cluttered kitchen cabinet while

searching for the salt shaker. Each of these tasks involves

contact manipulation during which we make persistent

contact with the environment. During contact, tactile feed-

back is critical to localize the object being manipulated.

Armed with real-time observations from tactile sensors

(Fishel and Loeb, 2012; Tenzer et al., 2014; Odhner et al.,

2013), manipulators should also be able to estimate the

pose of the manipulated object. Early work attempted to

solve this problem by deriving analytical state estimators to

track and, in some cases, control the pose of an object from

contact positions based on simple models of physics (Jia

and Erdmann, 1999). However, these models fail to accu-

rately capture the reality of manipulation because there is a

large amount of uncertainty in both the object’s motion and

the robot’s observations. Other work has employed a

Bayesian approach by using a particle filter to estimate the

pose (Corcoran and Platt, 2010; Zhang and Trinkle, 2012),

contact state (Gadeyne et al., 2005; Meeussen et al., 2007),

and physical properties (Zhang et al., 2013) of an object

during manipulation. However, the conventional particle

filter (CPF; Section 4) suffers from a startling problem: the

CPF systematically performs worse as the sensor resolu-

tion and update frequency increases (Section 4.4).

This problem arises because contact sensing accurately

discriminates between contact and no-contact.

Topologically, the set of states that are consistent with a

contact observation lies in the lower dimensional contact

manifold (Section 3.1) embedded in the configuration

space of the object. Particles sampled from the state space

have a low probability of being on the contact manifold

and, as a result, particle starvation (Thrun et al., 2000a,

2005) occurs in the vicinity of the true state. In the limit,

when the sensor can perfectly localize contact along the

hand, this region shrinks to a zero measure set (Section

9.4) and the CPF is completely ineffective.
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In this paper, we consider the pose estimation for con-

tact manipulation problem (Figure 1) as one of Bayesian

estimation (Section 3) and introduce the manifold particle

filter (MPF; Section 5) (Koval et al., 2013a,b) as a prin-

cipled way of solving the problem of particle starvation

during contact. We specifically apply the MPF to the case

of a fixed-shape hand equipped with accurate contact sen-

sors pushing an object in the plane. The MPF addresses the

state estimation problem when the state moves between

multiple manifolds of possibly different dimensions. In the

case of contact manipulation, this occurs when the object

makes or breaks contact with a contact sensor.

The gist of our algorithm is quite simple: we factorize

belief into the marginal probability of being on a manifold

and the probability of the state conditioned on that mani-

fold. We first choose a manifold, then sample a particle

from that manifold. The key result of this factorization is

that we can apply a different sampling technique to each

manifold. In our case, we sample from free space using the

conventional proposal distribution (Thrun et al., 2005) and

from the contact manifold using the dual proposal distribu-

tion (Thrun et al., 2000a).

The dual proposal distribution avoids particle starvation

by sampling particles from the contact manifold that are

consistent with the most recent observation. When the

object-hand geometry consists of polygons in R
2, an analy-

tic representation (AM; Section 6.3.3) of the contact mani-

fold can be computed using the Minkowski sum (Lozano-

Pèrez, 1983; Wein, 2013). This provides a computationally

efficient way of sampling from the contact manifold and,

thus, implementing the dual proposal distribution.

However, computing an analytic representation of the con-

tact manifold is not always possible.

It is possible to apply the MPF to arbitrary planar geo-

metry by approximating the contact manifold with a set of

weighted samples. We present two such representations.

The rejection sampled representation (RS; Section 6.3.1)

distributes samples uniformly in the ambient space near the

manifold and, thus, is agnostic to the policy followed dur-

ing execution. The trajectory rollout representation (TR;

Section 6.3.2) concentrates samples on the regions of the

manifold that we are most likely to encounter during

execution.

Our simulation results (Section 7) confirm that the MPF

outperforms the CPF in terms of both estimation accuracy

and computational efficiency. We show that the MPF, in

contrast to the CPF, scales favorably with increases in the

robot’s sensor resolution and update frequency (Section

7.5). We also analyze the relative performance of the RS,

TR, and AM manifold representations. As expected, all

three representations outperform the CPF and the AM and

TR representations both outperform RS (Section 7.6).

Surprisingly, however, our experiments show that TR per-

forms as well as AM. By focusing samples on likely

regions, TR saturates these regions at a resolution indistin-

guishable from the analytic solution.

We support these results with an implementation of the

MPF on Andy (Bagnell et al., 2012) (Section 8), a biman-

ual manipulator equipped with the Barrett WAM arm

(Salisbury et al., 1988) and the i-HY end-effector (Odhner

et al., 2013). Using the MPF, Andy successfully estimated

the pose of several objects while executing a pushing

action using feedback from the i-HY hand’s tactile sensors

(Tenzer et al., 2014). These experiments demonstrate that

the MPF is able to successfully estimate the pose of an

object using commercially available sensors.

The contact manipulation problem exhibits unique

structure that makes it fundamentally different from most

state estimation and planning problems. By exploiting the

structure of the contact manifold, we are able to signifi-

cantly outperform standard state estimation techniques.

Furthermore, by exploiting the geometry of the hand-object

interaction, the trajectory rollout representation achieved

performance comparable to that of the analytic solution.

However, the implementation of MPF discussed in this

paper has several limitations: we only consider planar manip-

ulation with quasistatic physics (Section 9.5.1), assume that

the hand has a fixed shape (Section 9.5.2), and do not refine

our estimate of the physical properties of the environment

(Section 9.5.4) during execution. We also assume that con-

tact sensors are discriminative (Section 9.5.3), i.e. are capable

of accurately differentiating between contact and no-contact.

We are interested in addressing all four of these limitations in

future work. Finally, we are excited to use the belief state

estimated by the MPF as feedback for closed-loop manipula-

tion primitives (Section 9.5.5).

(a) Contact manipulation problem (b) Bayes network

Fig. 1. The contact manipulation problem. (a) HERB (Srinivasa et al., 2012) pushing a rectangular box across the table. The state

s 2 S is the pose of the box relative to the hand. An action a 2 A is a relative motion of the hand. After taking action a, HERB

receives an observation o 2 O indicating where the object touched the hand. (b) The Bayes filter uses the Markov property to

recursively compute b(st) from b(st21)
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2. Related work

This paper builds on a long history of research on planar

manipulation (Section 2.1) and tactile sensing (Section 2.2)

as sensor feedback. Our choice of the particle filter was

inspired by recent work on object pose estimation (Section

2.3) and contact state estimation (Section 2.4) for manipu-

lation. Finally, we adapt the dual and mixture proposal dis-

tributions (Section 2.5) used for mobile robot localization

to the contact manipulation problem.

2.1. Manipulation via pushing

Our focus is on contact manipulation and, in particular, pla-

nar pushing actions. Pushing enables robots to perform a

wide variety of tasks that are not possible through pick-and-

place manipulation alone: pushing can move objects that

are too large or heavy to be grasped (Dogar and Srinivasa,

2011), is effective at manipulating objects under uncertainty

(Brost, 1988; Dogar and Srinivasa, 2010), and can be used

as pre-grasp manipulation to bring objects to configura-

tions where they can be easily grasped (Chang et al., 2010;

Kappler et al., 2010; King et al., 2013). Additionally, push-

ing can be used to simultaneously move multiple objects

(Dogar et al., 2012).

Since pushing offers such a dramatic expansion of

manipulation skills, there has been extensive research on the

fundamental mechanics of pushing (Mason, 1986; Lynch

and Mason, 1995; Howe and Cutkosky, 1996; Lynch and

Mason, 1996) and on the planning of planar pushing opera-

tions (Lynch and Mason, 1996; Akella and Mason, 1998).

Recently, there has been interest in generating push trajec-

tories using sampling based planners (Cosgun et al., 2011;

Lau et al., 2011), trajectory optimization (King et al., 2013),

and learning methods (Zito et al., 2012). We leverage this

work by using the quasistatic physics model (Lynch et al.,

1992; Howe and Cutkosky, 1996), the same model used by

much of this prior work (Dogar and Srinivasa, 2010, 2011;

Dogar et al., 2012), to estimate the motion of the object.

Most of these techniques, however, employ pushing as

an open-loop operation and are sensitive to object pose

uncertainty. One notable exception is the push-grasp

(Dogar and Srinivasa, 2010; Dogar et al., 2012), which rea-

sons about pose uncertainty during the planning process to

generate a straight-line action that funnels the object into

the hand. This work is complementary to our own: tracking

the pose of an object during the execution of a push-grasp

would allow the robot to cope with larger amounts of

uncertainty and detect success (or failure) more quickly. In

the future, we plan to use the state estimate produced by

the MPF to adapt the robot’s motion in real-time. We took

a first step in this direction in Koval et al. (2014).

2.2. Tactile sensing

Contact sensing is an attractive type of feedback during

manipulation because it directly observes the robot’s

interaction with the environment. Contact sensors come in

many forms, including binary switches (Edin et al., 2006),

pressure-sensitive pads (Tenzer et al., 2014), and complex

fingertips (Fishel and Loeb, 2012) with multi-modal sen-

sing capabilities. The MPF can accommodate any type of

sensor that accurately discriminates between contact and

no-contact and can be characterized by a probabilistic

model.

One method of using tactile sensors during manipulation

is to create a feedback controller that directly maps sensor

readings to actions. For example, a robot can use the tactile

Jacobian to servo its end-effector to a desired contact state

(Zhang and Chen, 2000; Li et al., 2013). These controllers

are effective for specific tasks, such as following a contour

(Zhang and Chen, 2000) or locally refining the quality of a

grasp (Platt et al., 2010). Another approach is to learn a

task-specific policy (Pastor et al., 2011) from demonstra-

tion. Unfortunately, it is difficult to generalize these tech-

niques to the full spectrum of manipulation tasks. Our

method explicitly estimates the state of the object, which

can then be used by a higher-level planning algorithm to

achieve an arbitrary goal.

Another approach to using contact sensors is to first

localize the object, then grasp it. This approach is com-

monly implemented by executing a sequence of move-until-

touch actions (Hsiao, 2009; Petrovskaya and Khatib, 2011;

Hebert et al., 2013; Javdani et al., 2013) that localize the

object within some tolerance, then execute an open-loop

trajectory to achieve a grasp. These techniques generally

assume that the object does not move (Petrovskaya and

Khatib, 2011; Javdani et al., 2013) or use a simple motion

model that causes actions to ‘‘bump’’ the object by a small

amount (Hsiao, 2009). The MPF solves a fundamentally

different problem: it estimates the pose of an object during

manipulation and does not plan any actions. In addition, the

MPF reasons about the motion of the object using an accu-

rate physics model.

2.3. Object pose estimation

There is a rich history of using recursive estimators to track

the pose of objects for manipulation (Harris, 1992;

Drummond and Cipolla, 2002). Recently, there has been

interest in integrating models of physics into visual tracking

algorithms to improve their performance. Duff et al. (2010)

integrated the PhysX simulator (NVIDIA Corporation,

2014) into a RANSAC-based (Fischler and Bolles, 1981)

tracker and significantly outperformed several physics-

agnostic baseline algorithms. The same physics model was

later used for the transition model of a particle filter

(Gordon et al., 1993) that uses edge likelihood measure-

ments (Mörwald et al., 2009) to track an object’s three-

dimensional pose (Duff et al., 2011). Similar to this work,

the MPF uses a physics model (Lynch et al., 1992) as the

transition model in a particle filter for object pose estima-

tion. However, the MPF uses observations from contact

sensors, instead of vision, for feedback.
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More recently, Zhang and Trinkle (2012) used a particle

filter to combine contact sensing, visual pose estimates, and

an NCP-based physics model (Ferris and Munson, 1999) to

track the pose of an object being pushed by a manipulator

in the plane. Their results demonstrate that contact sensing

can significantly improve visual pose estimation accuracy,

particularly during extended periods of visual occlusion. In

later work, the same authors used a Rao–Blackwellized

(Blackwell, 1947) particle filter to simultaneously estimate

object pose and the value of spatiotemporally varying para-

meters (Zhang, 2013), e.g. friction coefficients.

Unfortunately, the experiments of Zhang and Trinkle (2012)

show that this state estimator too slow to run in real-time,

even when applied to a simple hand with three contact sen-

sors. The MPF does not estimate physical parameters of the

environment (see Section 9.5.4 for future work), but is able

to use a smaller set of particles to achieve near real-time

performance on complex sensor configurations.

The authors of both of these particle filters (Duff et al.,

2011; Zhang and Trinkle, 2012) note that the performance

of the estimator heavily depends on the type of uncertainty

introduced into the transition model. Adding noise to the

output of the physics model can produce inter-object pene-

tration and physically infeasible motion. Instead, noise

should be introduced to the input of the simulator by apply-

ing random forces to the simulated object (Duff et al.,

2011; Duff, 2011) or by adding noise to the model’s para-

meters (Zhang and Trinkle, 2012). We adopt the latter tech-

nique in the MPF by sampling the hand-object friction

coefficient and the radius of the object’s pressure distribu-

tion, the parameters of our quasistatic physics model, from

probability distributions.

Modifying noise in the transition model does not, how-

ever, address the particle starvation problems inherent to

contact sensing. The problem of particle starvation when

using contact sensors in a particle filter have been recog-

nized several times in the literature (Gadeyne et al., 2005;

Zhang and Trinkle, 2012; Zhang, 2013). This problem is

commonly addressed by ‘‘smoothing’’ the observation

model with artificial noise that spreads contact observations

over a non-infinitesimal, full-dimensional region of the

state space (Corcoran and Platt, 2010; Zhang and Trinkle,

2012; Javdani et al., 2013; Zhang, 2013). This approach,

while sometimes effective, scales poorly to high-resolution

sensors and discards the most important property of contact

sensors: the difference between contact and no-contact. In

addition, this assumption can lead to belief states that drift

arbitrarily far from those generated by true belief dynamics

over time (Thrun et al., 2000a). The MPF solves the parti-

cle starvation issue by sampling from the dual proposal dis-

tribution, which is theoretically sound and suffers neither of

these issues.

2.4. Contact state estimation

For some applications, e.g. learning a compliant controller

(de Schutter and van Brussel, 1988a, b), estimating the

contact state between an object and the environment is

equally as important as estimating its pose. The contact

state is typically represented as a contact formation (Xiao,

1993), which is the set of elementary contacts (e.g. face–

vertex, face–edge, etc.) between the robot and the environ-

ment. The contact manifold (Section 3.1) used by the MPF

is equivalent to the projection of all possible contact forma-

tions into the configuration space of the object relative to

the hand.

Gadeyne et al. (2005) used a particle filter to track a

hybrid discrete-continuous probability distribution over a

small set of contact states (discrete) and object pose (contin-

uous). The estimator was later scaled to the full set of possi-

ble contact states by using a pre-computed contact state

graph (Xiao, 1993) to generate a sparse transition model

between discrete contact states (Meeussen et al., 2007).

Constructing the contact state graph offline mirrors the

MPF’s pre-computation of the contact manifold (Section

6.3).

The key difference between the algorithms is that the

MPF tracks a single mixed-dimensional distribution over

object pose (Section 9.4) that implicitly encodes contact

state. In contrast, the algorithm presented by Meeussen

et al. (2007) explicitly maintains a distribution over contact

states. Tracking a single distribution guarantees that MPF’s

pose estimate incorporates the contact state constraints

imposed by contact observations. This allows the MPF to

use a small number of particles to track the pose of the

object, enabling us to use a computationally expensive phy-

sics model in the transition model. This comes at the cost

of assuming that it is known whether the object lies on the

observable contact manifold, e.g. by using discriminative

contact sensors (Section 6.1).

2.5. Bayesian estimation

The MPF, along with the other Bayesian state estimation

algorithms described above, build on a rich history of

Bayesian estimation research. The Kalman filter (Kalman,

1960), extended Kalman filter, and unscented Kalman filter

(Julier and Uhlmann, 1997) have been shown to be effec-

tive on problems with Gaussian belief states.
1

Unfortunately, none of these techniques are directly appli-

cable to the contact manipulation problem: pushing and

tactile sensing are both highly non-linear and frequently

produce non-Gaussian and multi-modal belief states.

Instead, similar to the prior work described in Sections

2.3 and 2.4, we track the pose of the object using a particle

filter (Gordon et al., 1993). We borrow the concepts of the

dual and mixture proposal distributions from mobile robot

localization literature (Thrun et al., 2000a; Montemerlo

et al., 2003). Particle filters in this domain suffer from a

similar particle starvation problem on robots using very

high-accuracy depth rangefinders or cameras. The dual

proposal distribution solves this problem by sampling parti-

cles directly from the observation model. This is possible

because the vision and depth sensors used on mobile robots

Koval et al. 925



provide high-accuracy readings independent of the true

state. Conversely, contact sensors only provide accurate

readings when the object is in contact with the sensor.

Therefore, the MPF must arbitrate between particles

sampled from the conventional and dual proposal

distributions.

3. Pose estimation for contact manipulation

Let s 2 S be the state of a dynamical system which evolves

over time under actions a 2 A and produces observations

o 2 O. The state estimation problem addresses the compu-

tation of the belief state b(st), the probability distribution

over the state st at time t

b(st)= p(stja1:t, o1:t) ð1Þ

given the history of actions a1:t = (a1,.,at) and observa-

tions o1:t = (o1,.,ot) (Thrun et al., 2005).

We focus on the problem of pose estimation for contact

manipulation, where the goal is to estimate the pose of an

object relative to the hand. In this paper, we specifically

consider the problem of planar contact manipulation with

quasistatic physics (Lynch et al., 1992) and a fixed hand

shape. The quasistatic assumption states that an object will

stop moving as soon as it leaves contact with the hand.

Prior work has shown that this is a good approximation for

the planar manipulation of many household objects (Dogar

and Srinivasa, 2010, 2011; Dogar et al., 2012; Dogar and

Srinivasa, 2012).

As a result of this assumption, state s 2 S = SE(2) is the

pose of the object relative to the hand (Figure 1a, left) and

an action a = (v, Dt) 2 A is the relative velocity of the hand

v 2 se(2) applied for a duration Dt 2 R
+ (Figure 1a, mid-

dle). During contact, the object moves according to a sto-

chastic transition model p(stjst21, at) that encodes the

motion of the object in response to pushing action at. We

model uncertainty in the physics model by drawing the

model’s parameters from a known distribution. Adding

noise to the input, instead of the output, of a physics model

has been shown to avoid inter-object penetration and ensure

that the object’s motion remains physically feasible (Duff,

2011).

After taking action at, contact sensors provide an obser-

vation ot 2 O (Figure 1a, right). This observation is either

a contact observation (ot 2 Oc) or a no-contact observation

(ot 2 Onc = O \ Oc). If ot 2 Oc, then a contact sensor has

fired and the observation ot may provide additional infor-

mation about the pose of the object. Otherwise, if ot 2 Onc,

the observation indicates that contact has not occurred.

Both of these properties are combined into the stochastic

observation model p(otjst, at) as the probability of state st

generating observation ot after executing action at.
2

3.1. Contact manifold

Contact manipulation poses a unique state estimation chal-

lenge because the state evolves on a lower-dimensional

manifold embedded in S. The state space S naturally parti-

tions into: (1) penetrating contact Sinvalid; (2) non-

penetrating contact Sc; and (3) no contact Sfree. These three

sets are defined by the interplay between the geometry of

the object and the geometry of the hand.

Let Ph � R
2 be the geometry of the hand and

Po(s) � R
2 be the geometry of the object at configuration

s 2 S. The set of all object poses that are in collision with

the hand form the configuration space obstacle (Lozano-

Pèrez, 1983)

Sobs =CObstacleo(Ph)= fs 2 S : Ph \ Po(s) 6¼ ;g

of the hand in the object’s configuration space.

Any configuration in Sinvalid = int (Sobs) is invalid

because the object penetrates the hand. Conversely, any

configuration in Sfree = S \ Sobs is in free space where the

object is out of contact with the hand. Therefore, any valid

object configuration of the object that is in contact with the

hand must lie on the contact manifold Sc = Sobs \ int (Sobs)

that forms the boundary between Sinvalid and Sfree.

Figure 2 shows the geometry of the workspace

(Figure 2a) and configuration space (Figure 2b) of a

BarrettHand manipulating a circular bottle. Since the object

Po(s)

Ph

(a) Workspace geometry

s

Sobs

(b) C-space geometry (c) Contact manifold

Fig. 2. (a) Workspace and (b) C-space geometry for a hand pushing a bottle. The contact manifold Sc is the lower-dimensional

boundary between Sinvalid and Sfree. (c) In the case of the asymmetric object in Figure 1, the contact manifold is a two-dimensional

manifold embedded in SE(2). This figure was generated by discretizing the object’s orientation and computing analytic Minkowski

sums as described in Section 6.3.3.
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is radially symmetric, S is simply the set of (x, y) positions

of the object relative to the hand. If the object is not sym-

metric, such as the elongated box shown in Figure 1, S is

the set of three-dimensional (x, y, u) coordinates of the

object relative to the hand, and the contact manifold

(Figure 2c) is a two-dimensional structure embedded in

SE(2). The structure shown in Figure 2c is the C-obstacle

Sobs of the hand in the object’s configuration space. Points

inside the obstacle are is Sinvalid, points outside the obstacle

is Sfree, and the surface separating Sinvalid from Sfree is the

contact manifold Sc. In this case, Sc is repeated twice along

the u–axis because the box exhibits rotational symmetry.

3.2. Observable contact manifold

We know that s 2 Sc during periods of contact. However,

our contact sensors may not be able to sense contact over

the entire surface of the hand. We define the observable

contact manifold So4Sc as the set of object poses that are

capable of generating contact observations o 2 Oc.

Let Ps4Ph \ int (Ph) denote the surface of the hand that

is instrumented with contact sensors. The set Ss of states

that could generate a contact observation is given by the

configuration space obstacle

Ss =CObstacleo(Ps)= fs 2 S : Ps \ Po(s) 6¼ ;g

of the sensors in the object’s configuration space. The

observable contact manifold So = Ss \ Sc consists of the

set of valid object configurations that have high probability

of generating a contact observation ot 2 Oc. Intuitively, So

is the set of object poses that are in non-penetrating contact

with one or more contact sensors.

Figure 3 shows the contact manifold colored by which

sensors are active at each point. For example, states in the

large, dark orange region of the manifold are in contact

with, and, thus, are likely to activate, the left distal contact

sensor. The two disjoint, light orange patches on the top-

right of the manifold contain the two configurations of the

box shown in Figure 4c. Similarly, states in the central tan

region of the manifold are in contact with the palm sensor.

Regions of the contact manifold that are in simultaneous

contact with multiple sensors are drawn as white.

4. Conventional particle filter

In this section, we provide a brief introduction to Bayesian

estimation (Section 4.1) and the CPF (Thrun et al., 2005)

(Section 4.2). We show how the CPF can be applied to the

contact manipulation problem. Unfortunately, we also

Fig. 3. Observable contact manifold So for a two-dimensional BarrettHand pushing a rectangular box. Each point corresponds to a

configuration of the object s 2 Sc that is in non-penetrating contact with the hand and is uniquely colored by the active contact

sensors. Configurations that are in contact with multiple sensors are white. This figure was generated using the analytic representation

of the contact manifold described in Section 6.3.3.

(a) o1∈Onc (b) o1 , . . . , on ∈Onc (c) o1 , . . . , on ∈ Oc

Fig. 4. The contact manipulation problem commonly produces non-Gaussian and multi-modal belief states. (a) Receiving a single no-

contact observation results in a non-Gaussian posterior belief state. (b) Continuing to receive no-contact observations results in a

multi-modal distribution. (c) Contact observations can also result in a multi-modal distribution over the object’s pose.
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demonstrate that the algorithm inherently suffers from par-

ticle starvation (Section 4.4) during periods of contact.

4.1. Bayes filter

The Bayes filter is the most general algorithm for recur-

sively filtering a belief state b(st) (Thrun et al., 2005) given

an initial belief state b(s0) and the history of actions and

observations. This filter assumes that the system satisfies

the Markov property. This property, st’ (a1:t21,o1:t21)jst21,
says that state is a sufficient statistic for all previous
actions and observations. The Markov property is
drawn as a Bayes network in Figure 1b.

We derive the Bayes filter by considering our belief

b(s0:t) = p(s0:tja1:t,o1:t) over the trajectory of states s0:t

reached by starting in state s0 and executing the sequence

of actions a1:t. By applying Bayes rule and the Markov

property, we can derive the recursive update rule

b(s0:t)= p(s0:tja1:t, o1:t)

= h p(otjs0:t, a1:t, o1:t�1)p(s0:tja1:t, o1:t�1)

= h p(otjs0:t, a1:t, o1:t�1)p(stjs0:t�1, a1:t, o1:t�1)

p(s0:t�1ja1:t, o1:t�1)

= h p(otjst, at)p(stjst�1, at)p(s0:t�1ja1:t�1, o1:t�1)

ð2Þ

where h = [p(otja1:t, o1:t21)]21 is a normalization factor

(Thrun et al., 2005). This is equal to the probability of

receiving the sequence of observations o1:t given our

history.

Equation 2 recursively defines the t-step joint belief

b(s0:t) in terms of the (t21)-step joint belief b(s0:t21).

Unfortunately, this means that representing b(s) requires

memory that is exponential in the time horizon t. We shrink

the size of our belief to constant by computing the marginal

b(st)= h p(otjst, at)

Z
S

p(stjst�1, at)Z
p(s0:t�1ja1:t�1, o1:t�1) ds0:t�2 dst�1

= h p(otjst, at)

Z
S

p(stjst�1, at)b(st�1) dst�1

ð3Þ

of the joint belief b(s0:t) over the history s0:t21. This equa-

tion recursively constructs b(st) from b(st21) and, by doing

so, forms the basis of dynamic Bayesian estimation.

There are several ways of implementing the Bayes

update (Equation 3) depending upon the properties of the

system. The Kalman filter (Kalman, 1960) is optimal when

the b(s0) is Gaussian, the transition model is linear, and

observations are corrupted by additive Gaussian white

noise. The extended (Kalman, 1960) and unscented (Julier

and Uhlmann, 1997) Kalman filters relax the constraint

that the system is linear, but still assume that the belief

state is Gaussian.

However, none of these assumptions are valid for the

contact manipulation problem. Even in the simplest quasi-

static case the transition model is a function of the contact

physics between the hand, object, and support surface. This

includes the hand–object geometry and discrete transitions

between contact states. As a result, the transition model is

non-linear and lacks analytic derivatives (Zhang and

Trinkle, 2012). Similarly, the observation model is highly

non-linear because the probability of an observation

sharply changes between Sfree and Sc.

Even worse, the belief state quickly becomes non-

Gaussian even if b(s0) is Gaussian: a single no-contact

observation o1 2 Onc assigns b(s1) zero probability in the

swept volume of the contact sensors (Figure 4a).

Furthermore, b(st) becomes multi-modal (Figure 4b) if the

hand continues to receive no-contact observations. The

belief state can also become multi-model after receiving a

contact observation that does not unambiguously resolve

the object’s orientation. Figure 4c shows one example

where pushing straight causes an object to settle into one

of two stable configurations.

4.2. Particle filter

The particle filter (Gordon et al., 1993; Thrun et al., 2005),

shown in Algorithm 1, is a non-parametric realization of

the Bayes filter that represents the belief state b(st) with a

discrete set of samples. The samples s
½1�
t , . . . , s

½n�
t 2 S,

along with their weights w
½1�
t , . . . ,w

½n�
t 2 R

�0, are called

particles St = fhs½i�t ,w
½i�
t ign

i = 1 and are distributed according

to b(st). The particle filter implements the Bayesian update

by recursively constructing St from St21 using importance

sampling (Smith and Gelfand, 1992).

The key insight behind the particle filter is that it is dif-

ficult to directly sample from the target distribution

(Equation 3), but we can instead sample from a proposal

distribution (Thrun et al., 2005, 2000a)

s
½i�
t ; q(st)

that we choose to be easy to sample from. We make no

assumption about the distribution q(st), except the support

of q is a superset of the support of b(st), i.e. b(st) . 0

)q(st) . 0. Intuitively, q represents a ‘‘guess’’ at the target

distribution that is easier to sample from than the true tar-

get distribution.

Next, the particle filter corrects for the mismatch

between the proposal distribution q(st) and the target distri-

bution by computing importance weights. The importance

weight w
½i�
t for sample s

½i�
t is

w
½i�
t =

b(s
½i�
t )

q(s
½i�
t )

the ratio of the target distribution to the proposal distribu-

tion. Intuitively, importance weights decrease the influence
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of particles that are over-represented (q(st) . b(st)) and

increase the influence of particles that are under-represented

(q(st) \ b(st)) by the proposal distribution.

Given any function f : S ! R, we can use St to approxi-

mate the expectation

Est ; b(st) f (st)½ �’
Xn

i = 1

w
½i�
t f s

½i�
t

� �
ð4Þ

under b(st), assuming the weights are normalized such thatPn
i = 1 w

½i�
t = 1. In the limit as n!N, the right-hand side of

Equation 4 converges to E[f(st)] for st ; b(st). This prop-

erty allows us to treat the weighted set of samples St as a

finite-dimensional approximation of the true belief b(st).

We use the notation St ; b(st) to denote that the set of

particles St has this property.

This sampling strategy is known as sequential impor-

tance sampling (SIS) because it sequentially constructs

St ; b(st) from St21 ; b(st21). Unfortunately, it has been

shown (Thrun et al., 2005) that SIS causes the variance of

the weights to increase over time and, consequently, only

one particle has non-zero weight in the limit. This issue is

solved by using sequential importance resampling (SIR)

to periodically resample (Algorithm 1, Line 7) St with

replacement in proportion to their weights. In practice, we

use low-variance resampling (Thrun et al., 2005) to

implement the resampling step. After resampling, St is

distributed with respect to b(st) with unit weights.

4.3. Conventional particle filter

Implementing the particle filter requires choosing a pro-

posal distribution that satisfies two properties. First, it

should be easy to sample s
½i�
t ; q(st) from the proposal dis-

tribution. Second, it must be possible to compute the impor-

tance weight w
½i�
t = b(st)=q(st).

The most commonly used proposal distribution, which

we refer to as the conventional proposal distribution, is

q(st)=

Z
S

p(stjst�1, at)b(st�1)dst�1 ð5Þ

which is equal to the belief state after taking action at, but

before receiving observation ot. Sampling from Equation 5

is implemented by forward simulating each s
½i�
t�1 2 St�1 to

time t using the transition model s
½i�
t ; p(s

½i�
t js
½i�
t�1, at)

(Algorithm 1, Line 3). Since St21 ; b(st21), the output of

this operation is distributed according to q(st). We refer to

any particle filter that samples from q(st) as a CPF.

Next, the CPF computes an importance weight w
½i�
t

(Algorithm 1, Line 4) equal to the ratio of the target

distribution (Equation 3) to the proposal distribution

(Equation 5)

w
½i�
t =

b(s
½i�
t )

q(s
½i�
t )

=
h p(otjs½i�t , at)

R
S

p(s
½i�
t jst�1, at)b(st�1) dst�1R

S
p(s
½i�
t jst�1, at)b(st�1) dst�1

= h p(otjs½i�t , at) ð6Þ

to compensate for the mismatch between the proposal and

target distributions. In the general case, where St21 has

non-uniform weights, the weight for particle s
½i�
t is given by

w
½i�
t = h w

½i�
t�1p(otjs½i�t , at) where w

½i�
t�1 is the weight of the

particle s
½i�
t�1 that was forward-simulated by the transition

model. The re-weighting step incorporates the observation

ot by assigning higher weights to particles that are consis-

tent with the observation.

4.4. Particle starvation during contact

The CPF is agnostic to the observation model and has been

applied to a variety of domains (Montemerlo et al., 2003;

Gadeyne et al., 2005; Zhang and Trinkle, 2012). However,

the contact manipulation problem is unique because: (1) the

state may become concentrated on the lower-dimensional

contact manifold Sc and (2) contact sensors accurately dis-

criminate between contact and no-contact.

During periods of contact observations are discrimina-

tive and the observation model p(otjst, at) is peaked on So.

Since So is a lower-dimensional manifold, the set of obser-

vations with non-trivial probability form a zero measure

set. As a result, the conventional proposal distribution

(Equation 5) is a poor approximation of the target distribu-

tion (Equation 3) during contact, i.e. no particles in St will

agree with ot with high probability.

In practice, the particle filter is updated in discrete steps.

Executing an action pushes all states that occupy the swept

volume of the hand onto the contact manifold. As a result,

the hand’s contact sensors gain full dimensionality and the

CPF is not completely ineffective. Unfortunately, as

Figure 5a shows, the CPF requires a large number of parti-

cles to increase the probability that some fall into the small

swept volume of each sensor. As a result, the CPF suffers

from particle starvation during periods of contact: there

are often no particles in the vicinity of the true state.

Algorithm 1. Conventional particle filter.

Input: action at2A and observation ot2O

Input: particles St�1 = fhs½i�t�1,w
½i�
t�1ig

n
i = 1 from time

t21 such that St21 ; b(st21)

Output: particles St = fhs½i�t ,w
½i�
t ign

i = 1 at time t such that
St ; b(st)

1: Ŝt  ;
2: for i = 1,.,n do

3: s
½i�
t ; p(s

½i�
t js
½i�
t�1, at)

4: w
½i�
t  w

½i�
t�1p(otjs½i�t , at)

5: Ŝt  fhs½i�t ,w
½i�
t ig [ Ŝt

6: end for

7: St  Resample(Ŝt)
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Figure 6 (top) shows the effect of particle starvation on

the post-contact performance of the CPF. The CPF correctly

filters the belief state before contact in (a)–(b). However,

after contact occurs, b(st) is concentrated on So and impor-

tance sampling fails to accurately represent the distribution.

As a result, the CPF converges to the erroneous belief that

the box has rolled off the finger tip instead of settling into

the palm.

Surprisingly, this effect causes the CPF to perform worse

as sensor resolution or the update frequency increases. We

illustrate the reason for this unintuitive result in Figure 5b

and demonstrate this effect occurs in simulation experi-

ments (Section 7.5). As sensor resolution increases (left-to-

right), the swept volume of each sensor becomes narrower.

As the update frequency increases (top-to-bottom), the dis-

tance traveled by the hand between updates decreases, and

the swept volume becomes shorter. As a result, the particle

filter requires a large number of particles to successfully

track the state.

5. Manifold particle filter

Suppose the state space S is partitioned into m disjoint com-

ponents M = fMjgm
j = 1 such that

Sm
j = 1 Mj = S and Mi \

Mj = ; for i6¼j. In this situation, we can express the belief

state as the weighted sum

b(st)=
Xm

j = 1

b(stjMj) b(st 2 Mj) ð7Þ

over the components j = 1,.,m. The term b(stjMj) is the

conditional belief over Mj and b(st 2 Mj) is the marginal

belief that st is on component Mj.
4

This factorization is

motivated by the case where M1,., Mm21 are lower-

dimensional manifolds and Mm = S n
Sm�1

j = 1 Mj is the

remaining ambient space.

The MPF, shown in Algorithm 2, represents b(st) using a

single set of particles St ; b(st). After taking action at 2 A

and receiving observation ot 2 O, the MPF uses importance

sampling to recursively construct St from St21 ; b(st21)

(Algorithm 2, Lines 4 and 5) just like the CPF. The key

insight behind the MPF is to factor the belief state across

manifolds, as shown in Equation 7, and perform a separate

importance sampling step for each manifold Mj 2 M. This

factorization enables the MPF to use a different sampling

technique to sample from each conditional belief b(stjMj),

which may tailored to the particular structure of Mj. Finally,

the MPF combines the sets of samples drawn from each

manifold to form St (Algorithm 2, Line 9).

Let S
Mj

t = fhsMj½i�
t ,w

Mj½i�
t ignj

i = 1 be the set of nj particles

that we sample from manifold Mj 2 M.
5

First, we sample

the state of each particle s
Mj½i�
t ; q(stjMj) from the

manifold-dependent proposal distribution q(stjMj)

(Algorithm 2, Line 4). Then, we compute the correspond-

ing importance weight w
Mj½i�
t = b(stjMj)=q(stjMj) as the

ratio of the target distribution to the proposal distribution

(Algorithm 2, Line 5). Just as before, we make no assump-

tion about q(stjMj) except that b(stjMj) . 0)q(stjMj) . 0.

Finally, we construct a unified set of particles

St ; b(st) from the m individual sets of particles

S
Mj

t ; b(stjMj) (Algorithm 2, Line 9). We do so by com-

puting the mixture

St =
Xm

j = 1

b(st 2 Mj)S
Mj

t

where the sum aX + cY of the sets of particles

X = fhx½i�,w½i�x ig
nx

i = 1 and Y = fhy½i�,w½i�y ig
ny

i = 1 with non-

negative scale factors a, c 2 R
�0 is defined to be

aX +cY =fhx½i�,aw½i�x =Wxignx

i=0[fhy½i�,cw½i�y =Wyigny

i=0. The

(a) Swept volume of the hand

(b) Spatiotemporal sensor resolution

Fig. 5. (a) Only the small number of particles (dark orange) that

are in the swept volume of the sensors generate contact

observations. Most particles (light blue) generate no-contact

observations. Therefore, the conventional proposal distribution

performs poorly during contact. The light orange circle shows

the geometry of the object for one particular particle. (b)

Increasing the sensor’s resolution or update rate reduces the

swept volume of the sensors. This exacerbates the problem of

particle starvation.
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variables Wx =
Pnx

i=1 w½i�x and Wy =
Pny

i=1 w½i�y denote the

total weight of X and Y, respectively. Since each set

S
Mj

t ;b(stjMj) is individually distributed according to the

conditional belief, the mixture St ; b(st) is distributed

according to the target distribution.

5.1. Marginal belief over manifolds

In order to reconstruct the full belief b(st) using Equation

7, we must also know the marginal belief b(st 2 Mj) over

manifolds. Ideally, we would compute

b(st 2 Mj)=

Z
Mj

b(st) dst,

by marginalizing the current belief state b(st) over each

manifold. Unfortunately, computing this marginal requires

knowledge of b(st): precisely the distribution that we are

trying to estimate.

It may seem reasonable to approximate

b(st 2 Mj)’
R

Mj
b(st�1) dst�1 by computing the marginal

over the previous belief state b(st21). This, however, is not

the case: this approximation treats b(st 2 Mj) as a station-

ary distribution and performs poorly when probability mass

transitions between manifolds: one of the same situations

that cause the CPF performs poorly.

Instead, we rely on domain-specific structure of the

problem to estimate the marginal. In the case of contact

manipulation, we use the discriminative nature of contact

sensors to estimate the marginal (Section 6.1).

5.2. Number of particles per manifold

Our above analysis made no assumption about the number

of particles nj sampled from each manifold. It is generally

Algorithm 2. Manifold particle filter.

Input: action at2A and observation ot2O

Input: proposal distribution q(st|Mj) and number of samples
nj for j = 1,.,m

Input: particles St�1 = fhs½i�t�1,w
½i�
t�1ig

n
i = 1 from time t2 1

such that St21 ; b(st21)

Output: particles St = fhs½i�t ,w
½i�
t ign

i = 1 at time t such that
St ; b(st)

1: for j = 1,., m do

2: S
Mj

t  ;
3: for i = 1,.,nj do

4: s
Mj½i�
t ; q(stjMj)

5: w
Mj½i�
t  b(stjMj)=q(stjMj)

6: S
Mj

t  hsMj½i�
t ,w

Mj½i�
t i

n o
[ S

Mj

t

7: end for

8: end for

9: Ŝt  
Pm

j = 1 b(st 2 Mj)S
Mj

t

10: St  Resample(Ŝt)

C
PF

b (
s t
)

M
PF

b (
s t
)

M
PF

b(
s t
|S
o)

(a) Prior belief (b) Pre-contact (c) Post-contact (d) Final belief

Fig. 6. Snapshots of the CPF and MPF, using analytic representation of the contact manifold, during execution. Unlike the CPF, the

MPF avoids particle starvation by explicitly tracking the probability distribution on the observable contact manifold So.

Koval et al. 931



advisable choose nj ’ n�b(st 2 Mj) to avoid sampling too

many particles in low-probability manifolds. This strategy

is equivalent to using systematic sampling to first sample a

manifold Mj ; b(st 2 Mj) for each particle, then using

importance sampling to sample the particle from the corre-

sponding conditional belief b(stjMj).

However, if domain-specific knowledge is available, it

may be desirable to manually specify the number of parti-

cles nj sampled from Mj. We demonstrate one example of

this technique in Section 6.5. In this case, the set of parti-

cles produced by the MPF will be of size jStj=
Pm

j = 1 nj.

If jStj . jSt21j, then each update of the particle filter will

require additional memory and computation time to com-

plete. To avoid this, we enforce the invariant jStj = jSt21j
by resampling St with replacement (Algorithm 2, Line 10).

6. Manifold particle filter for contact

manipulation

In this section we apply the MPF to the contact manipula-

tion problem by defining the observable contact manifold

M1 = So and the ambient space M2 = S \ So as the relevant

partition of S. We show that, given this partition, it is possi-

ble to compute b(st 2 Mj) using the discriminative nature of

contact sensors (Section 6.1).

Given this partition, the MPF uses the conventional pro-

posal distribution to sample from S \ So and the dual pro-

posal distribution (Section 6.2) to sample from So. We

propose three representations of the observable contact

manifold (Section 6.3) that can be used to implement the

dual proposal distribution. We also present a technique that

uses kernel density estimation for approximating the dual

importance weights (Section 6.4). Finally, we show how to

efficiently mix particles from the CPF and MPF to achieve

better performance than either the CPF or the MPF in isola-

tion (Section 6.5).

Figure 6 shows the performance of the MPF and the

CPF on the same stream of actions and observations.

Before contact (a)–(b), b(st 2 So) ’ 0 and both filters

update using the conventional proposal distribution. After

contact (c)–(d), b(st 2 So) ’ 1 and the MPF samples from

the dual proposal distribution. Sampling from this distribu-

tion allows the MPF to accurately track the object’s pose

during persistent contact.

6.1. Discriminative observation model

Contact sensors accurately discriminate between contact

and no-contact. An observation model is discriminative if

it has a low probability e of generating false-positive or

false-negative observations of contact. Formally, we call an

observation model discriminative if we can partition the set

of observations O into sets of contact Oc4O and

no-contact Onc = O \ Oc observations such that Pr(o 2 Oc

jst 2 So, at) . 1 2 e during contact and Pr(ot 2 Oncj
st;So, at) . 1 2 e during no-contact.

If a sensor is perfectly discriminative, i.e. e = 0, then the

marginal

b(st 2 Mj)=

Z
Mj

b(st)dst = h

Z
Mj

p(otjst, at)Z
S

p(stjst�1, at)b(st�1) dst�1 dst

is binary because st 2 Onc ) p(otjst, at)= 08st 2 So and

st 2 Oc ) p(otjst, at)= 08st 62 So. As a result, the MPF

samples entirely from the dual proposal distribution during

periods of contact. Otherwise, the MPF samples from the

conventional proposal distribution.

For small values of e . 0, we approximate the marginal

by the probability b(st 2 So)}
R

So
p(otjst, at)dst of the sin-

gle most recent observation ot. This approximation is

equivalent to ignoring the history encoded in b(st21) while

computing b(st 2 So). This is a reasonable approximation

of the true marginal for the first few critical post-contact

timesteps, but accumulates bias over time. We suggest two

potential solutions to this problem in Section 9.5.3.

We make no assumptions about the observation model

during contact, i.e. p(otjst, at) for st 2 So. This distribution

models the information provided by the sensors while con-

tact is being observed. In the case of binary sensors, such

as those used in Section 7 and 8, p(otjst, at) is uniform over

the set of states that are in non-penetrating contact with the

active sensors. In the case of a more sophisticated sensor,

like a six-axis force/torque sensor, this distribution encodes

a non-uniform probabilistic model of the sensor.

6.2. Dual proposal distribution

When st 2 So we know that the conventional proposal dis-

tribution is a poor approximation for the posterior and par-

ticle starvation will occur. Instead, we sample from the dual

proposal distribution (Thrun et al., 2000a)

q(st)=
p(otjst, at)

p(otjat)
ð8Þ

to generate a sample s
½i�
t ; q(st) that is consistent with the

latest observation ot.
6

As in prior work (Thrun et al.,

2000b), we assume that p(otjat) is finite. Sampling from

this proposal distribution is non-trivial and may require

domain-specific knowledge (Thrun et al., 2000a). In the

case of contact manipulation, we build an approximate rep-

resentation of the observable contact manifold (Section

6.3) to facilitate this sampling.

Just as before, we can find the corresponding dual

importance weights

w
½i�
t =

b(s
½i�
t )

q(s
½i�
t )

=
h p(otjs½i�t , at)

R
S

p(s
½i�
t jst�1, at)b(st�1) dst�1

p(otjs½i�t , at)=p(otjat)

= h0
Z

S

p(s
½i�
t jst�1, at)b(st�1) dst�1 ð9Þ
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with normalization factor h0 = hp(otjat). We obtained this

equation by dividing the target distribution (Equation 3) by

the proposal distribution (Equation 8). We discuss how to

approximate these weights using kernel density estimation

in the next section (Section 6.4).

The conventional proposal distribution forward-predicts

using the motion model and computes importance weights

using the observation model. Conversely, the dual proposal

distribution samples particles from the observation model

and weights them by how well they agree with the motion

model. Sampling from the dual proposal distribution is

effective when p(otjst, at) is peaked around the true state

(Thrun et al., 2000a).

6.3. Representing the contact manifold

Sampling a particle s
½i�
t ; q(st) requires generating particles

that lie on the observable contact manifold So. To do so,

we compute an approximate representation ~So’So of the

observable contact manifold as a pre-computation step.

Then, at runtime, we sample from a distribution over ~So

weighted by p(otjst, at)/p(otjat).

We describe three possible representations of ~So. Two of

these, the rejection sampling (Section 6.3.1) and trajectory

rollout (Section 6.3.2) representations, approximate So with

large set of discrete samples ~So’So. The third technique

(Section 6.3.3) takes advantage of additional structure in

object-hand geometry to solve for a continuous, analytic

representation of So.

6.3.1. Rejection sampling. The most straightforward way

of sampling from So�S is by rejection sampling from the

ambient space S. Rejection sampling iteratively samples

candidate states s[i] ; uniform(S) until it finds a sample

s[i] 2 So in the desired set. Using this technique, we can

generate a large set of samples ~So = fs½i�gn
i = 1 � So that

densely cover So in a pre-computation step. At runtime, we

sample from the discrete set ~So weighted by p(otjst, at)/

p(otjat).

Unfortunately, rejection sampling fails for the same rea-

son as the CPF: So is a measure-zero set and there is zero

probability of successfully sampling an s[i] 2 So. Instead,

we rejection sample the set

~So = s 2 S : min
ps2Ps, po2Po(s)

jjps � pojj � e

� �

of object configurations that are within distance e 2 R
+ of

the hand. The set ~So is a reasonable approximation for So

when e is on the same order of magnitude as the numerical

inaccuracies of the motion and observation models.

Figure 7a shows So covered by a set of 10,000 rejection-

sampled configurations ~So of the BarrettHand in contact

with the rectangular box shown in Figure 3. The samples
~So are not exactly on So and are distributed uniformly over

the ambient space S, instead of uniformly across the sur-

face of the manifold. This is, in most cases, an acceptable

approximation for a true uniform distribution over So.

Sampling from the dual proposal distribution is imple-

mented by importance sampling from the set ~So using the

weights given in Section 6.4. In the worst case, generating

these samples requires evaluating the importance weight of

all j~Soj particles. Our experimental results (Section 7 and

9.2) suggest that the computational cost of evaluating the

dual importance weights is insignificant compared to other

parts of the algorithm. This can be further reduced to sub-

linear complexity using a spatial index, e.g. a k-d tree

(Bentley, 1975), if the kernel used to compute importance

weights has finite support.

6.3.2. Trajectory rollouts. Rejection sampling attempts to

densely cover all of So with samples that are independent of

the prior belief b(s0). As a result, many of the samples gen-

erated by rejection sampling will be found in regions of So

that remain low (or, in the extreme case, zero) probability

during execution. We can exploit this structure by concen-

trating more samples in the regions of So that we are likely

to encounter during execution.

We can generate samples ~So that are biased towards

these regions by performing trajectory rollouts from the ini-

tial belief b(s0). We begin by sampling a particle from the

prior s
½i�
0 ;b(s0). Next, we forward-simulate the particle for

(a) Rejection sampling (RS) (b) Trajectory rollouts (TR) (c) Analytic representation (AM)

Fig. 7. Three representations of the contact manifold. The (a) rejection-sampled and (b) trajectory rollout representations approximate

Sc with discrete sets of samples. The (c) analytical representation explicitly solves for exact orientation isocontours of the manifold.
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T steps using the motion model s
½i�
t ; p(stjst�1, at) with

at ; p(b(st)) chosen according to the same policy p that

will be run during execution.
7

Finally, we add any s
½i�
t 2 So

to ~So. This process repeats until j~Soj reaches the desired

size.

Figure 7b shows 10,000 samples taken from 2000 trajec-

tory rollouts with a fixed ‘‘move straight’’ action and b(s0)

roughly centered in front of the hand. The trajectory rollout

technique achieves dense coverage of the reachable area of

the state space, which consists of the front of the hand with

orientations consistent with b(s0), at the cost of little-to-no

coverage of the rest of the manifold.

Unfortunately, the non-uniformity of our samples means

that ~So is biased towards absorbing regions of the state

space, e.g. the configurations where the object rests stably

against the hand in Figure 4c. We compensate for this bias

through importance sampling: we assign each s½i� 2 ~So an

importance weight p(ojs, a)=½p(oja)~p(s)� where ~p(s) is the

density of ~So at s. We estimate ~p(s) using a standard kernel

density estimation technique (Rosenblatt, 1956) on ~So.
8

Once these weights have been computed, we use the same

technique as described in Section 6.3.1 to sample from the

dual proposal distribution.

6.3.3. Analytic representation. In some special cases of

hand–object geometry we can compute an analytic repre-

sentation of So. This is possible, for example, in the

common case where Ph and Po are polygons in R
2

(Lozano-Pèrez, 1983) or polyhedra in R
3 (LaValle, 2006).

Without loss of generality, we consider polygonal

objects in SE(2). In this case, we can geometrically com-

pute the C-obstacle Sobs(u) for a fixed orientation u of the

object as

Sobs(u)= Ph 	�Po ½0, 0, u�ð Þ

where A4B = {a + b: a 2 A, b 2 B} denotes the

Minkowski sum of sets A and B.

Since Ph and Po([0, 0, u]) are polygonal, Sobs(u) is also

polygonal and can be computed in closed form via a con-

volution of Ph and Po ([0, 0, u]) (Wein, 2013). The contact

manifold Sc(u) at orientation u simply consists of the line-

string boundary of the polygon Sobs(u). Figure 7c shows

several u-isocontours of Sc superimposed over a high-

resolution polyhedral approximation of the contact mani-

fold. The same process can be repeated with Ph and Ps to

construct an analytic representation of So(u).

Finally, we approximate the observable contact manifold

as a union ~So =
S

u2Y So(u) over a large, discrete set of

orientations Y.
9

Discretizing u approximates So with a

polyhedron ~So that shares the same isocontours as So at all

u 2 Y.

Sampling an s½i� ; ~So is possible by first sampling a u 2
Y, then uniformly sampling an s[i] from our analytical rep-

resentation of So(u). Alternatively, one could sample from

an approximate, polyhedral representation of So by

interpolating between isocontours. In both cases, the sam-

ples are correctly drawn uniformly with respect to a mea-

sure defined over the lower-dimensional So.

6.4. Dual importance weights

Regardless of the method we use to sample from the dual

proposal distribution, we must weight each sample s
½i�
t with

its corresponding importance weight w
½i�
t =

R
S

p(stjst�1, at)

b(st�1) dst�1. Intuitively, the importance weight integrates

our prior belief b(st21) and the effect of taking action at

into b(st) (Thrun et al., 2000a). This is the logical dual of

the conventional importance weights, which serve to inte-

grate the observation ot into the posterior (Section 4.3).

We evaluate w[i] by forward propagating each particle

s
½i�
t�1 2 St�1 from time t 2 1 to time t using the transition

model s
½i�
t ;p(s

½i�
t js
½i�
t�1, at). This set of samples, which we

denote by S+
t�1, is distributed according to our belief state

after taking action at, but before receiving the next observa-

tion ot. Then, we use S+
t�1 to approximate the importance

weight w½i�=
R

S
p(stjst�1, at)b(st�1)dst�1 using a density

estimation technique (Thrun et al., 2000a).

Ideally, we would compute a density estimate over the

manifold So. Unfortunately, while there has been some

work on density estimation on Riemannian manifolds

(Pelletier, 2005), it is difficult to apply these techniques to

the approximate and sample-based representations of So

described above. This is exacerbated by the fact that many

of our forward-simulated particles will not lie precisely

on So.

Instead, we use kernel density estimation (Rosenblatt,

1956) to promote S+
t�1 into a full-dimensional distribution

over S and evaluate w
½i�
t using the density estimate over the

full space. The belief given by our forward propagated par-

ticles S+
t�1 = hs½i�t�1, + ,w

½i�
t�1, + i

n
i = 1 is

b(st�1, + )’
Xn

i = 1

w
½i�
t�1, + K st�1, + � s

½i�
t�1, +

� �

where K = d(�) is the Dirac delta function. This distribution

has discrete support because b(st) = 0 for all st 62 S+
t�1.

Applying kernel density estimation to S+
t�1 replaces d(�)

with a kernel function K(�) with broad support, e.g. an

Epanechnikov (Epanechnikov, 1969) or Gaussian kernel.

This allows us to evaluate b(st21, + ) for the particles St that

we sampled from the dual proposal distribution.

In practice, we choose K(�) to be a Gaussian kernel and

select the bandwidth matrix using a multivariate generaliza-

tion of Silverman’s rule of thumb (Silverman, 1981). Our

estimate is effectively restricted to So because it is only eval-

uated on the samples drawn from the dual proposal distribu-

tion. Figure 6 shows an example of the resulting density

estimate over Sfree (Figure 6, middle) and So (Figure 6, bot-

tom) computed using this technique.
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6.5. Mixture proposal distribution

Just as how the conventional proposal distribution performs

poorly with accurate sensors, the dual proposal distribution

performs poorly when there is observation noise (Thrun

et al., 2000a). The MPF uses the dual proposal distribution

to sample from So and, as a result, shares the same weakness.

We use a mixture proposal distribution (Thrun et al.,

2000a) to mitigate this effect by combining both sampling

techniques. Instead of sampling all of the particles from the

MPF, we sample some particles jScpfj = n from the CPF

and the remaining particles jSmpfj = d from the MPF. The

mixture proposal distribution combines the two sets of par-

ticles with the weighted sum (1 2 f)Scpf + fSmpf with

0 � f � 1 before resampling.
10

We seamlessly combine the mixture proposal distribu-

tion and the MPF’s manifold mixing step (Algorithm 2,

Algorithm 9) into a single update. To do so, we rewrite the

mixture proposal distribution as

St = (1� f)Scpf + f b(st 2 M1)S
M1

t + b(st 2 M2)S
M2

t

� �
= (1� f)Scpf + f b(st 2 M1)S

M1

t + b(st 2 M2)(Scpf \M2)
� �

= (1� f)(Scpf \M1)+ 1� f + f b(st 2 M2)½ �
(Scpf \M2)+ f b(st 2 M1)S

M1

t

by partitioning Scpf into the particles Scpf \ M1 on the

observable contact manifold M1 = So and those Scpf \ M2

in free space. This factorization is possible because both Scpf

\ M2 and S
M2
t are both generated by sampling from the

conventional proposal distribution. This combined update

rule can be interpreted as assigning additional weight to the

particles Scpf \ M2 in the ambient space to avoid biasing St

towards So.

The parameters n and d can be interpreted as the mini-

mum number of samples necessary to cover the high-

probability regions of, respectively, the ambient space

M2 = S n So and the observable contact manifold So. The

mixing rate 0 � f � 1 parameter allows the algorithm to

smoothly transition between the CPF (f = 0) to the MPF

(f = 1). Increasing f provides better performance when

transitioning between manifolds, but only at the cost of

becoming more sensitive to erroneous observations (Thrun

et al., 2000a).

The output of the mixture is a set of jStj = n + d parti-

cles distributed according to the target distribution

(Equation 3). Then, as described in Section 5, we resample

St with replacement to enforce the invariant that

jStj = jSt21j = n. This invariant is critical to ensure the

MPF, just like the CPF, can be recursively updated without

increasing in computational complexity.

Due to this resampling, the MPF fundamentally differs

from related particle filtering techniques (Gadeyne et al.,

2005; Meeussen et al., 2007) that track a distribution over

contact formations (Xiao, 1993). In the general case, esti-

mating the distribution b(st 2 Mj) over manifolds is as hard

as solving the filtering problem itself (Section 5.1). In this

paper we specifically consider the case where contact

sensors are discriminative (Section 6.1) and b(st 2 Mj) is

binary. In future work, we are interested in using these

complementary techniques to estimate to estimate

b(st 2 Mj) for non-discriminative sensors.

The MPF uses this estimate of b(st 2 Mj) to maintain a

single set of particles that span all manifolds. It is not mean-

ingful to identify whether a particular particle was sampled

from the ‘‘conventional’’ or ‘‘dual’’ proposal distribution

since they are seamlessly mixed as part of the same poster-

ior distribution.

7. Simulation experiments

We designed a set of simulation experiments to compare

the MPF with the CPF for the state estimation for contact

manipulation problem (Section 7.4 and 7.5). We also ran

experiments to explore the differences between the three

representations of the contact manifold (Section 7.6) and

the effect of the mixing rate parameter (Section 7.7).

7.1. Hypotheses

Based on the particle starvation problem described in

Section 4.4, we hypothesize the following.

H1. The MPF will outperform the CPF after contact.

Increasing the sensor resolution or update rate should

make this difference more pronounced because it reduces

the swept volume of the sensors. As this happens, the CPF

will begin to suffer from particle starvation. Therefore, we

hypothesize as follows.

H2. The CPF will perform worse as sensor resolution

increases; the MPF will not.

H3. The CPF will perform worse as the sensor update rate

increases; the MPF will not.

All of the above hypotheses (H1–H3) should be true

regardless of which representation of the contact manifold

is used by the MPF. Since AM faithfully represents the con-

tinuous manifold, we hypothesize as follows.

H4. The analytic representation of the contact manifold will

perform best.

Surprisingly, our results suggest that H4 is false: TR

outperforms AM despite the fact that it is a sample-based

approximation of the true contact manifold. We discuss a

possible explanation of this result in Section 7.6.

Between the sample-based representations, we expect

TR to outperform RS. RS attempts to represent the contact

manifold at a uniform resolution. In contrast, TR focuses

samples on regions of the contact manifold that we are

likely to encounter during execution. Therefore, we

hypothesize as follows.

H5. The trajectory rollout representation will outperform the

rejection sampled representation.
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7.2. Experimental design

We implemented the CPF and MPF in a custom two-

dimensional kinematic simulation environment with poly-

gonal geometry. Each experiment consisted of a simulated

BarrettHand pushing a rectangular box in a straight line at

a speed of 1 cm/s for 50 cm. The initial belief state was set

to b(s0)=N (�s0,S) with covariance S1/2 = diag[5 cm,

5 cm, 20�]. The mean �s0 = (�x0,�y0, �u0) was placed a fixed

distance �x0 = 20cm from the hand and was assigned a ran-

dom lateral offset �y0;uniform½�10cm, 10cm� and orienta-

tion �u0;uniform½08

, 360
8 � for each trial.

We simulated the motion of the object using a

penetration-based quasistatic physics model (Lynch et al.,

1992) with a 1 mm step size. Before each step, the finger–

object coefficient of friction mf and the radius of the object’s

pressure distribution c were sampled from the Gaussian dis-

tributions mf ; N(0.5,0.22) and c ; N(0.05,0.012) trun-

cated to enforce mf, c . 0. Binary observations were

simulated for each of the hand’s sensors, which were uni-

formly distributed across the front surface of the hand, by

computing the intersection of each sensor with the object.

Observations were assumed to be perfectly discriminative,

but the observation model had a 10% chance of generating

an incorrect observation during contact, i.e. an incorrect

sensor would fire. These observations were simulated by

applying the same observation model to a special ‘‘ground

truth’’ particle s
t sampled from s
0;b(s0).

7.3. Dependent measures

We evaluate the performance of an estimator by computing

the root mean square error (RMSE)

RMSE(St, s
t )=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1 (s

½i�
t � s
t )

2w
½i�
tPn

i = 1 w
½i�
t

vuut
of the particles St = fhs½i�t ,w

½i�
t ign

i = 1 with respect to the true

state s
t at time t. Instead of combining the position error

(measured in centimeters) with the orientation error (mea-

sured in degrees), we report separate RMSE values for posi-

tion and orientation.

7.4. Conventional versus manifold particle filter

(H1)

We ran the CPF with n = 100 particles and the MPF with

n = 100 conventional, d = 25 dual particles, and a mixing

rate of f = 0.1. We intentionally chose the same value of n

for both algorithms, despite the addition of d dual particles

for the MPF, because the dual sampling step adds negligi-

ble overhead to the runtime of the algorithm (Section 9.2).

This means that both the CPF and MPF are tuned to run at

approximately the same update rate. The MPF sampled

from an analytic representation of the contact manifold that

was pre-computed with 1 mm linear and 1.15� angular

resolution.

Figure 8a shows the performance of both filters aver-

aged over 900 trials. These results show that, as expected,

both filters behave similarly before contact (t � 0) and

there was not a significant difference in RMSE. After con-

tact (t . 0), the MPF quickly achieves 4.4 cm less RMSE

than the CPF. Figure 6 shows one example where the MPF

achieved a significantly better pose estimate than the CPF.

These results support hypothesis H1: the MPF achieves

lower post-contact error than the CPF.
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Fig. 8. Comparison between the CPF and the MPF-AM in simulation. (a) The CPF and MPF perform identically before contact, but

the MPF significantly outperforms the CPF post-contact. (b) The MPF improves as spatial sensor resolution increases, whereas the

CPF declines in performance. (c) Similarly, the MPF improves and the CPF declines when faced with a faster update frequency. Note

that resolution improves when moving from left-to-right in (b) and (c). In all cases, error bars indicate a 95% confidence interval.
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7.5. Spatiotemporal sensor resolution (H2–H3)

We evaluated the effect of sensor resolution on estimation

accuracy by varying the resolution of binary contact sen-

sors. In all cases, the sensors are distributed uniformly over

the front surface of the hand. Figure 8b shows the relative

performance of the CPF and MPF for three different resolu-

tions averaged over 95 trials. As expected, the CPF per-

forms worse as the spatial sensor resolution increases. In

contrast, the MPF performs better. This confirms hypoth-

esis H2.

In addition, we measured the performance of the filters

as we varied the distance traveled between sensor updates

from 5 mm to 4 cm. Since the hand was moving at a con-

stant velocity, this corresponds to changing the sensor’s

update frequency. Figure 8c shows the performance of the

CPF and MPF averaged over 95 trials. As expected, the

CPF performs worse as the update frequency increases.

In contrast, the MPF performs better and confirms hypoth-

esis H3.

7.6. Contact manifold representation (H4–H5)

We also compared the performance of the MPF using the

RS, TR, and AM representations of the observable contact

manifold. The RS representation consisted of 10,000 sam-

ples that were held constant throughout all of the experi-

ments. The TR representation generated a different set

10,000 samples for each experiment by collecting 5 sam-

ples each from 2000 trajectory rollouts using the same phy-

sics model as used during execution. The AM was built

using the parameters described in Section 7.2.

Figure 9a shows the performance of the three representa-

tions averaged over 900 trials. The MPF outperformed the

CPF with all three representations. As expected, the data

supports hypothesis H5: MPF-AM and MPF-TR both

outperform MPF-RS. This occurs because the RS represen-

tation attempts to cover the entire surface So with a coarse

set of samples. In contrast, the TR representation focuses

the same number of samples on the smaller region of So that

is encountered during execution.

Surprisingly, however, hypothesis H4 was not supported

by the data: MPF-AM did not achieve lower error than

MPF-TR representation. This is partially explained by same

reasoning as above: the TR representation was able to den-

sely cover the reachable subset of So at a resolution indistin-

guishable from that of the AM representation. In addition,

we know that every sample drawn from the TR representa-

tion must be reachable from the initial belief b(s0). This

means that MPF-TR does not waste samples from the dual

proposal distribution in regions of So that are known to be

unreachable from b(s0).

Our intuition is that the relatively poor performance of

the MPF-RS is a result of it frequently failing to sample

from the dual proposal distribution. Sampling from the

dual proposal distribution fails when all particles sampled

from ~So have low probability p(otjst, at) of generating ot.

This occurs when the high-probability regions of p(otjst, at)

are not represented by our approximation ~So. In the case of

binary contact sensors, a sampling failure typically occurs

when several sensors are simultaneously active at runtime

that were never observed to be simultaneously active while

pre-computing ~So.

Figure 9b shows the rate of sampling failures for the

MPF-AM, MPF-RS, and MPF-TR computed over 900

trials. We formally define a sampling failure as an update

where p(otjst, at) \ 0.1 for all st 2 ~So. Since there is a

10% chance of receiving an erroneous observation during

contact (Section 7.2), this corresponds to ~So containing no

states that are consistent with ot. Under this metric, the TR

and AM representations fail to sample from the dual pro-

posal distribution for \ 30% of updates. Conversely, the
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Fig. 9. (a) Performance of MPF using the rejection-sampled (RS), trajectory-rollout (TR), and analytical (AM) manifold

representations. In both cases, the data is aligned such that contact occurs at t = 0. (b) Percent of the time that the MPF succeeded at

sampling from the dual proposal distribution during contact. (c) Performance of the MPF-AM as a function of the mixing rate

0 � f � 1. In all three figures the performance of CPF is plotted as a dotted line and error bars denote a 95% confidence interval.
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RS representation fails to sample . 70% of updates. When

sampling fails the MPF behaves identically to the CPF and

suffers from the same problem of particle starvation. As a

result, MPF-RS performs poorly compared to MPF-AM

and MPF-TR.

7.7. Mixing rate

In addition to the manifold representation selected, the mix-

ing rate parameter f also has a strong impact on the perfor-

mance of the MPF. We repeated the experiments described

in Section 7.4 while varying the MPF-AM’s mixing rate

over the set f = {0.025, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}.

Note that f = 1 corresponds to the pure MPF. Figure 9c

shows the post-contact performance of the MPF averaged

over 150 trials and plotted as a function of f. The perfor-

mance of the CPF (f = 0) is plotted as a horizontal dotted

line.

As expected, the MPF outperforms the CPF for all f

. 0. Surprisingly, however, the optimal value of f falls

into the lowest range of f values 0.025 � f � 0.1 that

we tested. Increasing f out of this range leads to a predict-

able, linear increase in error. This occurs for two reasons.

First, the dual proposal distribution performs poorly when

there is observation noise (Thrun et al., 2000a). Second, the

MPF samples from an approximation of the dual proposal

distribution that has higher variance than the true posterior

belief. Reducing the mixing rate decreases the rate at which

this variance grows. See Section 9.3 for more discussion of

this phenomenon.

8. Real-robot experiments

We evaluated the CPF and MPF on Andy (Bagnell et al.,

2012), a bimanual manipulator developed for the DARPA

ARM-S competition. Andy used a Barrett WAM arm

(Salisbury et al., 1988) equipped with the i-HY (Odhner

et al., 2013) end-effector to push an object across a table.

The i-HY’s palm (48 tactels), interior of the proximal links

(12 tactels each), interior of the distal links (6 tactels each),

and fingertips (2 tactels each) were equipped with an array

of tactile sensors (Tenzer et al., 2014) based on MEMS bar-

ometer technology. The tactels were grouped into 39 verti-

cal stripes to compensate for dead tactels and to simplify

the observation model.

Figure 10 shows two representative runs of the state esti-

mator on Andy. The ground-truth pose of the object was

tracked by an overhead camera using a visual fiducial. Both

filters were run with 250 particles, with n = 250 for the

CPF and n = 225, d = 25, f = 0.1 for the MPF, and were

updated after each 5 mm of end-effector motion. With the

speed of the arm, this corresponded to an update rate of

approximately 5–15 Hz.

In Experiment 1, Andy pushed a metal box that made

initial contact with the right proximal link (b) and rolled

into the palm (c). The CPF did not have any particles in the

small observation space and, thus, failed to track the box as

it rolled into the palm (d). The MPF successfully tracked

the box by sampling particles that agree with the observa-

tion. Note that the MPF was able to exploit the observation

of simultaneous contact on the palm and distal link to cor-

rectly infer the orientation of the box.

In Experiment 2, Andy pushed a cylindrical container

that made initial contact with its left fingertip (e). The

cylinder rolled down the distal (f) and proximal (h) links to

finally settle in the palm (i). Both the CPF and MPF made

use of the initial contact observation to localize the con-

tainer near the robot’s left fingertip. However, the CPF’s

few remaining particles incorrectly rolled off of the finger-

tip and outside the hand. The MPF avoided particle starva-

tion near the true state and was able to successfully track

the container for the duration of contact.

9. Discussion

In this section, we discuss the MPF in greater detail, dis-

cuss its limitations, and outline several directions for future

work. In particular, we analyze the computational

Experiment 1

(a) (b) (c) (d)

Experiment 2 C
am
era

C
PF

M
PF

(e) (f ) (h) (i)

Fig. 10. Andy pushing a box (a)–(d) and cylinder (e)–(i) across the table. The top row shows a video of the experiment from an

overhead camera. The bottom two rows show the belief state estimated by the CPF (middle, dark blue) and MPF (bottom, light

orange) as a cloud of particles. Ground truth is shown as a thick green outline. In both cases, the belief state estimated by the MPF is

more accurate than that estimated by the CPF.
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complexity of the MPF (Section 9.2) and formally ground

the MPF using measure theory (Section 9.4).

9.1. Observability of contact

Contact sensors frequently do not cover the entire surface

of a hand. For example, the proximal links of the

BarrettHand are not covered with tactile sensors and the

SynTouch BioTac (Fishel and Loeb, 2012) sensor only pro-

vides tactile sensing on the interior of the fingertip. Even

the iHY hand (Odhner et al., 2013), which tightly inte-

grates TakkTile sensors (Tenzer et al., 2014) into its

mechanical design, does not cover the outside surface of

the hand with sensors. As a result, it is important to con-

sider the effect that observability of contact has on our state

estimation ability.

The difference between ‘‘contact’’ and ‘‘observed con-

tact’’ is captured in our definitions of the contact manifold

Sc and the observable contact manifold So4Sc. The geome-

try of the non-observable region of the contact manifold

Sc\So impacts the difficulty of the state estimation for con-

tact manipulation problem. Any stable states in that are not

in contact with a sensor, e.g. those that come to rest against

a flat surface, will accumulate belief when receiving a series

of no-contact observations. The only way to sense an object

in one of these poses is to perform an action that moves the

object out of Snc by pushing it into contact with a sensor.

9.2. Computational complexity

One practical advantage of the MPF over the CPF becomes

apparent when profiling the operations performed by the

two algorithms. We will express the complexity of the two

algorithms in terms of several basic operations: (1) the

number of samples drawn from the transition model; (2)

the number of times the observation model was evaluated;

(3) number of samples drawn from the contact manifold;

and (4) other operations.

Each update of the CPF begins by drawing n samples

from the transition model (Table 1(a)). Then, we compute

an importance weight (Table 1(b)) for each of the n sam-

ples by evaluating the observation model. Finally, we must

perform O(n) operations to resample the particles with unit

weight.

Given a fixed number of particles, the MPF both

achieves better performance and has higher complexity

than the CPF. The MPF samples from the conventional pro-

posal distribution and still requires drawing n samples from

the transition model and evaluating the observation model

n times. In addition, the MPF samples d from the contact

manifold (Table 1(c)). Computing the importance weights

for these particles (Table 1(d)) involves evaluating an O(n)

kernel density estimate for each of the d particles, resulting

in O(nd) total complexity. Mixing and resampling the

resulting particles requires an additional O(n + d) time.

In practice, we have found that the large increase in per-

formance provided by the MPF dramatically outweighs the

small increase in computational complexity. This occurs

because, as shown in Table 1, the four operations described

above take dramatically different amounts of time.

Sampling from the transition model dominates the majority

(79.35%) of the runtime because each sample involves run-

ning a computationally-expensive physics simulation.

Evaluating the observation model consumes much

(17.82%) of the remaining runtime because of the large

number of collision checks required to simulate an obser-

vation. All remaining operations, including the overhead

incurred by the MPF when sampling from the dual pro-

posal distribution, is negligible (1.38%) compared with

these two operations.

Note that the time required to evaluate the transition and

observation models depends largely on the composition of

b(st). When b(st 2 Sfree) is high, then few particles are

likely to be touching the hand and the transition and obser-

vations models can be sped up through intelligent use of

conservative, broad-phase checks (e.g. bounding box inter-

section queries). This suggests that particles on Sc are

‘‘more expensive’’ than those in the ambient space Sfree. It

may be possible to leverage this insight by modifying the

resampling step to keep more particles in Sfree. Those parti-

cles would be down-weighted to avoid biasing the distribu-

tion towards no-contact.

In addition to the runtime performance described above,

the MPF incurs a one-time cost to build a representation of

Table 1. Time required to perform the sampling stages of the (a)–(b) CPF and (a)–(d) MPF. Nearly all time is spent evaluating the (a)–

(b) transition and observation models necessary to implement the conventional proposal distribution. In comparison, the time required

to sample from the (c)–(d) dual proposal distribution is negligible. Timing information was collected on one core of a 3.4 GHz Intel i7

processor.

No contact Contact

Operation Complexity Time (ms) Percentage Time (ms) Percentage

(a) Conventional proposal O(n) 20.36 65.85% 130.37 79.35%
(b) Conventional weights O(n) 8.77 28.36% 29.28 17.82%
(c) Dual proposal O(n + d) – – 0.02 0.01%
(d) Dual weights O(nd) – – 2.25 1.37%
(e) Other – 1.80 5.79% 2.37 1.45%

Total 30.92 100% 164.29 100%
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the contact manifold. Building the contact manifold is only

required once per hand-object pair and is done as an offline

pre-computation step that does not affect the speed of the

algorithm at runtime. For the parameters described in

Section 7, constructing the contact manifold took 51.96 s

for the analytic representation, 451.45 s for the rejection-

sampled representation, and 429.49 s for the trajectory

rollout representation. In all three cases, the resolution para-

meters were intentionally tuned to maximize the estimator’s

runtime performance with no regard for pre-computation

time. Reducing the resolution of the manifold could drama-

tically reduce pre-computation time, while having a rela-

tively small effect on the MPF’s accuracy.

9.3. Mixing rate parameter

Our experimental results (Section 7) show that, surprisingly,

the the optimal choice of mixing rate f is much closer to

f = 0 than f = 1. This may seem counter-intuitive: the

MPF outperforms the CPF, so one would expect increasing

f to improve performance. Two competing forces partially

mitigate this effect: (1) the susceptibility of the dual pro-

posal distribution to observation noise and (2) the tendency

for the dual proposal distribution to increase the variance of

the posterior distribution.

First, the dual proposal distribution performs poorly

when confronted with sensing errors (Thrun et al., 2000a).

Receiving an erroneous observation can cause the majority

of the particles sampled from the dual proposal distribution

to lie in the wrong region of the state space. This stems

from the same underlying problem described in Section

4.4: when an observation error occurs, the proposal distri-

bution is a poor approximation of the target distribution.

As a result, it would take a prohibitively large number of

samples to faithfully represent the posterior. Using the mix-

ture proposal distribution (Section 6.5) leverages the com-

plementary nature of the conventional and dual proposal

distributions to avoid the worst-case behavior of either dis-

tribution (Thrun et al., 2000a).

Second, the belief state tracked by the pure MPF tends

to increase in variance over time. This occurs because we

use kernel density estimation to compute the importance

weights for particles sampled from the dual proposal distri-

bution. Kernel density estimation, as described in Section

6.4, replaces the Dirac delta function in the filtering distri-

bution with a kernel that has broad support. As a result, par-

ticles sampled from the dual proposal distribution generally

have higher variance than those sampled from the true pos-

terior distribution. This variance increases over time as the

estimator is recursively updated. Assigning a low weight to

the particles sampled from the MPF, by choosing a low

value of f, reduces the rate at which the variance grows.

These results suggest that the mixing rate should vary

between update steps. The mixture rate should be high

when sampling from conventional proposal distribution

performs poorly, e.g. when transitioning from no-contact to

contact or moving between contact sensors. Otherwise, f

should kept near f = 0 to avoid introducing variance into

the posterior. We are interested in exploring this idea in

future work. For example, we could vary f as a function of

the number of effective particles (Liu, 2008) in the CPF

posterior.

9.4. Measure-theoretic considerations

Regardless of whether the observation model is dis-

criminative, our derivation of the MPF in Section 5 relied

on our ability to factor the belief state b(st)=Pm
j = 1 b(stjMj)b(st 2 Mj) into a m separate conditional

probability distributions and a marginal distribution

b(st 2 Mj) over the manifolds. However, this definition

introduces an apparent inconsistency: how can b(st 2 Mj)

possibly be non-zero when Mj is a lower-dimensional

manifold?

We can answer this question using measure theory.

Formally, our probability space (S, F, m) consists of the

sample space S, the s-algebra of events F4 2S, and a prob-

ability measure m : F ! R. Most applications assume that

m is isomorphic to the Lebesgue measure l : F ! R over

the unit interval (Rokhlin, 1962). Any measure that satis-

fies this property would assign m(Mj) = 0 for the lower-

dimensional manifolds i \ m. Unfortunately, this not the

case for the MPF because non-zero probability is concen-

trated on the lower-dimensional manifolds M1,.,Mm21�S.

Since the n-dimensional Lebesgue measure assigns zero

measure to any set with dimension less than n, there does

not exist a measurable map between m and l. For example,

it is possible that m(Mj) . 0 and l(Mj) = 0 for j \ m.

However, we can express the probability measure

m =
Pm

j = 1 mj as the sum of the m measures m1,.,mm

where each mj : 2Mj \ F ! R is a measure over Mj. If the

measures m1,.,mm are partial probability measures
11

and

satisfy
Pm

j = 1 mi(Mj)= 1, then m is a probability measure

over S. Any probability distribution m0 over M1,.,Mm can

be defined in terms of a probability density function p(s)

with respect to m. In this case, the probability density func-

tion is the Radon–Nikodym derivative of m0 andR
A

p(s) dm(s) is the Lebesgue integral of p(s) over A4S,

both taken with respect to measure m (Resnick, 1999). The

derivation of the MPF in Section 5 implicitly assumes that

all densities and integrals are defined in this way.

We intuitively arrived at the same understanding by fac-

toring the belief state as b(st)=
Pm

j = 1 b(stjMj). The mar-

ginal b(st 2 Mj)=
R

Mj
b(st) dm(st) is the total probability

contributed by the partial probability measure mi. This

value represents the probability of st residing on Mj. Each

conditional distribution b(stjMj) is simply the measure of

the corresponding partial probability measure normalized

such that it sums to one.
12

9.5. Limitations and future work

We made several simplifying assumptions when applying

the MPF to contact manipulation. We focused on the
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problem of planar manipulation in a quasistatic environ-

ment (Section 9.5.1), assumed the shape of the hand is

fixed (Section 9.5.2), and only consider discriminative con-

tact sensors (Section 9.5.3). We are interested in relaxing

all three of these assumptions in future work.

We are also interested in extending the MPF to estimate

uncertain physical properties of the environment (Section

9.5.4) during execution. Finally, and most importantly, we

are excited by the prospect of using the MPF’s state esti-

mate for real-time feedback (Section 9.5.5).

9.5.1. Manipulation in higher dimensions. The MPF, as

described in this paper, assumes that the robot is perform-

ing planar manipulation in a quasistatic (Lynch et al., 1992)

environment. Applying the MPF to a three-dimensional

environment would require filtering in S = SE(3). Relaxing

the quasistatic assumption again doubles the dimensionality

of the problem by expanding the state space to the full tan-

gent bundle S = SE(3) × se(3).

Increasing the dimensionality of the state space causes

an exponential increase in the number of samples required

by the rejection-sampled representation to approximate So.

Similarly, building an analytic representation of So is not

computationally tractable because it would entail comput-

ing polygonal Minkowski sums over a large number of dis-

cretized orientation parameters (Varadhan and Manocha,

2006).

It may, however, be possible to extend the trajectory

rollout representation (Section 6.3.2) to higher dimensions.

This representation, unlike the RS and AM representations,

scales only with the size of the region of the state space

that we encounter with non-trivial probability during exe-

cution. Furthermore, it may be possible to avoid sampling

So during a pre-computation step and, instead, dynamically

generate samples from So online. Generating these samples

is potentially much less expensive than running the MPF

with more particles. Unlike particles, which must always

be distributed according to b(st), these samples only are

required to uniformly cover So. This may allow us to

bypass additional evaluations of the expensive transition

model (Section 9.2) in favor of a more efficient sampling

technique.

9.5.2. Manipulation with an articulated hand. Sampling

from the dual proposal distribution requires using one of

the contact manifold representations described in Section

6.3. All three of these implementations assume that the

hand is a rigid body. This means that applying the MPF to

an articulated hand requires pre-computing a separate con-

tact manifold for all possible hand configurations that may

be encountered during execution. The timing information

shown in Section 9.2 shows that this is only tractable for a

small, discrete set of hand shapes.

We are interested in applying the MPF to articulated

hands by building a representation of the contact manifold

that can efficiently adapted to multiple hand shapes. This

may be possible by pre-computing multiple contact mani-

folds, one for each rigid component of the hand, and com-

bining them at runtime. The key challenge with this

approach is to efficiently generate the lower-dimensional

events that occur when an object settles into multi-point

contact with the hand. Solving this problem would allow

the MPF to be applied during the full grasping process,

instead of only to planar pushing.

9.5.3. Non-discriminative contact sensors. One major lim-

itation of our current implementation of the MPF is that it

relies on having a discriminative observation model. This is

a valid assumption in many cases, but fails when manipu-

lating light objects or using unreliable sensors. When this is

the case, we can no longer approximate the marginal distri-

bution b(st 2 So) using the latest observation and must find

some other method of approximating the marginal.

In theory, we could approximate the marginal using the

set of particles St = fhs½i�t ,w
½i�
t ign

i = 1 sampled from the con-

ventional proposal distribution as

b(st 2 So)’

Pn
i = 1 w

½i�
t I(s

½i�
t 2 So)Pn

i = 1 w
½i�
t

where I(�) is the indicator function. In practice, however,

our results with the CPF shows that St is a poor approxima-

tion for b(st): we simply do not have enough samples to

accurately estimate this probability. However, we may be

able to crudely estimate b(st 2 So) with sufficient regulari-

zation (Liu and West, 2001).

Alternatively, it may be possible to approximate

b(st 2 So) directly in terms of b(st21) by backwards-

propagating ~s
½i�
t�1;p(st�1js½i�t , at) each sample s

½i�
t to the pre-

vious timestep. The corresponding importance weights are

proportional to b(~s
½i�
t�1), which can be approximated using

the density estimation techniques described in Section 6.4.

Thrun et al. (2000a) showed that this technique performs

well on mobile robot localization. Unfortunately, this algo-

rithm may be difficult to implement because it is challen-

ging to sample from the inverse transition model p(st21jst,

at) in the case of contact manipulation.

9.5.4. Parameter estimation. Much of the noise in the tran-

sition model p(stjst21, at) may actually result from

unknown, but static, properties g 2 G of system. This is

equivalent to writing the transition model as the marginal

p(stjst�1, at)=
R

G
p(stjst�1, at, g)p(g) dg of an underlying

transition model p(stjst21, at, g) that is a function of the

unknown parameters g. In the case of the quasistatic

motion model, g is the finger–object coefficient of friction

and the radius of the object’s pressure distribution (Lynch

et al., 1992; Dogar and Srinivasa, 2010). Prior work has

shown that it is possible to estimate static (Zhang and

Trinkle, 2012) and spatiotemporally varying (Zhang et al.,

2013) friction coefficients using visual and tactile data.

Adding this capability to the MPF would require a method
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of assigning parameters to particles sampled from the dual

proposal distribution.

Another important case is when g includes the hand–

object geometry and the goal is shape estimation (Allen,

1984; Bjorkman et al., 2013; Ilonen et al., 2014) or object

identification (Schneider et al., 2009; Chitta et al., 2011;

Xu et al., 2013). This case is particularly important when

using compliant end-effectors (e.g. i-HY hand (Odhner

et al., 2013)) or manipulating unmodeled objects. Small

variations of the object–hand geometry can cause large

changes in the shape and topology of the contact manifold.

We hope to address this additional source of uncertainty in

future work by considering distributions over object and

hand geometry. This would create a ‘‘fuzzy’’ contact mani-

fold that consists of the union of several hypothesized con-

tact manifolds.

The MPF, as presented in this paper, assumes that the

hand–object geometry is known with certainty and that

p(g) is a known, stationary distribution. Instead of estimat-

ing b(st), we could estimate the joint belief b(st, g) over the

state st 2 S and the parameter g 2 G values. In principle,

this could be accomplished by filtering in the augmented

state space (S, G) with a trivial transition model for g. In

future work, we are interested in extending the dual sam-

pling step in the MPF to support these types of parameters.

This may be challenging because it is difficult to imple-

ment the Bayes update with continuous g without suffering

from particle starvation (Liu and West, 2001).

9.5.5. Real-time feedback. Finally, we would like to use the

belief state estimated by the MPF for real-time feedback.

This problem can be naturally formulated as a partially

observable Markov decision process (POMDP) (Kaelbling

et al., 1998) with the transition and observation models

defined in Section 3 and a reward function that assigns pos-

itive reward to achieving the problem-specific goal.

Optimally solving a general POMDP is PSPACE-com-

plete (Littman, 1996). However, we are optimistic that the

structure of the contact manipulation problem will enable

us to efficiently find approximate solutions. Contact sen-

sors provide little information before contact and, as a

result, the problem is nearly deterministic. Once contact

occurs, the discriminative nature of contact sensors means

that the belief state exhibits sparse support (Lee et al.,

2007) that is constrained to the contact manifold. It may be

possible to leverage this knowledge in a special-purpose

POMDP solver. We are encouraged by recent work, includ-

ing our own (Koval et al., 2014), that has achieved promis-

ing results in grasping (Hsiao, 2009; Platt et al., 2011) and

non-prehensile manipulation (Horowitz and Burdick, 2013)

using a POMDP formulation of the problem.

10. Conclusion

In this paper, we investigated the problem of using contact

sensors to estimate the pose of an object during planar

manipulation (Section 3). We showed that the CPF (Section

4) performs poorly on this problem because the state lies

on the lower-dimensional contact manifold during periods

of contact.

We introduced the MPF (Section 5) as a solution to this

problem and showed how it can be applied to the contact

manipulation problem (Section 6) using three different

representations of the contact manifold. Our simulation

results (Section 7) show that the CPF significantly outper-

forms the MPF and that the gap widens further as sensor

resolution and update step size decreases. Finally, we imple-

mented the MPF on a real robot (Section 8) and showed that

the MPF is able to successfully track an object using com-

mercially available tactile sensors.
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Notes

1. The Kalman filter requires the system to have a linear transi-

tion model with additive Gaussian noise and a linear obser-

vation model corrupted by Gaussian white noise. The

extended Kalman relaxes this requirement to arbitrary differ-

entiable functions. The unscented Kalman filter further

relaxes the requirement to arbitrary functions. However, all

three algorithms assume that posterior belief state can be

approximated as Gaussian.

2. We define the observation model as p(otjst, at) instead of the

more traditional p(otjst). We do so to recognize the fact that,

unlike in many applications of the Bayes filter, ot is strongly

influenced by the most recent action at. This is equivalent to

constructing an augmented state space S0 = S × A and an

augmented transition model that stores at in the successor

state st + 1.

3. The Markov property, as stated in the text, does not directly

imply that p(s0:t 2 1ja1:t, o1:t 2 1) = p(s0:t 2 1ja1:t 2 1, o1:t

2 1). We additionally assume that s0:t�1?atj(a1:t�1, o1:t�1),
i.e. action at does not affect states in the past. This is true if

the policy used to select at is a function of only the history

a1:t 2 1 and o1:t 2 1 or, more commonly, the belief b(st21)

. Bayes . Markovproperty3.

4. We use the notation b(stjMj) to denote the probability distri-

bution b(st) restricted to Mj. Formally, b(stjMj) = h0b(st) for

st 2 Mj and b(stjMj) = 0 for st;Mj. The normalization factor

h0= ½
R

Mj
b(st) dst��1

is chosen such that
R

Mj
b(stjMj) dst = 1.

5. In this section we assume b(st 2 Mj) . 0 to insure that the

conditional belief b(stjMj) is defined. When b(st 2 Mj) = 0,
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we simply do not sample from Mj and assign S
Mj

t = ;. See

Section 9.4 for a unified measure-theoretic treatment of this

case.

6. Since we are only using the dual proposal distribution to

sample from So, the proposal distribution needs to be

restricted to So. We intentionally omit the conditioning nota-

tion adopted in Section 5 for the remainder of this section

for simplicity.

7. If the initial belief b(s0) is not known, then we may substi-

tute an alternative belief eb(s0) where b(s0).0) eb(s0).0.

Similarly, if p is not known, we may substitute an alterna-

tive policy ~p where p(b).0) ~p(b).0. These conditions

guarantee that the policy used for constructing ~So will even-

tually visit all states that can be encountered at runtime.

8. Note that w
½i�
t is undefined if ~p(s)= 0. This cannot happen if

we choose a kernel with sufficiently broad support.

9. Uniformly discretizing u may miss critical events where the

object first comes into or leaves contact with the hand. If

these events are important, it is possible to analytically solve

for the critical values of u through careful analysis of the

geometry (Farahat et al., 1995).

10. We use the notation defined in Section 5 to represent the

mixing of multiple sets of particles.

11. A measure mj is a partial probability measure if mj(;) = 0,

mj(Mj) � 1, and mj is s-additive.

12. Technically, the conditional belief b(stjMj) is undefined if

b(st 2 Mj) = 0. This is why we defined m as the sum of par-

tial probability measures instead of as the convex combina-

tion of full probability measures. However, this is not a

practical concern because the MPF will never sample from

b(stjMj) if b(st 2 Mj) = 0.
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