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Abstract

We consider the problem of using real-time feedback from contact sensors to create closed-loop pushing actions. To do so,

we formulate the problem as a partially observable Markov decision process (POMDP) with a transition model based on

a physics simulator and a reward function that drives the robot towards a successful grasp. We demonstrate that it is

intractable to solve the full POMDP with traditional techniques and introduce a novel decomposition of the policy into

pre- and post-contact stages to reduce the computational complexity.

Our method uses an offline point-based solver on a variable-resolution discretization of the state space to solve for a

post-contact policy as a pre-computation step. Then, at runtime, we use an A� search to compute a pre-contact trajectory.

We prove that the value of the resulting policy is within a bound of the value of the optimal policy and give intuition about

when it performs well. Additionally, we show the policy produced by our algorithm achieves a successful grasp more

quickly and with higher probability than a baseline QMDP policy on two different objects in simulation. Finally, we vali-

date our simulation results on a real robot using commercially available tactile sensors.
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1. Introduction

Humans effortlessly manipulate objects by leveraging their

sense of touch, as demonstrated when a person feels around

on a nightstand for a glass of water or in a cluttered kitchen

cabinet for a salt-shaker. In each of these tasks the person

makes persistent contact with the environment and uses

their tactile sense for real-time feedback. Robotic manipu-

lators should be able to similarly use contact sensors to

achieve this kind of dexterity. In this paper, we present a

strategy for generating a robust policy for contact manipu-

lation that takes advantage of tactile feedback.

Contact manipulation is an inherently noisy process: a

robot perceives its environment with imperfect sensors, has

uncertain kinematics, and uses simplified models of physics

to predict the outcome of its actions. Recent work (Section

2) has formulated manipulation as a partially observable

Markov decision process (POMDP) (Kaelbling et al., 1998)

with a reward function that drives the robot towards the goal

(Horowitz and Burdick, 2013; Hsiao, 2009; Hsiao et al.,

2007; Platt et al., 2011). Unfortunately, the contact manipu-

lation POMDP is intractable for most real-world problems,

like Figure 1, where a robot hand manipulates an object into

its hand with a closed-loop tactile policy.

Our key insight is that the optimal policy for the contact

manipulation POMDP naturally decomposes into two

stages: (1) an open-loop pre-contact trajectory that termi-

nates when contact is achieved followed by (2) a closed-

loop post-contact policy that uses sensor feedback to

achieve success. This decomposition mirrors the dichotomy

between gross (pre-contact) and fine (post-contact) motion

planning (Hwang and Ahuja, 1992) found in early manipu-

lation research.

We can accurately detect the transition from pre- to post-

contact because contact sensors discriminate whether or not

contact has occurred (Koval et al., 2013a). As a result, any

contact observation indicates that the object lies on the con-

tact manifold (Hauser and Ng-Thow-Hing, 2011; Koval

et al., 2013a; Lozano-Pèrez, 1983), the lower-dimensional

set of poses in which the object is in non-penetrating con-

tact with the hand.
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We exploit this structure to find a near-optimal policy for

the contact manipulation POMDP. First, as an offline pre-

computation step, we find a post-contact policy using

Successive Approximations of the Reachable Space under

Optimal Policies (SARSOP) (Kurniawati et al., 2008), a point-

based POMDP solver. This is possible because we only need

to plan for the set of beliefs whose support lies entirely on the

contact manifold. Then, when presented with a new scene, we

perform an efficient A� search to plan a pre-contact trajectory

that aims to make contact with the object.

In this paper, we specifically consider the task of push-

ing objects on a planar support surface (Figure 1) with bin-

ary contact sensors for feedback. This problem is a

fundamental research topic in manipulation (Howe and

Cutkosky, 1996; Lynch and Mason, 1996; Mason, 1986)

and enables robots to perform a wide variety of tasks that

would not otherwise be possible. Pushing enables robots to

move objects that are too large or heavy to be grasped

(Dogar and Srinivasa, 2011), for pre-grasp manipulation

(Chang et al., 2010; Kappler et al., 2010), and to grasp

objects under uncertainty (Brost, 1988; Dogar and

Srinivasa, 2010; Dogar et al., 2012).

We build on this large body of work by developing a

closed-loop pushing action that is robust to large amounts of

uncertainty. We show, through a large suite of simulation

experiments, that our uncertainty-aware policy outperforms a

baseline QMDP policy (Littman et al., 1995) that makes use

of real-time feedback. The QMDP policy is efficient to com-

pute, but assumes that all uncertainty disappears after one

timestep and, thus, does not plan multi-step information gath-

ering actions. We also demonstrate that these policies work on

HERB, a robot designed and built by the Personal Robotics

Lab at Carnegie Mellon University (Srinivasa et al., 2012).

We make the following contributions:

� Policy decomposition. We introduce a novel algorithm

that exploits the structure of contact manipulation to

efficiently find a provably near-optimal policy (Section

4). Our key insight is that the optimal policy for the

contact manipulation POMDP naturally decomposes

into an open-loop move-until-touch trajectory followed

by a closed-loop policy.
� Post-contact policy. We present a method of finding a

post-contact policy (Section 5) using a point-based

POMDP solver. Finding a solution is efficient because

we explicitly discretize the contact manifold to accu-

rately represent the object’s interaction with the hand.
� Simulation results. We demonstrate that the proposed

algorithm successfully grasps an object in simulation

experiments (Section 7.4) on two different objects. Our

uncertainty-aware policy achieves a successful grasp

more quickly and with higher probability than the base-

line QMDP policy.
� Real-robot experiments. We show results from real-

robot experiments on HERB (Section 8) using strain

gages for real-time tactile feedback. These results con-

firm that the policies produced by our algorithm per-

form well when executed on real hardware.

We also discuss several limitations of our work. Key

among them is the requirement that the post-contact

POMDP must be discretized to pre-compute the post-

contact policy. This is possible for local, planar policies

(such as grasping an object) but precludes policies that

require large, global movement. For example, our algo-

rithm cannot efficiently generate policies for problems that

require long transit phases or coordinating two distant end-

effectors.

This paper is an improved and extended version of our

prior work (Koval et al., 2014). These improvements

include a more detailed description of our method of find-

ing the post-contact policy (Section 5) and discussion of

our results (Section 9). We present new simulation results

for a disk object (Section 7) and analyze the effect of

Fig. 1. HERB (left) using real-time feedback from contact sensors to grasp a bottle under pose uncertainty. During execution, the

robot tracks the pose of the object using a Bayesian filter (middle). The left photo shows the 10 trials that were actually executed in

Section 8. HERB begins by executing an open-loop trajectory (right-top) towards the object. Once contact is observed (right-middle),

HERB switches to executing a closed-loop policy (right-bottom) to complete the grasp.
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sensor coverage on performance (Section 7.5). Finally, we

present real-robot experiments (Section 8) on HERB.

2. Related work

This paper builds prior work in pushing manipulation

(Section 2.1), contact sensing for manipulator control

(Section 2.2), and contact sensing for state estimation

(Section 2.3). Similar to some recent work on motion plan-

ning under uncertainty (Section 2.4), we formulate manipu-

lation under uncertainty as a POMDP (Section 2.5).

2.1. Open-loop pushing manipulation under

uncertainty

Early work in manipulation addressed the part alignment

problem, where a robot plans an open-loop trajectory that

reconfigures an object, despite uncertainty in its initial pose

(Brokowski et al., 1993; Erdmann and Mason, 1988). More

recently, the same approach has been applied to the prob-

lems of grasping (Dogar and Srinivasa, 2010), and rearran-

gement planning (Dogar and Srinivasa, 2012) under the

quasistatic assumption (Lynch et al., 1992). These tech-

niques all consider non-deterministic uncertainty (LaValle

and Hutchinson, 1998) in object pose and use worst-case

analysis to guarantee success. For example, the push–grasp

uses a long, straight-line pushing action to funnel the object

into the hand before closing the fingers to achieve a stable

grasp (Dogar and Srinivasa, 2010).

Our algorithm also uses the quasistatic assumption and,

in some cases, generates uncertainty-reducing actions (see

Section 8) that resemble the push–grasp. However, our

approach uses real-time feedback from contact sensors to

estimate the pose of the object and achieve the goal.

2.2. Contact sensing for manipulator control

One method of achieving success under uncertainty is to

use real-time feedback from contact sensors by directly

mapping observations to actions. Prior work has developed

controllers that can locally refine the quality of a grasp

(Platt et al., 2010a) or achieve a desired tactile sensor read-

ing (Li et al., 2013; Zhang and Chen, 2000). These tech-

niques achieve real-time control rates of up to 1.9 kHz (Li

et al., 2013) and impressive performance in controlled

environments. However, unlike our approach, these algo-

rithms require a high-level planner to analyze the scene and

provide a set point to the controller.

It is possible to subvert this problem by directly learning

a robust control policy. This has been done by learning a

model of expected sensor observations from past experi-

ence (Pastor et al., 2011) and using perturbed rollouts to

evaluate the effect of uncertainty on each candidate policy

(Stulp et al., 2011). These approaches have been shown to

perform well in practice, but policies learned in this way do

not easily generalize new tasks or robots. Our algorithm

can be applied to any task or robot for which stochastic

transition, observation, and reward functions are available.

2.3. Contact sensing for state estimation

An alternative use of contact sensing is to estimate the state

of the environment during manipulation. Prior work has

used contact sensors to predict grasp stability (Dang et al.,

2011) and object identity (Schneider et al., 2009; Xu et al.,

2013).

Approaches dating back to the 1970s (Simunovic, 1979)

have formulated manipulation under uncertainty as a

Bayesian estimation problem. Recently, there has been

renewed interest in using contact sensors in a particle filter

to track the pose (Zhang and Trinkle, 2012) and physical

parameters (Zhang et al., 2013) of an object being pushed

in the plane. Other closely related work used a particle fil-

ter to track a hybrid discrete–continuous probability distri-

bution over the discrete contact formation (Xiao, 1993) and

continuous pose of the object (Gadeyne et al., 2005;

Meeussen et al., 2007). We use a particle filter, similar to

these, to track our belief state during execution of the pre-

contact trajectory.

Our own prior work (Koval et al., 2013a) introduced the

manifold particle filter for object pose estimation using

contact sensors. The manifold particle filter explicitly sam-

ples particles from an approximate representation of the

contact manifold to avoid particle starvation during contact.

We use the same analytic representation of the contact

manifold (Koval et al., 2013b) as used by the manifold par-

ticle filter to efficiently discretize the state space explored

by the post-contact policy. However, unlike passive state

estimation, our algorithm generates a closed-loop policy

that actively achieves a task.

2.4. Motion planning under uncertainty

Several motion planning algorithms generate closed-loop

policies that achieve a goal under uncertainty. These algo-

rithms include low-level controllers (e.g. those cited in

Section 2.2), high-level symbolic planners (Hyafil and

Bacchus, 2003; Smith and Weld, 1998), and hybrid task

planners (Kaelbling and Lozano-Pérez, 2013). In this paper,

we specifically consider the problem of low-level policy

generation.

Other work has solved the motion planning under uncer-

tainty problems under the linear-quadratic-Gaussian (LQG)

assumptions (Athans, 1971). In this case, it is efficient to

plan by generating and testing candidate trajectories (Van

den Berg et al., 2010), building a roadmap in state space

(Agha-mohammadi et al., 2011; Van den Berg et al., 2011),

or planning with the maximum-likelihood hypothesis (Platt

et al., 2010b). These techniques have been extended to a

variety of application domains. Unfortunately, the belief

states encountered during contact manipulation are non-

Gaussian and quickly become multi-modal. This precludes
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us from using techniques that assume that the belief state

remains Gaussian.

The idea of planning with the maximum-likelihood

hypothesis has also been applied to manipulation (Platt

et al., 2011). This approach uses trajectory optimization to

plan a trajectory that either (1) achieves the goal for a nom-

inal hypothesis or (2) receives observations that invalidate

that hypothesis. In the latter case, the algorithm is guaran-

teed to converge to the goal in a finite number of re-

planning steps (Platt et al., 2012). Unfortunately, these

techniques aim for feasibility, not optimality. In contrast,

our approach optimizes a reward function that drives the

robot to quickly achieve the goal.

2.5. Planning for manipulation under uncertainty

The work described above solves the general problem of

motion planning under uncertainty. In this paper, we specif-

ically consider planning for manipulation tasks using feed-

back from contact sensors. Physics-based manipulation

under uncertainty is particularly challenging because the

state and actions spaces are continuous, evaluating a phy-

sics model is computationally expensive, and the observa-

tions generated by contact sensors are inherently

discontinuous.

Early work on robotic assembly used feedback from

force sensors to perform fine manipulation (Simunovic,

1979). A common strategy is to use guarded moves, that is,

move-until-touch actions, to localize the manipulator rela-

tive to the environment (Will and Grossman, 1975).

Guarded moves were constructed by hand (Bolles and

Paul, 1973) and, later, synthesized automatically (Lozano-

Pèrez et al., 1984). Recent work has considered the prob-

lem of tactile localization (Hebert et al., 2013; Javdani

et al., 2013; Petrovskaya and Khatib, 2011), where the

robot plans a sequence of guarded moves to localize an

object.

These techniques split the policy into an information-

gathering stage, which attempts to localize the object, fol-

lowed by a goal-directed stage. An alternative approach is

to switch between executing information-gathering and

goal-directed trajectories depending upon the amount of

uncertainty (Nikandrova et al., 2014). Our technique

entirely eliminates the need for an explicit information-

gathering stage by naturally gathering information during

execution when doing so is necessary to achieve the goal.

We trade off between information gathering and goal-

directed behavior by formulating contact manipulation as a

POMDP (Kaelbling et al., 1998). Hsiao et al. first formu-

lated grasping as a POMDP by decomposing the continu-

ous state space into a discrete set of cells (Hsiao et al.,

2007) and, later, by selecting trajectories from a set of can-

didates (Hsiao et al., 2008). Both of these approaches

assume that the object does not significantly move when

touched (Hsiao, 2009). We consider the case of planar

pushing, where motion of the object is critical to achieving

the goal.

More recent work has used SARSOP (Kurniawati et al.,

2008), the same point-based POMDP solver we use to find

the post-contact policy, to synthesize an efficient policy that

grasps a lug nut under uncertainty (Horowitz and Burdick,

2013). That work explicitly models the motion of the lug

nut and introduces the concept of an interactivity-based

state space that more densely discretizes states that are near

contact. We adapt a similar approach to finding the post-

contact policy by explicitly discretizing an analytic repre-

sentation of the contact manifold (Koval et al., 2013b). We

generalize this approach to a wider class of contact manipu-

lation problems, such as those those with long planning

horizons, by decomposing the policy into two stages.

3. Contact manipulation problem

We focus on the class of contact manipulation tasks where

a robotic manipulator maintains persistent contact with its

environment, for example pushing an object to a desired

pose or executing a grasp. Unfortunately, contact manipula-

tion is inherently uncertain: a robot perceives its environ-

ment with noisy sensors, has uncertain kinematics, and uses

simplified models of physics for reasoning about the conse-

quences of its actions. Thus, incorporating and even seek-

ing out new information during execution is often critical

for success.

3.1. POMDP formulation

We formulate the contact manipulation problem as a

POMDP with continuous state, but discrete action and

observation spaces. A POMDP is a tuple (S, A, O, T, O, R)

where S is the set of states, A is the set of actions, O is the

set of observations, T(s, a, s0) = p(s0js, a) is the transition

model, O(o, s, a) = p(ojs, a) is the observation model, and

R : S ×A! R is the reward function (Kaelbling et al.,

1998).

In a POMDP the agent does not know its true state but

instead tracks its belief state b : S! [0, 1] withR
S

b(s) ds = 1, a distribution over S, with a state estimator.

The set of all belief states D = b : S ! ½0, 1� :fR
S

b(s) ds = 1g is known as belief space. The goal is to find

a policy p : D!A over belief space that maximizes the

sum of expected future reward E
P‘

t = 0 gtR(st, at)
� �

dis-

counted by g 2 [0,1).

We consider the planar contact manipulation problem

(Figure 2) where a state s 2 S = SE(2) is the pose of the

object relative to the hand. An action a = (va, Ta) 2 A com-

mands the hand to follow the generalized velocity va 2
se(2) for Ta seconds, possibly making contact with the

object.

During contact the motion of the object is modeled by a

quasistatic physics simulator (Lynch et al., 1992). The qua-

sistatic assumption states that an object will stop moving as

soon as it leaves contact with the hand. As a result, the state

space consists only of pose S = SE(2) instead of the tangent

bundle S = SE(2) × se(2), halving the dimensionality of
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the state space. This approximation has been shown to be

accurate for the planar manipulation of household objects

at relatively low speeds (Dogar and Srinivasa, 2010, 2011).

The transition model T(s, a, s0) can additionally incor-

porate state-action-dependent uncertainty. This includes

inaccuracies in the physics simulator and the unknown

physical properties of the environment (e.g. friction coeffi-

cients). We can also model noise in the motion of the hand

while executing actions, assuming that the noise is inde-

pendent of the full configuration of the manipulator. We

do, however, assume that the geometry of the hand and

object is known.

After taking action a, the robot receives an observation

o 2 O that indicates whether the object is touching a con-

tact sensor. This is equivalent to testing whether s 2 So,

where So � S is the observable contact manifold: the set of

all states that are in non-penetrating contact with one or

more sensors (Koval et al., 2013b). Similar to prior work

(Hebert et al., 2013; Javdani et al., 2013; Koval et al.,

2013a,b; Petrovskaya and Khatib, 2011), we assume that

observations perfectly discriminate between contact

(o 2 Oc) and no-contact (o = onc), but may not perfectly

localize the object along the hand. For example, a binary

contact sensor that returns ‘‘contact’’ or ‘‘no-contact’’ for

the entire hand, but provides no additional information

about the pose of the object, satisfies this assumption.

3.2. Reward function

For the remainder of this paper, we assume that the robot

starts with a prior belief b0 2 D (possibly initialized with

vision or knowledge of the environment) and wishes to

quickly push the object into a hand-relative goal region

G4S as quickly as possible. This goal corresponds to an

objective function that minimizes the expected time

E½Ta1
+ � � � + Tan

� required to reach a belief b(st) that

satisfies
R

G
b(st) dst � 1� e. Once the goal has been

achieved, we can execute a grasp with a high probability

of success.

This objective cannot be written as a state-action-depen-

dent reward function R(s, a). Instead, we choose a reward

function of the form

R(s, a)=
0 s 2 G

�Ta otherwise

�

that assigns zero reward to the goal and negative reward to

all actions. This encourages the robot to drive the object

into the goal region. This reward function trades off

between reaching G quickly with low probability and tak-

ing a long time to reach G with high probability.

For the remainder of the paper, we assume that the

objective is to optimize infinite horizon reward, in other

words, there is no termination condition. In most applica-

tions, this means that an external observer is responsible

for deciding when to terminate execution, for example

when Pr(st 2 G) is sufficiently high. We discuss integrating

this type of termination condition into the reward function

in Section 9.4.

3.3. Value function

Given a reward function, each policy p induces a value

function V p : D! R that is equal to the sum of expected

future reward of following policy p in belief state b. The

value function V � of the optimal policy p� is a fixed point

of the Bellman equation

V �(b)=

max
a2A

R(b, a)+ g

Z
D

T (b, a, b0)
X
o2O

O(o, b0, a)V �(b0) db0

" #

where R(b, a)=
P

s2S R(s, a)b(s) is the expected reward of

executing action a in belief state b (Bellman, 1957). The

summation over O computes an expected value over future,

and thus unknown, observations.

3.4. Tractability

Optimally solving a discrete POMDP has been shown to be

PSPACE-complete with a finite horizon (Littman, 1996)

and undecidable with an infinite horizon (Madani et al.,

1999). As a result, finding the optimal policy for a POMDP

is only tractable for small problems. Instead, we must rely

on approximate techniques.

Point-based methods, first introduced by Pineau et al.

(2003), are a class of offline solvers that break the curse of

history by performing backups at a discrete set of belief

points. These methods perform well when the reachable

belief space R(b0) 	 D, the set of beliefs that are reachable

Fig. 2. Contact manipulation POMDP. The robot starts in (a) belief state b0 2 D, (b) takes action a 2 A following transition model T,

and (c) updates its belief state with observation o 2 O generated by the observation model O. The robot’s goal is to maximize its

(d) reward R by pushing the object into the goal region G4S.
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from the initial belief b0 given an arbitrary sequence of

actions and observations, is small.

With few exceptions (Brunskill et al., 2008; Porta et al.,

2006), point-based methods are restricted discrete

POMDPs. The contact manipulation POMDP has continu-

ous state and action spaces that must be discretized.

Discretizing a 1 m × 1 m region at a 2 cm × 2 cm

× 12� resolution, which is the same resolution used in our

experimental results (Section 7), would result in an enor-

mous state space of size jSj = 75,000. Solving this

POMDP is at the edge of feasibility for modern point-

based methods, for example SARSOP (Kurniawati et al.,

2008) and PGVI (Zhang et al., 2014). Finding an adequate

solution is likely possible, but may be time-consuming.

More importantly, the policy computed by a point-based

method is only guaranteed to perform well for the initial

belief state b0. Generalizing to a new problem instance

requires re-planning from the new belief state. This may be

costly and discards the primary advantage of offline plan-

ning: the ability to quickly apply a pre-computed policy.

Online planning algorithms (Ross et al., 2008) forgo

pre-computation entirely finding a local policy during each

step of execution. Actions are selected by performing a

forward-search of the action-observation tree rooted at the

current belief state. Online planning algorithms can operate

in continuous state spaces and perform well when upper/

lower bounds or a heuristic is available to guide the search

and ample time is available for action selection. Recent

online solvers, like POMCP (Silver and Veness, 2010),

ABT (Kurniawati and Yadav, 2013), and DESPOT (Somani

et al., 2013), have shown impressive performance in large,

continuous state spaces. Of these, ABT has also been

extended to continuous action spaces (Seiler et al., 2015).

Unfortunately, performing this search online is challen-

ging given the real-time constraints on the contact manipu-

lation problem. Simply performing a Bayesian update on

the continuous belief state, which is a fundamental opera-

tion of an online planner, requires running a large number

of computationally expensive physics simulations and is

challenging to perform in real time (Koval et al., 2013a;

Zhang and Trinkle, 2012).

In the next section, we present an algorithm that com-

bines the advantages of both approaches. We use a point-

based method to pre-compute a general post-contact policy

and use an online solver at runtime to adapt to changes in

the initial belief state.

4. Policy decomposition

Our key observation is that a policy for the contact manipu-

lation POMDP is naturally split into pre- and post-contact

stages due to the discriminative nature of contact sensors.

Before observing contact, the robot executes an open-loop

pre-contact trajectory j 2 A × A × . and receives a

series of no-contact observations o1 = . = ot21 = onc.

Once contact is observed, ot 2 Oc, the closed-loop post-

contact policy pc uses feedback from the hand’s contact

sensors to achieve the goal.

Decomposing the policy into pre- and post-contact

stages is equivalent to splitting the value function

V (b)= max
a2A

R(b, a)+ g

Z
D

T (b, a, b0) O(onc, b
0, a)V (b0)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

pre�contact

+
X
o2Oc

O(o, b0, a)V c(b0)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pre�contact

0
BBBB@

1
CCCCAdb0

2
66664

3
77775 ð1Þ

into two separate terms that depend on the current observa-

tion and the value function V c of the post-contact policy pc.

We only need to consider the current observation (instead of

the full belief b) because contact sensors accurately discrimi-

nate between contact (o 2 Oc) and no-contact (o = onc). As

we describe in Section 5, we know that all post-contact belief

states lie in a small region of belief space.

The pre-contact term is active only for o = onc and

includes the reward earned from executing the remainder

of j. Conversely, the post-contact term is active for the

remaining observations o 2 Oc = O \{onc} and includes all

reward V c(b) that would be earned by p if the robot were

to observe contact in b and immediately switch to execut-

ing the post-contact policy.

We compute the post-contact policy pc (and corre-

sponding value function V c) once per hand–object pair

using a point-based method in an offline pre-computation

step (Section 5). Our intuition, as shown in Figure 4(b), is

that exhaustively computing this policy is tractable because

Fig. 3. Online POMDP solvers must branch over both actions

and observations. The pre-contact search only branches on

actions by evaluating all post-contact belief states with the post-

contact value function V c.
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the set of post-contact beliefs Do4D is relatively small.

Then, when given a problem instance, we solve for the pre-

contact trajectory j that is optimal with respect to pc using

an online search (Figure 4(a)). As shown in Figure 3 this is

equivalent to truncating an online POMDP search once

contact has occurred and using V c to evaluate the value of

the truncated subtrees.

4.1. Suboptimality bound

Factoring the policy into pre-contact and post-contact com-

ponents has a bounded impact on the performance of the

overall policy. To prove this, we assume that the pre- and

post-contact stages share identical discrete state, action, and

observation spaces and consider a search of depth T. Under

these circumstances, error can come from two sources: (1)

truncating the pre-contact search and (2) using a sub-

optimal post-contact value function.

We derive an explicit error bound on h = jjV 2 V*jjN
by recursively expanding the Bellman equation for the T-

horizon policy VT in terms of the value function VT21 of the

(T 2 1)-horizon policy:

jjVT � V �jj‘
 gjjVT�1 � V �jj‘ + gPmaxjjV c � V �jj‘


 gTjjV0 � V �jj‘ +
XT
t = 1

gtPmaxjjV c � V �jj‘

h
 gThnc +
g(1� gT)

1� g
Pmaxhc

ð2Þ

First, we distribute jj�jjN using the triangle inequality

and bound the maximum single-step probability of contact

with 0 
 Pmax 
 1. Next, we recursively expand VT in

terms of VT21 until we reach the evaluation function V0

used to approximate the value VT + 1 of the truncated sub-

tree. Finally, we evaluate the geometric series and express

the result in terms of the sub-optimality of our evaluation

function hnc = jjV0 2 V*jjN and post-contact policy

hc = jjV c 2 V*jjN. In the worst case we can bound

hnc 
 2Rmin/(1 2 g) by setting V0 = 0 since the reward

function is bounded by Rmin 
 R(s, a) 
 0.

As expected, equation (2) shows that h! 0 as hc,

hnc! 0, the same result as in traditional online search algo-

rithms (Ross et al., 2008). However, the post-contact error

does not approach zero as T!N because the full policy can

never outperform a sub-optimal post-contact policy pc.

5. Post-contact policy

Suppose the robot is in belief state b while executing j,

takes action a, receives contact observation o 2 Oc, and

transitions to the posterior belief state b0. We call b0 2 Do a

post-contact belief state because the robot reached b0 by

receiving a contact observation. Our goal is to find a policy

pc that performs near-optimally over the post-contact belief

space Do consisting of all such belief states.

Our key insight is that contact occurs on a lower-

dimensional manifold and produces a relatively small set of

post-contact belief states (Section 5.1; Koval et al., 2013a,b,

2015). We use a point-based POMDP solver to find a pol-

icy that performs well over this space (Section 5.2). Section

5.3 discusses how to do so efficiently by re-using computa-

tion between similar belief states. Finally, we describe how

to discretize the state space while preserving the structure

of the continuous space (Section 5.4).

5.1. Contact manifold and observable contact

manifold

Contact naturally partitions the state space S into three sets:

(1) penetrating contact, (2) non-penetrating contact, and (3)

no contact. This section summarizes the definitions of the

contact manifold and observable contact manifold used in

our prior work (Koval et al., 2013a,b, 2015).

Let Ph4R2 be the geometry of the hand and Po(s) 	 R
2

be the geometry of the object at configuration s 2 S. The

∆o

∆

ξ

(a) Pre-contact trajectory

b(s0)

R (∆o)
ξ

∆o

∆

Bo

b(s0)

(b) Post-contact policy

Fig. 4. We decompose the policy p into a (a) pre-contact trajectory j and a (b) post-contact policy pc. The two stages are coupled by

the small set of post-contact belief states Do4D. Therefore, we can efficiently compute a policy over the set of reachable post-contact

beliefs R(Do) using a point-based POMDP solver.
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set of all object poses that are in collision with the hand

form the configuration space obstacle (Lozano-Pèrez,

1983)

Sobs =COBSTACLE(Ph)= fs 2 S : Ph \ Po(s) 6¼ ;g

of the hand in the object’s configuration space. The contact

manifold Sc = Sobs \ int (Sobs) consists of the lower-

dimensional set of states that place the object in non-

penetrating contact with the hand.

The state s lies on the contact manifold Sc during con-

tact. However, the robot’s contact sensors may not be able

to sense contact over the entire surface of the hand. We

define the observable contact manifold So4Sc as the set of

configurations that are in contact with one or more sensors

and, thus, generate a contact observation o 2 Oc.

Figure 5 shows the contact manifold colored by which

sensors are active at each point. Points inside the obstacle

are in penetrating contact, points outside the obstacle are

in free space, and points on the surface lie on the contact

manifold Sc. In this case, Sc is repeated twice along the u-

axis because the box exhibits rotational symmetry. The

color of each point indicates which contact sensor(s) are

active. For example, states in the large, dark orange

region of the manifold are in contact with the left distal

contact sensor. Regions of the contact manifold that are

in simultaneous contact with multiple sensors are drawn

as white.

5.2. Computing the post-contact policy

Receiving a contact observation o 2 Oc indicates that the

state lies on the observable contact manifold s 2 So. The

set of all belief states that can be generated in this way form

the post-contact belief space Do4D. We discretize the con-

tinuous state space S (see Section 5.4) and use a point-

based method to find a post-contact policy pc that performs

well over Do.

Since the post-contact belief states are constrained to So,

the discretized post-contact belief states exhibit sparse

support, in other words, all non-contact states have zero

probability. Furthermore, many belief states R(Do) reach-

able from Do share the same sparsity because the state

evolves on Sc during periods of contact. As a result, the

discretized problem is particularly well suited to being

solved by a point-based method (Lee et al., 2007).

A point-based solver represents the value function as a

piecewise-linear convex function

V pc

(b)= max
ai2G
hai, bi

where each ai 2 R
jSj is called an a-vector and h�,�i denotes

the inner product. The solver iteratively expands the set of

a-vectors G by performing backups of the Bellman equa-

tion at a discrete set of belief points. Most solvers assume

that the initial belief state b0 2 D is known and sample

belief points from the reachable belief space R(b0) by

simulating sequences of actions and observations from b0.

Unfortunately, the post-contact policy is not rooted at a

single belief state b0. Instead, we only know that b0 lies in

the post-contact belief space Do. It is not possible to

exhaustively enumerate Do because the set is uncountably

infinite. Instead, we initialize the solver with a discrete set

of post-contact belief points B4Do that are similar to the

post-contact belief states that we expect to encounter dur-

ing execution. In future work, we hope to refine B over

time by adding the post-contact belief states observed dur-

ing planning.

Given a set of n post-contact belief points B = fbign
i = 1,

we can directly use a point-based method to find a separate

policy pc
i for each belief point bi 2 B. The post-contact pol-

icy over B is defined by the union of the a-vectors of the

constituent policies G = G1[.[Gn. Each a-vector is a glo-

bal lower bound on the true value function, so the policy

defined by the union of these a-vectors G is a tighter bound

on the value function than the a-vectors Gi of any one pol-

icy in isolation.

5.3. Computation via an augmented POMDP

Computing a separate policy pc
i for each post-contact belief

point bi 2 B ignores the fact that information can be shared

between policies; in other words, it is generally the case that

R(bi) \R(bj) 6¼ 0. Our intuition, since the post-contact

belief space is relatively small, is that many of the policies

pc
i will be similar.

We leverage this structure by converting our POMDP

with the set of initial belief states B into an augmented

POMDP with one initial belief. To do so, we construct an

augmented state space Ŝ = S ×D where each augmented

state ŝ = (s, d) 2 Ŝ includes our state s 2 S in the underly-

ing POMDP and a discrete variable d 2 D = {0, ., jBj}
that indicates which post-contact belief point is active. Our

initial belief for the augmented POMDP is defined by a

uniform prior distribution d ~ uniform [1, jBj] over belief

x y

θ

Fig. 5. Observable contact manifold So for a two-dimensional

BarrettHand pushing a rectangular box. Each point on the

manifold corresponds to a configuration of the object s 2 Sc that

is in non-penetrating contact with the hand and is uniquely

colored by the active contact sensors. Configurations that are in

contact with multiple sensors are white. Reproduced from Koval

et al. (2015).
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points and a conditional distribution b(sjd = i) = bi defined

by each post-contact belief point bi 2 B.

This construction yields a foliated belief space, similar

to that encountered in a mixed observable Markov decision

process (MOMDP) (Ong et al., 2009), where each belief

point bi 2 B is initially active with equal probability 1/jBj.
If left unchanged, this is equivalent to solving a separate

POMDP policy for each value of D. Instead, we augment

the transition function T̂ to unconditionally transition to the

indicator value d = 0. The value of d = 0 remains set for

the remainder of planning and forces the solver to produce

one unified policy over all of B.

5.4. State space discretization

Implementing the above algorithm requires discretizing the

state space. This is challenging for two reasons: (1) the state

space is unbounded and (2) contact introduces discontinu-

ities into the transition and observation models that are dif-

ficult to capture in a uniform discretization. We describe

how to address both of these challenges in this section.

The state space S is unbounded and, in theory, a policy

could move the hand arbitrarily far away from the object.

However, our intuition is that the optimal policy will not

allow the object to stray far from the hand. Ideally, we

would only discretize the regions of S that comprise the

support of the optimally reachable belief space R�(Do).
Unfortunately, finding the optimally reachable belief space

is as hard as solving the full POMDP (Kurniawati et al.,

2008). Instead, we define a trust region Strust4S that we

believe to overestimate the support of R�(Do) and only dis-

cretize this smaller state space.

There is a trade-off in choosing the size of the trust

region: making Strust too small may disallow the optimal

policy, while making Strust too large will make it intractable

to solve the resulting POMDP. In the case of quasistatic

manipulation (Mason, 1986), we believe Strust to be rela-

tively small because the optimal policy will not allow the

object to stray too far from the hand. Note, however, that

requiring Strust to be small disallows policies that require

large global motions, for example performing an orthogo-

nal push–grasp once the object has been localized along

one axis.

We compute the discrete transition, observation, and

reward functions over Strust by taking an expectation over

the continuous models under the assumption that there is a

uniform distribution over the underlying continuous states.

In practice, we approximate the expectation through Monte

Carlo rollouts. It is important to preserve the structure of

the underlying continuous state space when discretizing

Strust. Otherwise, the discrete model will not obey the

Markov property when executed on the real robot: the out-

put of the transition, observation, or reward function will

depend on the underlying continuous state, rather than only

the discrete state.

Uniformly discretizing Strust is a poor choice because

contact is inherently discontinuous: two states in S may be

arbitrarily close together, but behave vastly differently

depending upon whether the object is in contact with the

hand (Horowitz and Burdick, 2013; Koval et al., 2013a).

The robot can only push an object while in contact with it.

Similarly, contact sensors only activate when the hand is in

contact with the object.

We explicitly model the discontinuity of contact by

composing the trust region Strust from two components: (1)

a uniform discretization of free space Snc = Strust \ Sc

(Figure 6(a)) and (2) an explicit discretization of the con-

tact manifold Sc (Figure 6(b)). Assuming the hand is poly-

gonal and the object is radially symmetric, we can use the

Minkowski sum to compute the configuration-space obsta-

cle (C-obstacle) of the hand in the object’s configuration

space (Lozano-Pèrez, 1983). The contact manifold is the

polygonal boundary of this C-obstacle (Koval et al.,

2013b). We discretize the contact manifold by splitting the

perimeter of this polygon into a sequence of equal-length

line segments. If the object is not radially symmetric, we

first discretize orientation and repeat this procedure on

each orientation iso-contour of the contact manifold.

Fig. 6. The post-contact policy is computed on a discrete approximation of the underlying continuous state space. The discrete state

space consists of two components: (a) a uniform discretization of free space in the trust region Strust and (b) an explicit discretization

of the contact manifold. Each black line overlaid on the contact manifold shows one polygonal slice of the configuration-space

obstacle (C-obstacle) used for discretization.
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Using this discretization strategy, the observation model

and reward functions both satisfy the Markov property. The

transition model is not guaranteed to be Markovian:

whether or not a discrete state transitions from Snc to Sc

depends on the underlying continuous state. However, in

practice, we have found that the discrete belief dynamics

closely match the continuous belief dynamics given a high

enough resolution.

6. Pre-contact policy

The belief dynamics are a deterministic function of the

action given a fixed sequence of ‘‘no contact’’ observations.

As a result, we can find the optimal trajectory j

(Figure 4(b)) by running an optimal graph search algo-

rithm, such as A* (Hart et al., 1968), in an augmented

belief space by recursively expanding V in equation (1) to

V (b)= max
j

X‘

t = 0

gt
Yt

i = 0

O(onc, bi + 1, ai)

 !"

R(bt + 1, at)+
X
o2Oc

O(o, bt + 1, ai)V
c(bt + 1)

 !# ð3Þ

Each term in the summation corresponds to taking a single

action in j. The product over t = 0, ., t is equal to the prob-

ability of reaching time t without having observed contact.

6.1. Graph construction

Define a directed graph G = (V, E, c) where each node

x = (b, pnc, t) 2 V consists of a belief state b, the probabil-

ity pnc of having not yet observed contact, and the time t.

An edge (x, x0) 2 E corresponds to taking an action a in

belief state b and transitioning to belief state b0.
The cost of an edge (x, x0) 2 E from x = (b, pnc, t) to

x0 = (b0, pnc
0, t0) is

c(x, x0)= � gtpnc R(b0, a)+ g
X
o2Oc

O(o, b0, a)V c(b0)

 !

which is precisely one term in the above summation. The

no-contact probability evolves as t0 = t + 1 and p0nc =

pncO(onc, b0, a) because the Markov property guarantees

ot’ot21jst. When pnc = 0 the cost of executing j is
2V(b0). Therefore, finding the minimum-cost j is equiv-
alent to finding the optimal value function V(b0).

Intuitively, the cost of an edge consists of two parts: (1)

the immediate reward R(b0, a) from taking action a in belief

state b and (2) the expected reward
P

o2Oc
O(o, b0, a)V c(b0)

obtained by executing pc starting from b0. The minimum-

cost path trades off between making contact quickly (to

reduce pnc) and passing through beliefs that have high value

under pc.

6.2. Heuristic function

The purpose of a heuristic function is to improve the effi-

ciency of the search by guiding it in promising directions.

Heuristic-based search algorithms require that the heuristic

function is admissible by underestimating the cost to goal,

and consistent (Pearl, 1984). Heuristic functions are typi-

cally designed by finding the optimal solution to a relaxed

form of the original problem.

Since the true cost to the goal from a particular belief is

the negated value function, we compute a lower bound on

the cost-to-come by computing an upper bound on the

value function. We intentionally choose a weak, computa-

tionally inexpensive heuristic function since the pre-contact

search primarily explores the simple, no-contact regions of

belief space.

We do this by solving for the value function of the

Markov decision process (MDP) (Ross et al., 2008) of our

problem. The value function V MDP(s) of the optimal policy

for the MDP (S, A, T, R) is an upper bound

V �(b)
VMDP(b)=

Z
S

VMDP(s)b(s) ds

on the POMDP value function V (b).

Next, we upper-bound the MDP value function V MDP

with a deterministic search in the underlying state-action

space by ignoring stochasticity in the transition function.

Finally, we compute an upper bound on the value of the

graph search by lower-bounding the cost of the optimal

path with a straight-line motion of the hand that is allowed

to pass through obstacles.

After making these assumptions, the MDP approxima-

tion of the value function is

VMDP(s)

Xtmin

t = 0

gtRmax

where Rmax = maxa 2 A,s 2 SR(s, a) is the maximum reward

and tmin is the minimum number of steps required to make

contact with the object. We can compute a lower bound on

tmin as

tmin =
mins02G dist(s, s0)

dmax

� �

where dist (s, s0) is the straight-line distance between two

positions of the states, and dmax is the maximum displace-

ment of all actions. Note that we cannot simply use

dists02G(s, s
0) as the heuristic because it omits the discount

factor g.

This is an upper bound on V MDP because we are overes-

timating reward and under-estimating the time required to

achieve the reward in an environment with R(s, a) 
 0.

Therefore, from the definition of the MDP approximation

(Ross et al., 2008), we know that
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h(x)= gtpnc

Z
S

VMDP(s)b(s) ds

is an admissible heuristic for state x = (b, t, pnc).

6.3. Search algorithm

We employ weighted A*, a variant of A*, to search the

graph for an optimal path to the goal (Pohl, 1977).

Weighted A* operates identically to A* but sorts the nodes

in the frontier with the priority function

f (v)= g(v)+ ewh(v)

where g(v) is the cost-to-come, h(v) is the heuristic func-

tion, and ew is the heuristic inflation value.

For ew . 1, weighted A* is no longer guaranteed to

return the optimal path, but the cost of the solution returned

is guaranteed to be no more than ew times the solution cost

of the true optimal path (Pohl, 1977). Weighted A* has no

bounds on the number of expansions, but, in practice,

expands fewer nodes than A*. This is beneficial when,

such as in our case, it is computationally expensive to gen-

erate successor nodes.

This search algorithm is closely related to online solvers

that use a ‘‘default policy’’ to evaluate leaf nodes, for exam-

ple POMCP (Silver and Veness, 2010). The key difference

in this work is the post-contact policy is only defined over

the trust region and is assumed to be optimal when it is

available. In future work, we are interested in improving

this technique by replacing A* with a modern online

POMDP solver such as DESPOT (Somani et al., 2013) that

is modified to incorporate the prior information provided

by the post-contact policy (Gelly and Silver, 2007).

7. Simulation experiments

We evaluated the performance of the policies produced by

our algorithm in simulation experiments. First, we evaluate

the performance of the post-contact policies produced for

our discretization of the contact manipulation POMDP

against a baseline QMDP policy (Littman et al., 1995). The

QMDP policy assumes that uncertainty disappears after

one timestep and, thus, does not plan to take multi-step

information-gathering actions.

Specifically considering the post-contact policy, we

hypothesize:

H1. The POMDP post-contact policy will achieve higher

value than the QMDP baseline.

H2. The POMDP post-contact policy will achieve success

with higher probability than the QMDP baseline.

The key difference between these two hypotheses is that

H1 tests how well the POMDP policy performs on the dis-

crete state space used for planning. Conversely, H2 tests

how well performance on the discrete state space translates

to achieving the task in the true, continuous state space.

This confirms that our discretization faithfully matches the

underlying continuous belief dynamics.

However, in practice, we are interested in the perfor-

mance of the full pre- and post-contact policy. We

hypothesize:

H3. The pre-contact trajectory will not significantly affect

the success rate of either policy.

H4. The full POMDP policy will outperform the full

QMDP policy.

Our performance bound suggests that decomposing the

problem into pre- and post-contact stages should not, as

H3 states, significantly harm performance. As a result, H4

states that we do not expect the relative performance of the

POMDP and QMDP policies to change.

Finally, we must consider the effect of sensor coverage

on the performance of these policies. Ideally, increasing

sensor coverage should reduce the burden on the planner to

perform information-gathering actions. Therefore, we

hypothesize:

H5. Both policies will improve when provided with better

sensor coverage.

H6. The QMDP policy will improve more than the

POMDP policy.

Improved sensor coverage always reduces uncertainty and,

thus, should improve the performance of both policies.

However, since the QMDP baseline is optimal when the

state is fully observed, we expect the improvement to be

larger for the QMDP policy than for the POMDP policy.

7.1. Experimental setup

We simulated our algorithm in a custom two-dimensional

kinematic environment with planar, polygonal geometry.

Each experiment consisted of a BarrettHand pushing an

object with initial pose uncertainty (Figure 2, left) and

uncertain physics parameters. We consider two objects: a

disk of 3.5 cm radius and a 3.5 cm × 5 cm box. These

dimensions are loosely based on the dimensions of com-

mon household objects that are commonly manipulated by

HERB, for example the bottle used in Section 8.

In both cases, we consider the object’s symmetry (radial

symmetry for the disk and second-order symmetry for box)

when computing the object’s state. As a result, the state

space for the disk is two-dimensional and the state space

for the box is three-dimensional.

7.1.1. Transition model. We simulated the motion of the

object using a penetration-based quasistatic physics model

(Lynch et al., 1992), which we have used in prior work

(Koval et al., 2013a,b), with a 2.5 mm and 3� step size.

During each timestep, we sampled the finger–object coeffi-

cient of friction m and the radius of the object’s pressure
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distance c from Gaussian distributions. We truncated the

distributions by constraining m � 0 and c � 1 cm to

ensure that the simulator remained stable.

We considered a set of jAj = 5 purely translational

actions with length jjaijj’ 2 cm for planning. This set

includes forward, left, right, and diagonal actions. We

assigned the diagonal actions length 2
ffiffiffi
2
p

cm to force all

five actions to align with our discretization of the post-

contact state space.

7.1.2. Observation model. We simulated binary contact

sensor observations by checking collision between each

contact sensor (a subset of the surface of the hand) and the

object. We considered one sensor covering the interior of

each finger’s distal link. These observations perfectly dis-

criminated between contact and no contact, but had a 10%

probability of generating an incorrect contact observation

while in contact with the object.

7.1.3. State estimator. During execution of the pre-contact

trajectory j, we use a particle filter to perform belief

updates. We know that ot = onc during execution of j, so

we do not encounter the starvation problems typically

found when applying the particle filter to contact sensing

(Koval et al., 2013a; Zhang and Trinkle, 2012). We must

use a continuous-space state estimator during execution of

the pre-contact policy because the discrete belief dynamics

are only defined over Strust.

Once we transition to the post-contact policy, for exam-

ple by receiving a contact observation, we immediately

convert the robot’s continuous belief state into a discrete

belief state over the post-contact state space described in

Section 5.4. From this point forward, the robot tracks its

discrete belief state using a discrete Bayes filter (Thrun

et al., 2005). This ensures that the state estimator used dur-

ing execution exactly matches the belief dynamics used

during planning.1

7.1.4. Evaluation metric. We compared the POMDP policy

generated by our algorithm to a policy that is greedy with

respect to the QMDP value function. The QMDP value

function is an upper bound on the POMDP value function

constructed by solving the underlying MDP (Littman et al.,

1995). Intuitively, the QMDP value function assumes that

all uncertainty is resolved after taking each action. This

allows a QMDP policy to take advantage of observations

during execution, but not execute multi-step information-

gathering actions to reduce uncertainty.

Ideally, we would also compare the proposed algorithm

against a policy computed by SARSOP over the full state

space. We would expect this algorithm to achieve similar

performance to SARSOP, but require significantly less

computation time to adapt to new instances of the problem.

This comparison is omitted because we were not able to get

the implementation of SARSOP provided by the APPL

toolkit (Kurniawati et al., 2008) to successfully load the full

discrete POMDP model. This is likely due the model’s pro-

hibitively large size (Section 3.4).

We evaluate the performance of the two algorithms’

post-contact policy on the discrete state space by measuring

the expected value of the policy over a horizon of length

50. We approximate the expected value by performing a

large number of rollouts and averaging the result. Since our

actions are of size 2 cm, this corresponds to simulating

1 m of end-effector motion.

As described above, performing well on the discrete sys-

tem dynamics does not guarantee that the same policy will

be effective at grasping an object subject to the continuous

system dynamics. We measure the success rate of the pol-

icy by computing the probability Pr(s 2 G) of the object

while simulating its motion using the continuous system

dynamics. A good policy will grasp the object more quickly

and with higher probability than the baseline.

7.2. Discretization

We selected a trust region Strust of size 15 cm × 50 cm

around the hand. This region is large enough to include

objects between the fingers, immediately in front of the

hand, and rolling off the fingertips. We discretized the no-

contact Snc portion of Strust at a coarse 2 cm × 2 cm

× 12� resolution and the contact Sc portion of Strust at a

higher 1 cm × 12� resolution. The set Sc was represented

by computing an analytic representation of the contact

manifold using exact Minkowski differences (Koval et al.,

2013b).

In both cases, as described in Section 5.4, we used

Monte Carlo sampling to compute a discrete transition

model, observation model, and reward function for this

state space. We approximate each of these functions using

Monte Carlo sampling. First, we sample 25 states uni-

formly at random from the set of states that discretize to

the function’s input. Next, we evaluate the continuous func-

tion on each sample. Finally, we approximate the value of

the discrete function by averaging the samples.

The cylinder’s two-dimensional discrete state space con-

sisted of jSj = 281 states, consisting of jSncj = 175,

jScj = 105, and one unknown state to represent all states

that lie outside Strust. The box, due to its larger three-

dimensional state space, had jSj = 4239 states split between

jSncj = 2625, jScj = 1613, and one unknown state.

7.3. Post-contact policy (H1, H2)

We solved for the post-contact QMDP policy by running

MDP value iteration on the discrete POMDP model until

the a-vectors converged within 1026. This process took

1604 backups to converge over 0.53 s (0.33 ms per

backup) for the disk and 1729 backups over 8.36 s seconds

(4.84 ms per backup) for the box. The resulting policies,

each consisting of five a-vectors, respectively took

0.71 ms and 7.64 ms to evaluate on a discrete belief state.
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The large difference in performance is a result of the box’s

15-fold larger discrete state space.

We repeated this procedure to generate the post-contact

POMDP policy by running a point-based solver on

jBj = 15 initial belief points, each assigned equal weight.

Each belief point bi 2 B was a Gaussian distribution

bi;N (mi,Si) with mean mi = [xi, yi, ui]
T and covariance

matrix S
1=2
i = diag½5 cm, 5 cm, 158�. The mean of this dis-

tribution was a fixed distance x = 0.2 m in front of the

hand with a lateral offset selected uniformly range 210 cm


 y 
 10 cm and an orientation selected uniformly 0 

u \ 360�. The set B was constructed in this way in an

attempt to cover the full range of post-contact beliefs that

we expect to encounter during execution.

We solved the resulting discrete POMDP using the

SARSOP implementation provided by the APPL tookit

(Kurniawati et al., 2008). SARSOP is a point-based method

that uses an approximation of the optimally reachable

belief space R�(b0) to guide its planning. We ran SARSOP

for five minutes, during which it produced a policy consist-

ing of several thousand a-vectors. We intentionally ran

SARSOP until convergence, just as we did for QMDP, to

eliminate this as a variable in our analysis: it may be possi-

ble to terminate planning much earlier, resulting in a more

compact policy, with negligible impact on runtime perfor-

mance of the policy.

We evaluated the quality of the QMDP and POMDP

post-contact policies on the discrete system dynamics

performing 1000 rollouts of the policy. Each rollout was

initialized with a belief drawn from B and was forward-

simulated for 50 timesteps. Figure 8(a) shows that the

POMDP policy outperformed the QMDP policy on both

objects. This result confirms hypothesis H1: it is advanta-

geous to formulate the contact manipulation problem as a

POMDP instead of a more computationally efficient MDP

or deterministic planning problem.

Note that the POMDP policy achieves similar value on

both objects, whereas the QMDP policy achieves lower

value on the box than the disk. This is supported by our

intuition: adding an additional partially observable dimen-

sion to the state space increases the importance of reasoning

about uncertainty. For example, it is possible to accurately

localize the position of the disk relative to the hand after

receiving one contact observation. This is not true for the

box because there can still be significant uncertainty over

the object’s orientation.

Next, we executed 500 rollouts of the policy using the

continuous transition model to simulate the motion of the

object and the continuous observation model to generate

observations. The initial belief state for each experiment

was sampled uniformly at random from the range described

above. These belief states were not contained in B. At each

timestep, we recorded whether the simulated object was in

the goal region G, that is, achieved success. Figure 8(b) and

(c) shows that the higher-quality discrete POMDP policy

translates to a high-quality policy in the continuous system

dynamics. The POMDP policy successfully achieves the

goal both more quickly and with higher probability than the

QMDP policy. This confirms hypothesis H2: our discrete

POMDP and choice of reward function succeed in driving

the object into G.

7.4. Pre-contact trajectory (H3, H4)

The post-contact policies described above are only valid in

the small region Strust near the hand. We used the search

algorithm described in Section 6 to extend these policies to

a longer horizon using the continuous belief dynamics.

We sampled 250 prior beliefs with S1/2 = diag [5 cm2,

5 cm2,15�] variance and a mean located 0.5 m in front of

and up to 0.5 m laterally offset from the center of the palm.

Note that all of these beliefs lie significantly outside of the

trust region and it is not possible to directly execute the

post-contact policy.

To find the pre-contact trajectory j, we ran a separate

weighted A* search for each post-contact policy with a

heuristic inflation factor of ew = 2. The search terminated

once a node was expanded that satisfied one of the follow-

ing criteria: (1) j achieved contact with 100% probability,

(2) 85% of the remaining belief lay in Strust, or (3) the

search timed out after 20 s.

The robot began each trial by executing j until it

observed contact ot 2 Oc or exhausted the trajectory by

reaching t . jjj. Figure 7 shows the POMDP pre-contact

trajectory and several snapshots (a) to (e) of the post-

contact policy for two different trials with the box. As

expected, the pre-contact trajectory attempts to make con-

tact with the object as quickly as possible by moving the

hand towards the prior distribution. Once (b) contact

occurs, the post-contact policy quickly (c) localizes the

object and (e) pushes it into the goal region.

Figure 9 shows the success rate of the robot executing

the combined pre- and post-contact policy on both the disk

and the box. As expected, each algorithm achieved a success

rate that is comparable to that of the underlying post-contact

policy. This confirms hypothesis H3: the pre-contact trajec-

tory faithfully extends the post-contact policy to longer hori-

zons. Additionally, these results confirm hypothesis H4: the

POMDP policy outperforms the QMDP policy when exe-

cuted at the end of the pre-contact trajectory.

7.5. Sensor coverage (H5, H6)

Finally, we analyzed the impact of sensor coverage on the

performance of the QMDP and POMDP policies. We con-

sidered an improved observation model where each of the

hand’s n = 7 links served as a binary contact sensor. We

analyzed the geometry of the analytic representation of the

contact manifold (Koval et al., 2013b) to compute that nine

(disk) and ten (box) observations, of the jOj = 27 = 128

total, are geometrically feasible. This is a large increase in

sensing capability over the three observations that were

geometrically feasible with the fingertip sensors.
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Figure 10(a) shows that increasing sensor coverage uni-

laterally improves expected post-contact value. The

improved performance of the post-contact policy directly

translates to better performance of the full pre- and post-

contact policies. For the disk, Figure 10(b) shows that the

QMDP policy improves in both speed and success rate.

The POMDP policy achieves the same success rate as

before, but reaches that level of success more quickly. For

the box, Figure 10(b) shows that increasing sensor

coverage significantly improves both the success rate and

speed of both policies.

Figure 10 indicates that increasing sensor coverage sig-

nificantly improves the performance of the QMDP policy.

In the limit, when state is fully observed, the QMDP policy

is optimal. However, since our sensing is still quite limited,

the POMDP policy still outperforms the QMDP policy.

This is particularly true when manipulating the radially

asymmetric box for the same reasons as described in

Section 7.3.

8. Real-robot experiments

In this section, we introduce a simple technique (Sections

8.1 and 8.2) for executing the policies generated by our

algorithm on a manipulator subject to kinematic con-

straints. We also present results from real-robot experiments

(Sections 8.3 and 8.4) on HERB, a bi-manual mobile

manipulator designed and built by the Personal Robotics

Lab at Carnegie Mellon University (Srinivasa et al., 2012).

8.1. Kinematic constraints

Our POMDP model assumes that an isolated end-effector is

able to make unconstrained motion in the plane to achieve

Post-Contact Trial 1 Post-Contact Trial 2Pre-Contact

(e)(d)(c)(b)(a)(e)(d)(c)(b)(a)

Fig. 7. Two rollouts of a policy produced by our algorithm with a post-contact policy produced by the POMDP policy. The robot

begins by executing the pre-contact trajectory j in (a) the initial belief state until (b) contact is observed. Then (c)–(d) the robot

executes the post-contact policy pc until (e) the object is pushed into the goal region.
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Fig. 8. Performance of the post-contact policy for the disk and box objects. (a) Expected value, at depth 50, of the QMDP (Q) and

POMDP (P) post-contact policies evaluated on the discrete system dynamics. Note that R(�,�) \ 0, so less-negative values are better.

(b) and (c) Success rate of the same policies evaluated on the continuous system dynamics. The error bars and gray shaded region

denote a 95% confidence interval.
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Fig. 9. Performance of the full pre- and post-contact policy for

the (a) disk and (b) box objects. Transitioning between the pre-

and post-contact policy occurs at a different time for each

simulated scene. The gray shaded region denotes a 95%

confidence interval.
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the goal. However, when manipulating objects on a real

robot, the end-effector is attached to a manipulator that

moves in some configuration space Q =R
n. Executing the

policy requires that we constrain the motion of the end-

effector, which moves in SE(3) to the plane while obeying

the kinematic constraints imposed by the manipulator.

Consider a robot with configuration space Q manipulat-

ing an object on a plane. We constrain the pose of the

robot’s end-effector to be a fixed height above the plane

with its palm orthogonal to the surface. In configuration

space, this is equivalent to constraining the configuration

of the robot to a constraint manifold of inverse kinematic

solutions Qplane4Q.

We begin at configuration q0 2 Qplane in belief state

b(s0) and begin executing policy p. At each timestep t, we

recursively update our belief state from b(st21) to b(st)

using a Bayes filter and evaluate our policy to choose

action at = p(b). This action at = (va, Ta) is a planar velo-

city va = ( _x, _y, _u) 2 se(2) that cannot be directly executed

on the robot. To circumvent this, we use the Jacobian

pseudo-inverse (Buss, 2004)

_q = Jyv̂a = (JTJ )�1JTv̂a ð4Þ

to find a joint velocity _q that realizes va. In this equation,

J 2 R
6× n is the manipulator Jacobian evaluated at q and

v̂a = ( _x, _y, 0, 0, 0, _u) is the desired velocity of the end-

effector in SE(3). Note that the three elements correspond-

ing to out-of-plane motion are set to zero.

We iteratively evaluate Equation (4), incorporating

updated values of q as they become available, until Ta time

has elapsed. At this point, we repeat the process at time

t + 1 by selecting action at + 1. Since q0 2 Qplane and v̂a

only has non-zero components in the plane, the update in

Equation (4) preserves the invariant that q 2 Qplane.

8.2. Kinematic feasibility

Assuming that rank(J) � 6, the Jacobian pseudo-inverse

execution strategy described above guarantees that the

manipulator remains in the plane. However, Equation (4)

does not guarantee that the joint velocity _q necessary to

execute at is feasible to execute on the robot.

Infeasibility may occur for several reasons. First, execut-

ing _q may drive the robot into a joint limit, self-collision, or

collision with the environment. Second, it may not be pos-

sible for the controller to remain on Qplane when q is near a

singularity, that is, J is poorly conditioned. Finally, unmo-

deled parts of the robot may come into contact with the

object. For example, HERB’s forearm, which is not mod-

eled during planning, could sweep through a region of high

probability in b(st).

Ideally, we could avoid all of these issues by directly plan-

ning in the joint configuration space Q × S of arm config-

urations and object poses. This would allow us to account for

the kinematic feasibility of actions during planning and even

perform whole-arm manipulation, for examples sweeping

with the forearm. This is, unfortunately, intractable to discre-

tize and solve. For HERB, dim(S × Q) = 10, resulting in a

threefold increase in dimensionality of the POMDP we for-

mulated in Section 3.1.

Instead, in this paper, we simply halt execution if the

selection action is infeasible. We are interested in addres-

sing kinematic constraints in a principled way in future

work (Section 9.3).

8.3. Experimental design

We executed the policies produced in Section 7 on HERB,

a bi-manual mobile manipulator designed and built by the

Personal Robotics Lab at Carnegie Mellon University

(Srinivasa et al., 2012). HERB is equipped with a seven-

degree-of-freedom Barrett WAM arm (Salisbury et al.,

1988) and the BarrettHand end-effector (Townsend, 2000).

We used HERB to push a bottle across the table

(Figure 11(a)) using an experimental setup similar to the

one we used for the disk in Section 7.

We generated three Gaussian initial belief states with

means m1 = [35 cm, 12 cm], m2 = [35 cm, 0 cm], and

m3 = [35 cm, 6 cm] relative to HERB’s hand. All three ini-

tial belief states had covariance S1/2 = diag[5 cm, 5 cm]

and the goal region was a 4 cm × 8 cm rectangle in front
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Fig. 10. Effect of increasing sensor coverage on the performance of the full pre- and post-contact policy. Again, note that less-

negative values are better. (a) Both the QMDP (Q) and POMDP (P) policies achieve higher value with full sensor coverage (dark bars)

than with only fingertip sensors (light bars). (b) and (c) Both policies perform better with full sensor coverage (dark lines) than with

only fingertip sensors (light lines). Error bars are omitted to reduce visual clutter.
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of HERB’s palm. We sampled each Gaussian 10 times and

used the same 30 samples to evaluate both QMDP and

SARSOP. The three initial belief states and 30 samples

used for evaluation are shown in Figure 11(b) to (d).

HERB used the BarrettHand’s strain gages to detect

contact with the distal links of the fingers. The sensors were

re-calibrated before each trial and were thresholded

to produce a discriminative, binary contact/no-contact

observation. Actions were executed using the Jacobian

pseudo-inverse controller described in Section 8.1. Each

trial terminated when the selected action was infeasible (e.g

due to joint limits or collision) or the bottle reached the edge

of the table. A trial was considered successful if the bottle

was in the goal region at the moment of termination.

8.4. Experimental results

Table 1 shows the outcome of all 30 trials executed on

HERB (Srinivasa et al., 2012). The position of the bottle

used in each trial is shown in Figure 11. The SARSOP pol-

icy achieved success in 27/30 trials (90%). In contrast, the

QMDP policy only achieved success in 20/30 trials (67%).

These results are consistent with our simulation experi-

ments in Section 7.5: the SARSOP policy is predicted to

succeed with 100% probability and the QMDP policy is

only predicted to succeed with 70% probability.

Qualitatively, the pre-contact trajectories for both policies

aligned the mean of the initial belief state with the center of

the palm. Once the pre-contact trajectory was exhausted, the

QMDP post-contact policy pushed straight, similar to the

open-loop push grasp (Dogar and Srinivasa, 2010). The

SARSOP policy moved straight for several timesteps, then

executed a sideways action to localize the bottle by driving

it into a contact sensor. Once the bottle was localized, the

policy centered the bottle in the hand and began pushing

straight. This is similar to the move-until-touch ‘‘guarded

move’’ used in part assembly (Will and Grossman, 1975)

that has been automatically synthesized by recent work in

robotic touch-based localization (Hebert et al., 2013;

Javdani et al., 2013; Petrovskaya and Khatib, 2011). Figure

12, bottom, shows an example of this type of behavior.

All of the failures of the QMDP policy occurred because

the bottle came to rest in a configuration that was (1) out-

side of the goal region and (2) not in contact with a sensor.

(a) Experimental setup

7

(b) Belief 1

3 1
6

(c) Belief 2

3

(d) Belief 3

Fig. 11. (a) HERB in the initial configuration used to begin each trial. The 10 samples drawn from belief 1 are shown as a semi-

transparent overlay. (b)–(d) Samples (circles) drawn from the three initial belief states (light gray iso-contours) used for evaluation.

Samples are drawn with a black dot in the center if the QMDP policy succeeded and a red × if it failed. In (c) belief 2, the three

samples on which SARSOP failed are drawn with a dotted line. Labels correspond to the trial numbers from Table 1.

Table 1. Outcome of executing the QMDP and SARSOP policies on HERB. Each policy was executed on 10 samples from three

initial belief states. The symbol � denotes success and × failure to push the object into the goal region. The trial marked with *
succeeded because the object contacted a sensor during execution of the pre-contact trajectory, trials marked with y failed due to

kinematics, and the trial marked with z failed due to unmodelled errors in the observation model. All other failures occurred because

the object came to rest on a sensorless part of the hand outside the goal region.
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SARSOP � � � � � � � � � �
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The QMDP policy chose the ‘‘move straight’’ action in this

situation because moving to either side reduces the prob-

ability of the bottle being in the goal region. This highlights

the key limitation of the QMDP approximation: the QMDP

policy ignores uncertainty in future timesteps and, thus, will

not plan multi-step information-gathering actions (Littman

et al., 1995).

However, the QMDP policy does incorporate feedback

from contact sensors during execution. This was critical in

belief 1 trial 7 (marked with a * in Table 1; Figure 12, top).

In this trial, the QMDP policy achieved success despite the

fact that the initial pose of the bottle began outside of the

capture region of the open-loop push–grasp (see Figure

11). The bottle came into contact with a sensor during exe-

cution of the pre-contact policy and, thus, was localized.

The SARSOP policy used information-gathering actions

to localize the object regardless of its initial configuration.

As a result, the SARSOP policy succeeded in 20/20 trials

on beliefs 1 and 3. Surprisingly, the SARSOP policy failed

in three trials from belief 2. Two trials (marked with y in

Table 1; Figure 12, bottom, shows one of these) occurred

because HERB’s elbow collided with the table while per-

forming the ‘‘move-until-touch’’ action described above. In

both cases, HERB could have avoided contact with the

table by moving left (instead of right) to localize the bottle.

This type of kinematic failure is avoidable by planning in

the joint space S × Q of object pose S and robot config-

uration Q, instead of the greedy Jacobian-based procedure

outlined in Section 8.1.

The SARSOP policy also failed in belief 2 trial 6

(marked with z in Table 1) for a different reason. HERB’s

fingertip contacted the bottle and generated a contact

observation. This is inconsistent with the observation

model used for planning, which assumes that the sensor

only activates from contact with the inside of the finger. As

a result, HERB incorrectly inferred that the bottle was

touching the inside of finger, instead of the fingertip, and

failed to complete the grasp. This failure highlights a
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Fig. 12. Three trials executed on HERB with the QMDP and POMDP policies. Columns (a) and (e) show, respectively, the initial and

final poses of the object relative to the hand. Column (b) shows several samples drawn from the initial belief state. Columns (c) and

(d) show the belief state over object pose at two points during execution. The trial numbers referenced in this figure correspond to

those used in Figure 11 and Table 1.
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fundamental limitation of our approach: the policy pro-

duced by our algorithm can only compensate for uncer-

tainty that is included in the POMDP model used for

planning.

9. Conclusion and future work

In this paper, we formulated the problem of using real-time

feedback from contact to create closed-loop pushing

actions. To do so, we formulated the problem as a POMDP

(Section 3.1) with a transition model based on a physics

simulator and a reward function that drives the robot

towards a successful grasp.

We demonstrated that the optimal policy can be effi-

ciently decomposed (Section 4) into an open-loop pre-con-

tact trajectory and a closed-loop post-contact policy with a

bounded impact on the performance of the overall policy.

First, as an offline pre-computation step, we exhaustively

solved for the post-contact policy using a point-based

POMDP solver (Section 5). Then, when presented with a

specific problem instance, we found an open-loop pre-con-

tact trajectory using an A* search (Section 6). The robot

begins by executing the pre-contact trajectory, then transi-

tions to the post-contact policy once contact is observed.

Our simulation results (Section 7) show that (across two

objects and two sensor configurations) the policy produced

by this algorithm achieves a successful grasp more quickly

and with a higher success rate than the baseline QMDP pol-

icy. Finally, we present real-robot experiments on HERB

(Section 8) that demonstrate that the policies produced by

this algorithm are effective on a real robot.

Finally, we conclude by discussing several limitations of

this approach (Section 9.1) and directions for future work.

Our algorithm, as described in this paper, requires discretiz-

ing the POMDP to find a post-contact policy (Section 9.2).

This limitation, along with the challenges of planning in

configuration space, prohibit us from considering kinematic

feasibility during planning (Section 9.3). Finally, we only

plan for the motion of the end-effector and rely on input

from an external observer to execute a grasp (Section 9.4).

We are excited about addressing all three of these limita-

tions in future work.

9.1. Policy decomposition

Our key insight is that we can decompose the optimal pol-

icy into an open-loop pre-contact trajectory followed by a

closed-loop post-contact policy. This decomposition is valid

on any POMDP and is not restricted to the manipulation

problem. However, performing this decomposition requires

two important capabilities: (1) the ability to pre-compute an

offline policy that is valid for all post-contact belief states

Do and (2) a good heuristic h(x) to guide the pre-contact

search. The structure of the contact manipulation problem

provides for both of these capabilities.

First, the discriminative nature of contact sensors limits

the size of the set of post-contact belief states Do. This

property allows us to compute pc by initializing a point-

based solver with several initial belief points B4Do drawn

from Do. If a different sensor was being used for feedback,

for example a camera or noisy range sensor, Do could be

much larger and this solution method might not be possi-

ble. In the extreme case, where Do = D, finding the optimal

post-contact policy is as hard as solving the full problem.

Second, the quasistatic assumption (Mason, 1986)

reduces the dimensionality of our state space. The quasi-

static assumption states that an object will stop moving as

soon as it leaves contact with the hand. Prior work has

shown that the quasistatic assumption is a good approxima-

tion for the planar manipulation of many household objects,

since frictional forces dominate the effect of dynamics

(Dogar and Srinivasa, 2010, 2011). However, as a result of

this assumption, our approach cannot directly plan for

objects with non-trivial dynamics, for example a ball that

rolls when pushed.

Finally, we exploit our intuition that it is unlikely for the

optimal post-contact policy to allow the object to stray far

from the hand. We formalize this intuition by restricting

the post-contact policy to a small trust region Strust near the

hand. This optimization limits the types of policies our

algorithm can generate: we cannot generate post-contact

policies that require large, global movement of the hand.

For example, our algorithm cannot efficiently generate pol-

icies for problems that require long transit phases or coor-

dinating two distant end-effectors.

Despite these limitations, we believe that the policy

decomposition described in Section 4 may be useful for

domains outside of manipulation. This decomposition

closely mirrors the ‘‘simple after detection’’ property of

POMDPs observed in aerial collision avoidance (Bai et al.,

2011). This property states that all but one observation lead

to belief states that admit simple sub-policies. In our case,

we subvert the need for simple sub-policies by leveraging

the small number of post-contact beliefs to pre-compute an

exhaustive post-contact policy.

9.2. Discretization

Our implementation assumes that the robot lives in a two-

dimensional world with S = SE(2), fixed hand geometry,

and a discrete action set. We plan to extend this algorithm

to SE(3), to more complex interaction with the environment

(e.g. toppling) and to articulated hands with internal

degrees of freedom. In both cases, these generalizations

increase the dimensionality of the state space.

Unfortunately, increasing the dimensionality of the

problem exponentially increases jSj and jAj. The size of

these spaces makes it intractable to compute and fully dis-

cretize the POMDP model using the technique described in

Section 5.4. The lack of a compact discrete model makes

the POMDP significantly harder to solve. We believe that

the increased computational complexity could be partially

addressed by using a continuous POMDP solver to entirely

avoid discretizing the problem. There has been recent work
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(Koval et al., 2013a; Zhang and Trinkle, 2012; Zhang et al.,

2013) on using a sample-based representation of belief space

to track the continuous pose of the object over time. The key

challenge is to find a representation of the post-contact policy

that can both be represented compactly and still generalize

between belief states represented in this way.

9.3. Kinematic feasibility

Our formulation of the contact manipulation POMDP con-

siders state to only be the pose of the object relative to the

hand. As described in Section 8.2, an action may be infea-

sible to self-collision, robot–environment collision, joint

limits, or other limitations of the robot’s hardware. We

intentionally avoided these cases in our real-robot experi-

ments on HERB (Section 8) by carefully selecting HERB’s

starting configuration and executing the policy on an

empty table. Even so, the SARSOP policy failed in two

trials by violating kinematic constraints.

Manipulating objects in human environments requires

dealing with kinematic infeasibility and clutter. We can eas-

ily incorporate arbitrary kinematic constraints into the pre-

contact search by tracking the full configuration of the

robot each time a new node is expanded. This is equivalent

to planning the pre-contact trajectory in a constrained sub-

set of the full configuration space of the robot, rather than

the pose of a hand in the plane.

Unfortunately, it is not feasible to pre-compute a post-

contact policy for all possible robot and obstacle configura-

tions. Instead, we must rely on online techniques to find

pc. We hope to combine the advantage of both approaches

by using value function V c, which is computed for the end-

effector in isolation, to guide a search in the full-

dimensional state space. Prior work has shown that it is

possible to use an offline policy to efficiently guide an

online search (Gelly and Silver, 2007). We are encouraged

by the performance of recent online POMDP solvers

(Kurniawati and Yadav, 2013; Silver and Veness, 2010;

Somani et al., 2013) on continuous state spaces and are

interested in pursuing this idea in future work.

9.4. Grasping reward function

In Section 8, we made the observation that closing the hand

is a critical part of policy execution. However, the POMDP

model described in Section 3 only plans to execute relative

motions of the end-effector and leaves the critical decision

of when to close the hand to an external observer. Instead,

if our goal is to grasp the object, we can encode the decision

to execute a grasp directly into our POMDP model.

In the simplest case, if we have no model of the effect

of executing a grasp on the pose of the object, we consider

executing a grasp to be a terminal action. To do so, we aug-

ment our action space Â = A [ fagraspg with a discrete

action agrasp and our state space Ŝ = S [ fstermg with a ter-

minal state sterm. Executing agrasp immediately ends the trial

by unconditionally transitioning to sterm; in other words,

T(�, agrasp, sterm) = 1. The grasp is considered successful if

st 2 G and is otherwise considered a failure.

We encode success and failure into the reward function

R(s, agrasp)=
Rsucc s 2 G

�Tmax otherwise

�
where Tmax = maxa2ATa is the maximum duration of an

action and Rsucc \ 0 encodes the cost of executing a grasp.

We assign zero reward to the terminal state R(sterm,�) = 0

and negative reward R(s, a) = 2Ta to all actions a6¼agrasp

for s6¼sterm.

The value of Rsucc, similar to the parameter e described

above, controls the trade-off between execution time and

success probability. At one extreme, where

Rsucc\� 1
1�g

Tmax, the optimal policy will never execute

agrasp. Conversely, if Rsucc . 2Tmin for Tmin = mina2ATa,

the optimal policy will immediately execute agrasp regard-

less of the probability of success. Values between these

extremes trade off between execution time and success

probability.

Alternatively, if we do have a model of how the object

moves during a grasp, we can consider agrasp to be a high-

cost, non-terminal action. This formulation would allow a

policy to treat grasp execution as an information-gathering

action. For example, the policy may decide to close the

hand in a high-probability region of state space to test

whether the object is present in that region. We are inter-

ested in considering both of these formulations of the

reward function in future work.
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Note

1. Our use of the discrete Bayes filter to track the belief state

during execution of the post-contact policy differs from the

experiments presented in an earlier version of this work (Koval

et al., 2014). In those experiments, we used the manifold parti-

cle filter (Koval et al., 2013a) to track the state during execu-

tion of the full policy. As a result, the results that we present in

this paper slightly differ from those presented in prior work.
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