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Abstract— In this paper, we introduce a Markov chain
Monte Carlo (MCMC) method to solve multi-objective motion-
planning problems. We formulate the problem of finding
Pareto-optimal trajectories as a problem of sampling trajec-
tories from a Pareto-optimal set. We define an implicit uniform
distribution over the Pareto-frontier using a dominance function
and then sample in the space of trajectories. The nature
of MCMC guarantees the convergence to the Pareto-frontier,
while the uniform distribution ensures the diversity of the
trajectories. We also propose progressive objective evaluation
to increase efficiency in problems with expensive-to-evaluate
objective functions. This enables determination of dominance
relationship between trajectories before they are entirely evalu-
ated. We finally analyze the effectiveness of the framework and
its applications in robotics.

I. INTRODUCTION

One metric is often insufficient to evaluate the quality of a
robot’s motion. For example, when a robot plans to grasp an
object, it might simultaneously want to minimize path length
(in meters), execution time (in seconds), path smoothness
like motion jerk [1] (in meters per second2), and distance to
various obstacles (in meters again).

Such multiple objectives are ubiquitous. For example, in
multi-agent planning [2], [3], robots might simultaneously
want to minimize a personal objective like path-length (in
meters) and maximize a global objective like search cover-
age (in meters2) or team connectivity (potentially unitless
if considering the eigenvalues of the connectivity Graph
Laplacian).

Such multi-objective planning problems are often con-
verted into single-objective problems by selecting a utility
function that trades off each objective. However, tuning these
functions is challenging as they are often scaling different
units (like above), and the relative importance of different
objectives might be quite context-dependent.

Interestingly, some solutions are categorically worse than
others, no matter what utility function is chosen to compare
them. For example, in Fig. 2, the gray path is worse than
the green path in both objectives f1 and f2. We call the grey
path dominated. Note, however, that neither the green nor
the orange path is dominated. The set of all non-dominated
paths forms the Pareto-frontier [4], [5], and each path in this
set is Pareto-optimal. This leads to our central tenet:

Providing the user samples from the Pareto-frontier
gives them a choice to select a solution for the
specific problem instead of having to specify a
utility function apriori.

Fig. 1: The proposed framework of MOMCMC is demon-
strated in finding collision-free shortest paths on table-top
manipulation problems (left) and in cluttered environments
like a bookshelf (right).

We now face two key challenges: (1) sampling provably
uniformly from the Pareto-frontier, and (2) producing sam-
ples efficiently. Our key insight is that this can be solved
by defining a uniform distribution of trajectories on the
Pareto-frontier and introducing Markov chain Monte Carlo
(MCMC) to efficiently generate trajectory samples. In this
paper, we proposed a framework of Multi-Objective MCMC
(MOMCMC) in uniformly and efficiently sampling Pareto-
optimal trajectories (Sec. IV). The framework of MOMCMC
includes (1) the definition of a target distribution and (2)
Markov chain random walks that generate new samples.
The target distribution is defined by a dominance function
(Sec. V) that measures how a trajectory is dominated by
others. We also included simulated anneal in tuning the
temperature parameter in the target distribution that grad-
ually transforms the target distribution toward a uniform
distribution on the Pareto-frontier. We propose two types
of Markov chain random walks, differential evolution and
fast non-dominated sorting (Sec. V). Because evaluating the
objective of a trajectory is a progressive accumulation of the
cost along the trajectory, the expense of evaluating objective
can become arbitrarily high and a bottleneck in performance.
We introduce progressive objective evaluation (in Sec. VI) to
reduce unnecessary evaluation in determining the dominance
of trajectories.

In our experiments in Sec. VII, we compared a few random
walk methods in the MOMCMC framework and a classic



(a) Objective space. (b) Configuration space.

Fig. 2: Motion planning with multiple objectives. Each
point in the objective space (a) maps to a trajectory in the
configuration space (b).

multi-objective optimization solver MOEA/D [6]. We used
the motion-planning of a drone to demonstrate that the meth-
ods in the MOMCMC framework generate Pareto-optimal
trajectories with good diversity and are also scale-invariant
in problems with two objectives to seven objectives. We
evaluated the performance of progressive objective evalua-
tion in different problem settings. We also demonstrated how
the MOMCMC framework can be robustly and efficiently
applied to re-planning and bi-arm manipulation problems.

Our major contribution is the proposal of the framework
of Multi-Objective Markov Chain Monte Carlo in efficiently
and uniformly sampling Pareto-optimal trajectories and two
methods of random walks. We demonstrated the performance
of the framework in generating trajectories in different plan-
ning problems, planar-robot navigation and bi-arm manipu-
lation.

II. RELATED WORK

Our work supports multi-objective optimization [7] in the
motion-planning field, and our algorithms operate in con-
tinuous trajectory parametric space. Previous algorithms in
planning usually run on an existing discrete graph structure,
so Multiobjective A* [8] applies to the optimal search for
motion planning. If paths on a discrete structure could be
encoded into a vector representation, e.g., a sequence of
directions in a grid world [4] and B-spline with a fixed
number of control points [9], then many evolutionary multi-
objective solvers could be introduced to find a trajectory.
An alternative approach is sophistically building a discrete
structure of sampled states in a workspace by multi-objective
heuristics to facilitate the search. MORRF* [5] creates mul-
tiple rapidly-exploring random trees in parallel to find a set
of Pareto-optimal paths.

Our work is also related to optimization in trajectory
space in motion-planning problems. CHOMP [10] introduces
trajectory costs that are invariant to time parameterization of
trajectories to solve the motion-planning problem in a para-
metric trajectory space. It inspires STOMP [11] with stochas-
tic optimization and ITOMP [12] in re-planning. TrajOpt [13]
solved the corresponding motion-planning problem using
sequential convex optimization so that the returned solution
will converge to a local optimal. CHOMP [10] introduces
the idea of sampling trajectories from a distribution defined
by trajectory cost following Hamiltonian Monte Carlo so
that a global optimal can be found. Cross-entropy motion

planning extends this idea into cross-entropy sampling [14],
and iteratively updating the distribution so that sampled
trajectories converge to the optimal. In this paper, we extend
sampling trajectories into a Pareto optimal set so that all
sampled trajectories are Pareto-optimal.

Evolutionary computation is dominating in solving multi-
objective optimization problems because it well applies to
discontinuous, non-differential, multi-modal and not well-
defined problems [7]. Different algorithms have been pro-
posed to evolve a population of solutions toward a Pareto-
frontier by metaheuristic. NSGA-II [15] sorts solutions
by non-dominance evaluation; MOEA/D [6] decomposes
a multi-objective optimization problem into a set of sub-
problems with different sampling weights. Considering the
diversity of solutions, sampling methods in Monte Carlo
simulation are introduced to generate solutions from a
distribution defined for a Pareto-frontier. MOMCMC [16]
defines a cost function that measures non-dominances, which
implies a target distribution over Pareto-frontier. MCMC is
applied to generate samples that uniformly distributed on the
Pareto-frontier. Also in a sampling approach, cross-entropy
method [17], [18] is introduced to generate samples from a
distribution over the Pareto-frontier.

Extending multiple metrics and constraints into multi-
ple objectives helps efficiency in the expensive evaluation.
POMP [19] extends collision checking into a new objective
that iteratively updates a belief model of collision while
searching on a Pareto-frontier. It is proved that the number
of collision checking is efficiently reduced.

III. PROBLEM DEFINITION

We define a trajectory, σ : [0, 1] → C ⊂ RD is a contin-
uous function that maps time t ∈ [0, 1] into a configuration
q ∈ C (Fig. 2b). An objective is a functional that returns
a real value for a trajectory σ. When there are multiple
objectives, we use a vector of objective functionals f(σ) =
[f1(σ), · · · , fK(σ)]T . Each trajectory σ can be represented
as a point in an objective space where each dimension
corresponds to a particular objective fi(σ) (Fig. 2a).

Between any two trajectories, there are three types of
relations by trajectory dominance in an objective space.
• dominate σ1 ≺ σ2 : σ1 dominates σ2 when
∀i, fi(σ1) < fi(σ2).

• dominated σ1 � σ2 : σ1 is dominated by σ2 when
∀i, fi(σ1) > fi(σ2). This is equivalent to σ2 ≺ σ1.

• parallel σ1 ‖ σ2 : σ1 is parallel to σ2 when neither of
them is smaller than the other in all the objectives.

For example, in Fig. 2b, the green trajectory dominates the
gray trajectory, and the yellow trajectory is parallel to both
the gray trajectory and the green trajectory. The “quality”
of a trajectory can be measured by its relations with other
trajectories in an objective space.

Our goal is to find a set of Pareto-optimal trajectories,
which is also known as “non-dominated trajectories” [15] in
an objective space. A non-dominated trajectory implies that
no other trajectory “dominates” it. It means any two non-
dominated trajectories are “parallel” to each other.



IV. UNIFORM SAMPLING OF PARETO-OPTIMAL
TRAJECTORIES

We solve a multi-objective motion-planning problem by
defining a uniform distribution of trajectories on an im-
plicit Pareto-frontier. This method belongs to a family of
trajectory sampling algorithms [14], [10]. We use a sam-
pling approach to produce trajectories from the distribution,
which is inspired from Multi-Objective Markov Chain Monte
Carlo (MOMCMC) [16]. The distribution is constrained to a
Pareto-frontier so the sampled trajectories are Pareto-optimal.
The uniformity of the distribution assures the diversity of
sampled trajectories.

We first define a Gibbs distribution

P (x) ∝ exp (−fdom(x)/T )

where fdom() is a dominance function (non-negative “energy
function”) and T denotes a “temperature” parameter. A
dominance function fdom() measures how much a trajectory
is dominated by other trajectories. We want to design a
dominance function so that the corresponding distribution
is an uniform distribution over the Pareto-frontier. Such a
dominance function should satisfy following properties as
follows:
• fdom(σ) = 0 ∀σ ∈ Σ∗;
• fdom(σ) > 0 ∀σ 6∈ Σ∗; and
• σ1 ≺ σ2 ⇔ fdom(σ1) < fdom(σ2) ∀σ1, σ2 ∈ Σ.

where Σ∗ denotes a Pareto-optimal set in a trajectory space.
All the non-dominated trajectories have the same value of
fdom(σ) thus the same probabilities, which implies unifor-
mity as Property 1.

Property 1: P (σ | fdom(σ) = 0) is a uniform distribution,
which is ∀Σ∗1,Σ∗2 ∈ Σ∗, P (Σ∗1 | fdom(Σ∗1) = 0) = P (Σ∗2 |
fdom(Σ∗2) = 0).

Tuning the parameter T also reshapes the distribution.
As T approaches to zero, the probability of any dominated
trajectory converges to zero. At the same time, the probability
of any non-dominated trajectory is increased. We have that
P (σ) converges to a uniform distribution on the Pareto-
optimal set P (σ | fdom(σ) = 0) as T → 0 in Property 2.

Property 2: limT→0 P (σ) = P (σ | fdom(σ) = 0).
We describe the framework of sampling trajectories in

Algorithm 1 which uses Markov Chain Monte Carlo. We first
initialize a population of trajectories from an arbitrary known
(e.g., uniform) distribution in a trajectory space Σ. Driven
by Markov chain random walks, all the samples gradually
converge to a target distribution. Metropolis correction (line
8 ∼ 13 in Algorithm 1) plays the pivotal role in assuring
the detailed balance of MCMC [20]. One of the virtues
of the Metropolis correction is that it allows selecting any
random walk that possibly speeds up the convergence to
the target distribution. Denote i-th trajectory in the current
population Σ as Σ[i]. Reaching Line 11 means that the new
i-th trajectory σ′i is accepted thus increasing the acceptance
count Nacc. Reaching Line 13 means that the new i-th
trajectory σ′i is rejected thus is reverted to σi in a previous
population. As the acceptance rate increases, temperature T

Algorithm 1 MOMCMC (P (σ | fdom), N,f , γacc)
1: Σ← UNIFORM(Σ, N )
2: while NOTCONVERGENCED(Σ) do
3: fDom ← FITNESSEVALUATION(Σ,f )
4: Nacc ← 0
5: Σ′ ← MARKOVCHAINRANDOMWALK(Σ)
6: f ′Dom ← FITNESSEVALUATION(Σi,f )
7: for i = 1 to N do
8: u← UNIFORM([0, 1), 1), σi ← Σ[i], σ′i ← Σ′[i]
9: fdom(σi)← fDom[i], fdom(σ′i)← f ′Dom[i]

10: if u < exp(− 1
T (fdom(σ′i)− fdom(σi))) then

11: Nacc ← Nacc + 1
12: else
13: σ′i ← σi

14: Σ← Σ′

15: if Nacc/N < γacc then
16: INCREASE(T )
17: else
18: DECREASE(T )

return Σ

is decreased that gradually moves the distribution toward
P (σ | fdom(σ) = 0), which is a uniform distribution over
Pareto-frontier.

The fitness of a trajectory is evaluated by fdom. We thus
can evaluate the fitness of a population of trajectories Σ in
FITNESSSEVALUATION(). The performance of Algorithm 1
is determined by (i) how the dominance is evaluated FIT-
NESSSEVALUATION(); and (ii) how the Markov chain ran-
dom walk is designed MARKOVCHAINRANDOMWALK().
We will provide one form of FITNESSSEVALUATION() in
Section V. We will discuss the design of MARKOVCHAIN-
RANDOMWALK() that could converge faster to a target
distribution.

V. DOMINANCE FUNCTION AND MARKOV CHAIN

We begin with decomposing an objective space for a given
trajectory σ (Fig. 3). Given an arbitrary trajectory σ, we can
decompose a trajectory space Σ into three disjoint subsets
by the three types of relations as in Fig. 3:
• Σ≺σ = {σ′ ∈ Σ | σ′ ≺ σ}: The subset of all trajectories

dominate σ
• Σ�σ = {σ′ ∈ Σ | σ ≺ σ′}: The subset of all trajectories

dominated by σ
• Σ‖σ = {σ′ ∈ Σσ′ ‖ σ}: The subset of all trajectories

that are parallel to σ
We find that the volume of Σ≺σ , written as |Σ≺σ| ,

satisfies the three properties of fdom(). |Σ≺σ| = 0 if and
only if a trajectory σ is non-dominated. If σ1 dominates σ2,
then |Σ≺σ1

| < |Σ≺σ2
|. Thus we design a dominance function

fdom(σ) for trajectory σ by “estimating” the volume of Σ≺σ .
In practice, it is impossible to analytically calculate |Σ≺σ|

for any given σ. We propose f̂dom(σ | Σ) as an estimation
of fdom(σ) for trajectory σ based upon a population Σ in
(1), which is a variation of the fitness function introduced in
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Fig. 3: A trajectory space is decomposed by dominance
relationships given a trajectory σ.

[16], [17]:

f̂dom(σ | Σ) =

{
s(σ)− 1 σ ∈ Σ∗∑

σ′≺σ HYP(σ, σ′) σ 6∈ Σ∗.
(1)

s(σ) indicates the proportion of trajectories in the population
that are dominated by σ. HYP(σ, σ′) is defined by the
hypervolume between σ and σ′ using Lebesgue measure,
which is associated with the significance of dominance. Note
that f̂dom satisfies the properties of fdom, except non-zero
fitness is also used for non-dominated trajectory [16], [17]
to facilitate Markov chain random walk on a Pareto-frontier.
Notice that (1) returns non-positive value when a trajectory is
non-dominated in the population, instead of zero. In practice,
it will better support random walk on a Pareto-frontier for
better diversity in MCMC.

Following the definition of f̂dom, we use differen-
tial evolution [21], [16] to generate new samples in
MARKOVCHAINRANDOMWALK. We also propose another
type of MARKOVCHAINRANDOMWALK, which uses fast
non-dominance sorting [15]. In this approach, we use tour-
nament selection that selects from current population to pro-
duce new candidates. The new candidates will be merged into
current population. Fast non-dominance sorting is then called
to sort the population. The top samples in the population
became the new population, which is equivalent to new
samples produced in Markov chain random walk.

VI. PROGRESSIVE OBJECTIVE EVALUATION

The computational cost of an objective increases propor-
tionally to the cost of the integrand. This can be critical when
we have an expensive integrand function such as collision
penalty [22], which is common and critic in motion planning.
One beneficial property of this kind of objectives is that it is
a monotonically increasing functional if the cost function for
all the configuration is non-negative. This property motivates
us to propose a progressive objective evaluation to reduce
unnecessary evaluation in determining dominance relations.

Defining σ(t) as the segment of a trajectory σ in [0, t],
we can have fk(σ(t)) ≤ fk(σ),∀k. By transitivity, we have
if fk(σ1) ≤ fk(σ2(t)) then fk(σ1) ≤ fk(σ2). Extending it
to determine dominance, we have t ∈ [0, 1] ∧ σ1 ≺ σ2(t)⇒
σ1 ≺ σ2. It tells that we can know whether a trajectory
σ1 dominates σ2 before fully evaluating the whole σ2. We
propose a progressive objective evaluation in Algorithm 2,
which evaluates multiple objectives progressively. Evaluated
objectives are then used to calculate the fitness in Eq. (1).

Algorithm 2 defines a process of progressively evaluating
the objectives of trajectories in a population. The progress of
evaluating a trajectory depends on the dominance relations
with other trajectories in the population and their current
evaluations. It prevents unnecessary time cost in evaluating
objectives once dominant relations (i.e., dominating or dom-
inated) can be determined. Each trajectory has K objectives
to evaluate separately and sequentially.

We introduce a few matrices to track the progress of
evaluations. We first define a matrix T to store the progresses
of evaluations and a matrix O to store the current evaluated
objective values. T(i, k) records the progress of evaluating k-
th objective of i-th trajectory. O(i, k) records the evaluated
value in k-th objective of i-th trajectory. By tracking the
comparison between evaluated trajectories, we can determine
whether an early termination is allowed. We use a matrix S to
store the status of evaluation up k-th objective evaluation and
a matrix E to store whether evaluation shall continue. S(i, j)
indicates the relation of i-th trajectory to j-th trajectory.
There are four evaluation statuses, D, d, p and u. d, D, and p
corresponds to three types of relations defined in Section V,
which are dominate, dominated, and parallel, respectively.
u is newly added here to represent an “undecided” relation.
The value in S(i, j) determines the value in E(i, j), which
is a boolean value indicating whether evaluating S(i, j) shall
be continued. There is also an ordered array I that stores
the indices of trajectories to be evaluated that is sorted in
the descending order of the current objective values, and
an ordered array C that stores trajectories whose objective
evaluation is entirely evaluated.

Algorithm 2 calls PROGRESSEVAL(σi, k) in evaluating
k-th objective of i-th trajectory σi progressively, which
returns the portion that has been evaluated T(i, k) and
the corresponding objective O(i, k). Because objectives are
evaluated by sequence, we introduce ≺k to denote that a path
dominates the other in first k-th objectives. The high-level
idea behind Algorithm 2 can be summarized as three cases
as

1) O(i, k) < O(j, k) ∧ T(i, k) = 1 ∧ T(j, k) < 1
⇒ fk(σi) < fk(σj);

2) fk(σi) < fk(σj) ∧ σi ≺k−1 σj ⇒ σi ≺k σj ;
3) fk(σi) < fk(σj) ∧ σj ≺k−1 σi ⇒ σi ‖ σj .
DOMUPDATE() is called when we find that one trajectory

is less than another in one objective. At the end, it calls
FITNESSEVAL() that takes in evaluated objectives O to
generate the fitnesses of trajectories.

VII. EXPERIMENTS

In our experiments, we sample in a trajectory parametric
space S [10], instead of directly sample in a trajectory space
Σ. A trajectory parametrization defines a map between a
trajectory σ in an infinite trajectory space Σ and a parameter
s in a finite trajectory parametric space S. The parametric-
invariance of the objective functionals enables that we ob-
tain consistent trajectories independent on parameterization
methods [23]. The objective is evaluated by an integral that
accumulates the non-negative cost along the trajectory, which



Algorithm 2 PROGRESSIVEFITNESSEVALUATION (Σ,f )
1: O(·, ·)← 0, T(·, ·)← 0, I ← Σ, C ← ∅
2: S(·, ·)← u, E(·, ·)← true
3: for k ← 1 to |f | do
4: ∀i,E(i, i)← false
5: for σi, σj ∈ Σ do
6: if S(i, j) = p then
7: E(i, j)← false

8: while I 6= ∅ do
9: σi ← FRONT(I)

10: O(i, k),T(i, k)← PROGRESSEVAL(σi, k)
11: for σj ∈ C do
12: if E(i, j) = false ∧ S(i, j) = p then
13: continue
14: if O(i, k) > O(j, k) then
15: S,E← DOMUPDATE(i, j, S,E)
16: else if O(i, k) < O(j, k) ∧ T(i, k) = 1 then
17: S,E← DOMUPDATE(j, i, S,E)
18: if E(·, j) = false then
19: C ← C \ {j}
20: if T(i, k) ≤ 1 then SORT(I, k)
21: else
22: I ← I \ {i}, C ← C ∪ {i}
23: for σj ∈ I do
24: if O(i, k) < O(j, k) ∧ T then
25: S,E← DOMUPDATE(j, i, S,E)
26: I ← Σ, C ← ∅
27: for σi ∈ I do
28: if S(·, i) = p then
29: I ← I \ {σi}

return FITNESSEVAL(O)

Algorithm 3 DOMUPDATE (i, j, S,E)
1: if S(i, j) = D then
2: S(i, j)← S(j, i)← p, E(i, j)← E(j, i)← false
3: else if S(i, j) = u then
4: S(i, j) ← d, S(j, i) ← D, E(i, j) ← E(j, i) ←
false

is f(σ) =
∫
σ
c(σ(t))|| ddtx(σ(t))||dt. The definition of objec-

tive functional guarantees that the objective is parametric-
invariant [10], which means that the results returned from a
solver are independent of the type of parametrization method.

We choose cubic B-splines in trajectory parametrization,
q(t;x) =

∑3
i=0Bi(t)xi, where Bi(t) are the spline basis

functions and xi are the control points. We use four control
points for each trajectory where the first and end points are
fixed, and the two middle points are free. This is to make the
start and goal configurations fixed. B-spline has properties
that (1) joint position limits are straightforwardly enforced
using the convex hull property [24]; and (2) joint velocity
limits can be formulated as linear constraints [24]. A sample
s is obtained in a trajectory parametric space S. The sample
is mapped into a trajectory σ in evaluating the objective.

(a) Trajectories in objective space.
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(c) Diversity in objective space.

Fig. 4: planning for a drone with a path-length objective and
an informative objective using different approaches.

We test the performance of the algorithms in two prob-
lems, (1) a drone in a search task; and (2) a robot HERB [25]
working on a table using both arms. The performance of
the algorithm is evaluated by Pareto-optimality and diversity
of samples. The Pareto-optimality is measured by non-
dominance to an elite set (i.e., the non-dominated samples
in a population) because the true Pareto-optimal set is
impossible to evaluate. The diversity of samples is measured
by spread [15],

δ =

∑K
k=1 d

e
k +

∑N
i=1 |di − d̄|∑K

k=1 d
e
k +Nd̄

(2)

given a population of N samples. di is the distance between
i-th sample to its nearest neighbor; d̄ is the mean of all the di;
and dek is the distance between the extreme solutions of the
true Pareto-frontier and the population on the k-th objective.
The larger the spread is, the better diversity of the samples
is. We test three different methods of random walks under
the framework of MOMCMC, which are MOMCMC using
Differential Evolution (DE), MOMCMC using progressive
Differential Evolution (PROG-DE) and MOMCMC using
Fast Non-dominance Sorting (FNS). We also compare them
with MOEA/D solver [6]. We implement our framework and
experiments on top of AIKIDO [26] that uses DART [27] for
the underlying rigid body simulation and visualization.

A. Performance

Our first experiment uses a single drone with two ob-
jectives, which are minimizing path length and maximizing
information gain. The information gain is measured by the
accumulated information along with a trajectory, in which the
information in each configuration is defined by a distribution
of information.

Fig. 4 shows the results of different approaches with the
same number of iterations 200. It is evident that in the
objective space trajectories by MOEA/D shows the lower



diversity, as in Fig. 4a. The reason is that MOEA/D uses a
set of random weights to generate subproblems to solve [6],
the scale difference distorts uniformly sampled weights maps
to clustered solutions. Fig. 4c indicates three approaches
of MOMCMC provide close performance in diversity, and
FNS outperforms the others. Fig. 4b shows that FNS and
MOEA/D return more non-dominated trajectories, which
indirectly reflects the convergence rate.

We then test the scale-invariance of the approaches. Scale-
invariance measures whether algorithms still generate consis-
tent results if some of the objectives are scaled. Fig. 5 shows
the results in a two-objective problem. We manually scale
the second objective by multiplying different scaling factors
w (0.01 and 10.0). We can tell that all three approaches
in MOMCMC (DE, PROG-DE, and FNS) provides similar
trajectories as in Fig. 5, while the trajectories by MOEA/D
are dramatically changed. It indicates that the approaches in
MOMCMC are robust to how units are selected for objectives
and can provide consistent results subject to the scaling
difference. The performance of MOEA/D is not ideal in this
example, due to its weight-based nature discussed above [6].

We test three approaches of MOMCMC with a different
number of objectives. We want to verify the performance of
the approaches adapt to the increasing number of objectives.
We take ten runs on each problem in collecting data to
verify the performance robustness. Each run is with 1, 000
iterations. Fig. 6a shows all three approaches have consistent
performance on diversity when more objectives are intro-
duced. FNS is consistently better in diversity than others
in Fig. 6a. All three approaches show close performance in
generating non-dominated trajectories in Fig. 6b.

Fig. 7 shows the performance of the progressive objective
evaluation with different problem size and evaluation step
sizes. RES80 indicates less number of steps to evaluate than
RES100, which means a larger step size. Fig. 7a and 7b
show that the time saved by PROG-DE is proportional to
the portion of path evaluation. Fig. 7a shows that reducing
the evaluation step size does not impact the performance.
Increasing the problem size will diminish the time saved
from progressive objective evaluation because it becomes
harder to significantly dominate since there are more other
samples in competing dominance.

B. Re-planning

The chain nature of the MOMCMC framework makes it a
good fit for re-planning under environment changes. Assume
that the new target distribution on a new Pareto-frontier is
caused by environmental change is not too different from
the previous one used for sampling. The solutions from the
initial planning could be used as the initial samples used in
MCMC in the re-planning, we call this a warm re-planning.
Instead, we call it a cold re-planning if it is an MCMC from
scratch. From statistics, we know that it takes much less
burn-in iterations to converge to the new target distribution
using a warm re-planning than using a cold re-planning.
We run both types of re-planning with 10 iterations only.
Fig. 8a shows an initial set of Pareto-optimal trajectories

from previous planning. The information source is moved
from (5.0, 0.0) to (7.5, 0.0) both in Fig. 8b and 8c, which
implies the same new Pareto-frontier. We can see that in
Fig. 8c a warm re-planning almost converges trajectories to a
new Pareto-frontier in 10 iterations, while a cold re-planning
is far away from convergence in Fig. 8b. The difference can
also be told in an objective space in Fig. 8d.

C. Real-world Problem

We also test our framework in a bi-arm manipulation
planning problem with HERB [25]. The task is swapping two
bottles on a table using two-arm manipulation. The start pose
and goal pose are shown in Fig. 9a and 9b. We consider two
arms as two individual agents, so that have their objectives
while they coordinate to maximize team objectives. We
choose five objectives in this experiment, which are con-
figuration space path lengths for the arms (two objectives),
collision cost between two arms, and collision cost between
the table and each arm (two objectives). The path length
is measured by integrating the trajectory as a consecutive
50 line segments. We consider hard constraint, such as
collision, as one objective by using a penalty functional. We
accumulate penalty of 1.0 whenever the discretized trajectory
is in a collision so that zero value means collision-free. For
each trajectory, the dimension of parametric trajectory space
is 28 (i.e., two 7-DOF arms × two free control points). In
Fig. 9 we only show the results to compare DE and FNS in
500 iterations. FNS shows faster convergence so that there
are more non-dominated trajectories returned from FNS, as
shown in Fig. 9c. Fig. 9d and 9e visualize the sampled
trajectories by DE and FNS. Since the trajectories sampled
by DE are not yet converged to the Pareto-frontier, it shows
better diversity in Fig. 9c.

VIII. CONCLUSION

We propose a framework of Multi-Objective Markov
Chain Monte Carlo (MOMCMC) that uniformly samples tra-
jectories on a Pareto-frontier in solving multi-objective path-
planning problems. We define a type of target distribution for
MCMC to converge from arbitrary initial trajectories toward
the Pareto-optimal set. We also propose two approaches of
random walks for the framework to enhance the convergence
rate. We conduct experiments to verify the performance of
the algorithms, and how it applies to re-planning and real-
world problems.

Finding a set of Pareto-optimal trajectories for multiple
objectives is a more expensive approach than finding only
single trajectory. However, having a pool of candidate so-
lutions to select make this approach robust to changes and
uncertainties. A set of Pareto-optimal trajectories also recov-
ers more information in both trajectory space and objective
space, which support diversity in programming trajectory
selection specifications [28], [29]. In this paper, constraints
are modeled as objectives, which could be extended to
solve “minimum constraint removal” in finding a feasible
solution [30] by searching a feasible one in a set.



(a) DE (w = 0.01) (b) PROG-DE (w = 0.01) (c) FNS (w = 0.01) (d) MOEA/D (w = 0.01)

(e) DE (w = 10.0) (f) PROG-DE (w = 10.0) (g) FNS (w = 10.0) (h) MOEA/D (w = 10.0)

Fig. 5: Compare scale invariance of the approaches in a two objective problem. w indicates a scaling factor applied to 2nd
objective.
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Fig. 6: Compare different approaches and methods using
different number of objectives.
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Fig. 7: Compare the performance of progressive objective
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(a) Initial planning (itr =
1,000)
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thus two different re-planning are triggered in Fig. 8b and
Fig. 8c with 10 iterations.
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