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Abstract— Informed and robust decision making in the face
of uncertainty is critical for robots operating in unstructured
environments. We formulate this as Bayesian Reinforcement
Learning over latent Markov Decision Processes (MDPs). While
Bayes-optimality is theoretically the gold standard, existing
algorithms scale poorly to continuous state and action spaces.
We build on the following insight: in the absence of uncertainty,
each latent MDP is easier to solve. We first obtain an ensemble
of experts, one for each latent MDP, and fuse their advice to
compute a baseline policy. Next, we train a Bayesian residual
policy to improve upon the ensemble’s recommendation and
learn to reduce uncertainty. Our algorithm, Bayesian Residual
Policy Optimization (BRPO), imports the scalability of pol-
icy gradient methods and task-specific expert skills. BRPO
significantly improves the ensemble of experts and drastically
outperforms existing adaptive RL methods, both in simulated
and physical robot experiments.

I. INTRODUCTION

Robots that are deployed in the real world must operate in
the face of model uncertainty. For example, an autonomous
vehicle must safely navigate around pedestrians navigating
to latent goals (Figure 1). A robot arm must reason about
occluded objects when reaching into a cluttered shelf. This
class of problems can be framed as Bayesian reinforcement
learning (BRL) where the agent maintains a belief over
latent Markov Decision Processes (MDPs). Under model
uncertainty, agents do not know which latent MDP they are
interacting with, preventing them from acting optimally. At
best, they can be Bayes optimal, or optimal with respect to
their current uncertainty over latent MDPs.

In this work, we focus on continuous control tasks with
model uncertainty. This specific Bayesian RL problem is
mathematically modeled by independently resampling the
latent MDP at the beginning of each episode. Thus, in each
episode of the autonomous vehicle example, the agent faces a
new set of pedestrians with unknown goals. In these settings,
the agent must actively reduce uncertainty while selecting
robust actions.

A Bayesian RL problem can be viewed as a large con-
tinuous belief MDP, which is computationally infeasible to
solve directly [1]. These tasks are challenging even for state-
of-the-art belief-space planning and robust RL algorithms,
especially when considering continuous action spaces. Exist-
ing POMDP algorithms are either limited to discrete action
spaces [2] or rely on online planning and samples from
the continuous action space [3]. Latent MDPs may require
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vastly different policies to achieve high reward; robust RL
methods [4], [5] often fail to recover that multi-modality.

We build upon a simple yet recurring observation [6], [7]:
ignoring uncertainty by solving individual latent MDPs is
much more tractable than solving the original belief MDP.
If the path for each pedestrian is known, the autonomous
vehicle can invoke a motion planner to avoid collisions.
We can think of these solutions as clairvoyant experts, i.e.,
experts that think they know the latent MDP and offer
advice accordingly. An ensemble policy of these clairvoyant
experts can be surprisingly effective, but since each expert
is individually confident about which MDP the agent faces,
the ensemble never prioritizes uncertainty-reducing or robust
actions. Such actions can be critical for solving the original
problem with model uncertainty.

Our algorithm, Bayesian Residual Policy Optimization
(BRPO), computes a residual policy to augment an ensemble
of clairvoyant experts (Figure 1). This is computed via
policy optimization in a residual belief MDP, induced by
the ensemble’s actions on the original belief MDP. Because
the ensemble is near-optimal when the entropy of the belief
distribution is low, BRPO can focus on learning to act safely
in regions of high entropy. Moreover, the better initialization
provided by the ensemble enables BRPO to learn much
faster than methods starting from scratch without experts.

Our key contribution is the following:
• We propose BRPO, a scalable Bayesian RL algorithm

for problems with model uncertainty.
• We prove that BRPO monotonically improves upon the

expert ensemble, converging to a Bayes-optimal policy.
• We experimentally demonstrate that BRPO outperforms

both the ensemble and existing adaptive RL algorithms
in simulation, and apply BRPO to a physical robot task.

II. RELATED WORK

a) POMDP methods: Bayesian reinforcement learning
formalizes RL where one has a prior distribution over
possible MDPs [1]. However, the Bayes-optimal policy is
intractable to compute and approximation is necessary [8].
Point-based solvers such as SARSOP [2] and PBVI [9] can-
not deal with continous state actions. Online sampling, such
as BAMCP [3], POMCP [10], POMCPOW [11], requires a
significant amount of online computation. Online exploration
is also well-studied in the bandit literature, and techniques
such as posterior sampling [12] bound the learner’s regret.
UP-OSI [13] predicts the most likely MDP and maps that
to an action. However, online methods can over-explore
unsafe regimes. Another alternative is to treat belief MDPs
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Fig. 1: An overview of Bayesian Residual Policy Optimization. (a) Pedestrian goals are latent and tracked as a belief
distribution. (b) Experts propose their solutions for a scenario, which are combined into a mixture of experts. (c) Residual
policy takes in the belief and ensemble’s proposal and returns a correction to the proposal. (d) The combined BRPO and
ensemble policy is Bayes-optimal.

as large state spaces that must be compressed. [14] use Long
Short-Term Memory (LSTM) [15], while BPO [16] explicitly
utilizes the belief distribution to learn a policy. Unlike BPO,
BRPO leverages experts to scale to complex Bayesian tasks.

b) Meta-reinforcement Learning: Meta-reinforcement
learning (MRL) approaches train sample-efficient learners
by exploiting structure common to a distribution of MDPs.
For example, MAML [17] trains gradient-based learners
while RL2 [18] trains memory-based learners. While meta-
supervised learning has well established Bayesian roots [19],
[20], it was only recently that meta-reinforcement learn-
ing was strongly tied to Bayesian Reinforcement Learning
(BRL) [21], [22]. Our work is more closely related to
Bayesian MRL approaches. MAML-HB [23] casts MAML
as hierarchical Bayes and improves posterior estimates.
BMAML [24] uses non-parametric variational inference to
improve posterior estimates. PLATIPUS [25] learns a param-
eter distribution instead of a fixed parameter. PEARL [26]
learns a data-driven Bayes filter across tasks. In contrast to
these approaches, we use experts at test time, learning only
to optimally correct them.

c) Residual Learning: Residual learning has its foun-
dations in boosting [27], which builds a strong ensemble by
sequentially training weak learners that address the failures
of their predecessors. Boosting with hand-designed policies
or models allows priors to be injected into RL. Prior work
has leveraged known but approximate models by learning
the residual between the approximate dynamics and the
discovered dynamics [28], [29], [30]. There has also been
work on learning residual policies over hand-defined ones
for solving long horizon [31] and complex control tasks [32].
Similarly, our approach initializes with experts and learns to
improve via Bayesian reinforcement learning.

III. PRELIMINARIES: BAYESIAN RL

As discussed in Section I, we formulate the problem
of RL under model uncertainty as model-based Bayesian
reinforcement learning (BRL), where the latent model is
resampled at the beginning of each episode. Formally, the
problem is defined by a tuple 〈S,Φ, A, T,R, P0, γ〉, where
S is the observable state space of the underlying MDPs, Φ
is the latent space, and A is the action space. T and R are
the transition and reward functions parameterized by φ. The
initial distribution over (s, φ) is given by P0 : S×Φ→ R+,
and γ is the discount.

Bayesian RL considers the long-term expected reward
with respect to the uncertainty over φ rather than the true
(unknown) value of φ. Uncertainty is represented as a belief
distribution b ∈ B over latent variables φ. The Bayes-optimal
action value function is given by the Bellman equation:

Q(s, b, a) = R(s, b, a)+γ
∑

s′,b′

P (s′, b′|s, b, a) max
a′

Q(s′, b′, a′)

(1)
where R(s, b, a) =

∑
φ∈Φ b(φ)R(s, φ, a) and P (s′|s, b, a) =∑

φ∈Φ b(φ)P (s′|s, φ, a). The posterior update P (b′|s, b, a)
is computed recursively: starting from initial belief b0,
b′(φ′|s, b, a, s′) = η

∑
φ∈Φ b(φ)T (s, φ, a, s′, φ′) where η

is the normalizing constant, and the transition function is
defined as T (s, φ, a, s′, φ′) = P (s′|s, φ, a)P (φ′|s, φ, a, s′).

While some terminology is shared with online RL algo-
rithms (e.g. Posterior Sampling Reinforcement Learning [7]),
the online setting makes the different assumption that latent
variables are fixed across multiple episodes. We refer the
reader to Appendix A for further discussion.

IV. BAYESIAN RESIDUAL POLICY OPTIMIZATION

Bayesian Residual Policy Optimization relies on an en-
semble of clairvoyant experts where each expert solves a
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Fig. 2: Bayesian residual policy network architecture.

latent MDP. This is a flexible design parameter with three
guidelines. First, the ensemble must be fixed before training
begins. This freezes the residual belief MDP, which is
necessary for theoretical guarantees (Section IV-C). Next,
the ensemble should return its recommendation quickly since
it will be queried online at test time. Practically, we have
observed that this factor is often more important than the
strength of the initial ensemble; even weaker ensembles
can provide enough of a head start for residual learning
to succeed. Finally, when the belief has collapsed to a
single latent MDP, the resulting recommendation must follow
the corresponding expert. In general, the ensemble should
become more reliable as entropy decreases.

BRPO performs batch policy optimization in the residual
belief MDP, producing actions that continuously correct
the ensemble recommendations. Intuitively, BRPO enjoys
improved data-efficiency because the correction can be small
when the ensemble is effective (e.g., when uncertainty is low
or when the experts are in agreement). When uncertainty is
high, the agent learns to override the ensemble, reducing
uncertainty and taking actions robust to model uncertainty.

A. Ensemble of Clairvoyant Experts

The ensemble policy maps the state and belief to a distri-
bution over actions πe : S × B → P (A). It combines clair-
voyant experts π1, · · · , πk, one for each latent variable φi.
Each expert can be computed via single-MDP RL or optimal
control. There are various strategies to produce an ensemble
from a set of experts. Following the maximum a posteriori
(MAP) expert of the ensemble πe = arg maxb(φ) πφ allows
BRPO to solve tasks with infinitely many latent MDPs. The
ensemble can also be a weighted sum of expert actions,
which is the MAP action for Gaussian policies.

B. Bayesian Residual Policy Learning

Our algorithm is summarized in Algorithm 1. In each
training iteration, BRPO collects trajectories by simulating
the current policy on several MDPs sampled from the prior
distribution. At every timestep of the simulation, the en-
semble is queried for an action recommendation (Line 9),
which is summed with the correction from the residual
policy network (Figure 2) and executed (Line 10-12). The
Bayes filter updates the posterior after observing the resulting
state (Line 13). The collected trajectories are the input to
a policy optimization algorithm, which updates the residual
policy network.

The BRPO agent effectively experiences a different MDP.
In this new MDP, actions are always shifted by the ensemble
recommendation. We formalize this correspondence between

Algorithm 1 Bayesian Residual Policy Optimization

Require: Bayes filter ψ, belief b0, prior P0, residual policy
πr0 , expert πe, horizon T , nitr, nsample

1: for i = 1, 2, · · · , nitr do
2: for n = 1, 2, · · · , nsample do
3: Sample latent MDP M: (s0, φ0) ∼ P0

4: τn ← Simulate(πri−1
, πe, b0, ψ,M, T )

5: πri ← BatchPolicyOpt(πri−1
, {τn}

nsample
n=1 )

6: return πrbest

7: procedure SIMULATE(πr, πe, b0, ψ,M, T )
8: for t = 1, · · · , T do
9: aet ∼ πe(st, bt) // Expert recommendation

10: art ∼ πr(st, bt, aet) // Residual policy
11: at ← art + aet
12: Execute at on M, receive rt+1, observe st+1

13: bt+1 ← ψ(st, bt, at, st+1) // Belief update
14: τ ← (s0, b0, ar0 , r1, s1, b1, · · · , sT , bT )
15: return τ

the residual and original belief MDPs in the next section,
showing that BRPO inherits the monotonic improvement
guarantee from existing policy optimization algorithms.

C. BRPO Inherits Motononic Improvement

BRPO guarantees monotonic improvement on the ex-
pected return of the mixture between the ensemble policy
πe and the initial residual policy πr0 . First, we observe
that πr operates on its own residual MDP and show that
the probability of any state-sequence for πr in the residual
MDP is equal to that of π in the original MDP. Then we
observe that the monotonic guarantee from the underlying
policy optimization algorithm holds for πr in the residual
MDP. Combining these, we transfer the guarantee for πr in
the residual MDP to π in the original MDP. The following
arguments apply to all MDPs, not just belief MDPs; thus,
we’ve omitted the belief from the state for clarity of expo-
sition. We refer the reader to Appendix B for proofs.

Let M = 〈S,A, T,R, P0〉 be the original MDP. For
simplicity, assume that R depends only on states. Every πe
forM induces a residual MDPMr equivalent toM except
for the transition function, Tr. For every residual action ar,
Tr marginalizes over all expert recommendations.

Tr(s
′|s, ar) =

∑

ae

T (s′|s, ae + ar)πe(ae|s) (2)



Let πr(ar|s, ae) be a residual policy. The final policy π
executed on M is a mixture of πr and πe.

π(a|s) =
∑

ar

πe(a− ar|s)πr(ar|s, a− ar) (3)

First, we note that the probability of observing any
sequence of states is equal in both MDPs. Let ξ =
(s0, s1, ..., sT−1) be a sequence of states. Let α = {τ} be
the set of all length T trajectories (state-action sequences) in
M with ξ as the states, and β = {τr} be analogously defined
for a set of trajectories inMr. Note that each state-sequence
ξ may have multiple corresponding state-action trajectories
{τ}.

Lemma 1: The probability of ξ is equal when executing
π on M and πr on Mr, i.e.,

π(ξ) =
∑

τ∈α
π(τ) =

∑

τr∈β

πr(τr) = πr(ξ)

Since reward depends only on the states, R(τ) = R(τr) =
R(ξ) for all τ ∈ α, τr ∈ β. Hence, Lemma 1 immediately
implies that the performance of πr on the residual MDP
Mr is equivalent to the BRPO agent’s performance on the
original MDP M.

Theorem 1: A residual policy πr executed onMr has the
same expected return as the mixture policy π executed on
M.

Eτ∼(π,M)[R(τ)] = Eτr∼(πr,Mr)[R(τr)]
Finally, we observe that the residual policy πr, when exe-

cuted inMr, inherits the monotonic improvement guarantee
from PPO [33], the underlying policy optimization algorithm.

Lemma 2: BRPO monotonically improves the expected
return of πr in Mr, i.e.,

J(πri+1
) ≥ J(πri)

with J(πr) = Eτ∼(πr,Mr)[R(τ)], where τ ∼ (πr,Mr)
indicates that τ is a trajectory with actions sampled from
πr and executed on Mr.

Combining Theorem 1 with Lemma 2 transfers the mono-
tonic improvement guarantee to M.

Theorem 2: BRPO monotonically improves upon the
mixture between ensemble policy πe and initial residual
policy πr0 , eventually converging to a locally optimal policy.

In summary, BRPO tackles RL problems with model
uncertainty by building on an ensemble of clairvoyant experts
and optimizing a policy on the residual MDP induced by the
ensemble. Even suboptimal ensembles often provide a strong
baseline, resulting in data-efficient learning and high returns.
We empirically evaluate this hypothesis in Section V.

V. EXPERIMENTAL RESULTS

We focus on problems highlighting common challenges
for robots with model uncertainty. In these tasks, different
latent MDPs require significantly different solutions and
costly sensing is needed for disambiguation. Learned policies
must balance robust actions in the face of uncertainty with
uncertainty-reducing actions.

In all domains that we consider, BRPO improves on the
ensemble’s recommendation and significantly outperforms
adaptive-RL baselines that do not leverage experts (Sec-
tion V-A.1). Qualitatively, robust Bayes-optimal behavior
naturally emerges during training (Section V-A.2). Our ab-
lation studies demonstrate that both the belief and ensemble
recommendation are valuable (Appendix C) and that BRPO
learns to reduce uncertainty without auxiliary information-
gathering reward bonuses (Appendix D). Finally, through
physical experiments on the MuSHR racecar platform [34],
we demonstrate that BRPO agent significantly improves
from a simple expert ensemble and is well-suited for real-
robot tasks (Section V-B).

A. Simulated Experiments

a) Crowd Navigation: Inspired by [35], an autonomous
agent must quickly navigate past a crowd of people without
collisions. Six people cross in front of the agent at fixed
speeds, three from each side (Figure 3a). Each person noisily
walks toward its latent goal on the other side, which is
sampled uniformly from a discrete set of destinations. The
agent observes each person’s speed and position to estimate
the belief distribution for each person’s goal. There is a single
expert which uses model predictive control: each walker is
simulated toward a belief-weighted average goal position,
and the expert selects cost-minimizing steering angle and
acceleration.

b) Cartpole: In this environment, the agent’s goal is
to keep the cartpole upright for as long as possible. The
latent parameters are cart mass and pole length, uniformly
sampled from [0.5, 2.0]kg×[0.5, 2.0]m. The agent’s estimator
is a 3 × 3 discretization of the 2D continuous latent space,
and the resulting belief is a categorical distribution over that
grid. Each expert is a Linear-Quadratic Regulator (LQR) for
the center of each grid square. The ensemble is the belief-
weighted sum of experts.

c) Object Localization: In the ArmShelf environ-
ment, the agent must localize an object without colliding with
the environment or the object. The continuous latent variable
is the object’s pose, which is anywhere on either shelf of the
pantry (Figure 3b). The agent receives a noisy observation of
the object’s pose upon sensing, which is less noisy as the end-
effector approaches the object. The agent uses an Extended
Kalman Filter to track the object’s pose. The ensemble is the
MAP expert which takes the MAP object pose and proposes
a collision-free movement toward the object.

d) Latent Goal Mazes: In the Maze4 and Maze10,
the agent must identify which latent goal is active. At the
beginning of each episode, the latent goal is set to one of four
or ten goals. The agent is rewarded for reaching the active
goal and penalized for reaching an inactive goal. The agent
receives a noisy measurement of the distance to the goal, with
noise proportional to the true distance. Each expert proposes
an action (computed via motion planning) that navigates
to the corresponding goal. The ensemble recommends the
belief-weighted sum of the experts’ suggestions.



(a) CrowdNav (b) ArmShelf

Fig. 3: Setup for CrowdNav and ArmShelf. In
CrowdNav, the goal for the agent (red) is to drive
upward without colliding with pedestrians (other
colors). In ArmShelf, the goal is to reach for
the can using noisy sensors.

(a) Maze4 (b) Maze10 (c) Door4

Fig. 4: Sensing locations. In Maze4 and Maze10, sensing is dense
around the starting regions (bottom of Maze4, center of Maze10)
and where multiple latent goals (gray, green) are nearby and must
be disambiguated. In Door4, BRPO only senses when close to the
doors, where the sensor is most accurate.

e) Doors: There are four possible doors to the next
room of the Door4 environment. At the beginning of each
episode, each door is opened or closed with 0.5 probability.
To check the doors, the agent can either sense or crash into
them (which costs more than sensing). Sensing returns a
noisy binary vector for all four doors with exponentially-
decreasing accuracy proportional to the distance to each door.
Crashing returns an accurate indicator of the door it crashed
into. Each expert navigates directly through the closest open
door, and the ensemble recommends the belief-weighted sum
of experts.

1) BRPO Improves Ensemble, Outperforms Adaptive
Methods: We compare BRPO to adaptive RL algorithms
that consider the belief over latent states: BPO [16] and
UP-MLE, a modification to [13] introduced by [16] that
augments the state with the Bayes filter’s maximum likeli-
hood estimate. Neither approach can incorporate experts.

We also compare with the ensemble of experts base-
lines, which does not take any sensing actions (as dis-
cussed in Section IV). For tasks requiring explicit sens-
ing actions (ArmShelf, Maze4, Maze10, Door4), we
strengthen the ensemble by sensing with probability 0.5 at
each timestep. More sophisticated sensing strategies require
more task-specific knowledge to design.

Figure 5 compares the training performance of all algo-
rithms across the six environments. Note that BRPO’s initial
policy does not exactly match the ensemble: the random
initialization for the residual policy network adds zero-mean
noise around the ensemble policy, which may result in an
initial drop relative to the ensemble (Figure 5c, Figure 5d).

On the wide variety of problems we have considered,
BRPO agents perform dramatically better than BPO and
UP-MLE agents. BPO and UP-MLE were unable to match
the performance of BRPO, except on the simple Cartpole
environment. This seems to be due to the complexity of the
latent MDPs. In fact, for Maze4 and Maze10, we needed
to modify the reward function to encourage information-
gathering for BPO and UP-MLE; without such reward
bonuses, they were unable to learn any meaningful behavior.
We study the effect that such a reward bonus would have

BRPO Ensemble

Real Success Rate (%) 96.6 (29/30) 36.6 (11/30)
Navigation Time (s) 12.4± 0.2 18.3± 0.8

Simulation Success Rate (%) 97.2± 0.04 24.0± 0.2
Navigation Time (s) 6.3± 0.2 10.5± 0.1

TABLE I: Comparison of BRPO and the expert ensemble
on the CarNav environment. In both simulation and on
the physical system, BRPO succeeds much more often and
requires less time to navigate because it accelerates when
safe. Navigation time is only measured for successful trials.

on BRPO in Appendix D. For Cartpole, both BPO and
UP-MLE learned to perform optimally but required much
more training time than BRPO.

2) BRPO Learns Bayes-Optimal Behavior: For Maze4,
Maze10 and Door4, we have visualized where the agent
invokes explicit sensing (Figure 4). For Maze4 and Maze10,
the BRPO agent learns to sense when goals must be dis-
tinguished, e.g. whenever the road diverges. For Door4, it
senses only when that is most cost-effective: near the doors,
where accuracy is highest. This results in a rather interesting
policy in which the agent dashes to the wall, senses only
once or twice, and drives through the closest open door. The
BRPO agent avoids crashing in almost all scenarios.

B. MuSHR Car Experiment

We modify CrowdNav to run an experiment with MuSHR
cars [34]. The BRPO agent controls one, while three others
represent pedestrians (reduced from CrowdNav due to space
constraints). Each car is roughly 30 cm wide and 50 cm
long, and is controlled by forward velocity and steering
angle. Poses for all cars are tracked using an array of twelve
OptiTrack PrimeX 22 cameras. As before, the agent aims to
navigate past the “pedestrians” as they noisily move toward
their latent goals (Figure 6).

We use a very simple ensemble to represent computational
constraints that may be present with a physical robot. There
is only one expert in this ensemble, which assumes that
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Fig. 5: Training curves. BRPO dramatically outperforms agents that do not leverage expert knowledge (BPO, UP-MLE),
and significantly improves the ensemble of experts.

Fig. 6: Rollout on CarNav, a modified CrowdNav for the physical MuSHR cars. The BRPO agent waits, detours, and
accelerates around other cars to reach the goal quickly.

the pedestrians will remain static as it plans forward. It
uses model predictive control to avoid these obstacles as it
navigates toward its goal, and is restricted to a fixed forward
velocity of 0.4 m/s and steering angle between [−0.2, 0.2]
radians. We train the agent in simulation and execute directly
on the car.

BRPO improves on this very simple baseline, successfully
completing the task without collisions in 29 of 30 real-world
trials. Table I compares the performance of BRPO with the
ensemble in both the real and simulated environments. In
both cases, BRPO dramatically improves on the ensemble’s
success rate. Furthermore, the BRPO agent reduces the
navigation time by 36.7% in simulation and 32.2% with the
physical robot, indicating that it learns to navigate both safely
and quickly.

Qualitatively, the BRPO agent often starts slowly. The
pedestrians’ latent goals are usually clearer by the time it
passes the first car, at which point it can accelerate. De-
pending on the latent goals, the agent occasionally waits for
pedestrians to pass or detours around them. Since the expert
moves at a fixed velocity, all deceleration and acceleration
emerges naturally from training with BRPO. Figure 6 shows
snapshots from one rollout to illustrate some of this behavior;
more recorded trials are available in the supplementary video.

VI. DISCUSSION AND FUTURE WORK

Our algorithm, Bayesian Residual Policy Optimization,
builds on an ensemble of experts by operating within the
resulting residual belief MDP. We prove that this strategy
preserves guarantees, such as monotonic improvement, from
the underlying policy optimization algorithm. The scalability
of policy gradient methods, combined with task-specific
expertise, enables BRPO to quickly solve a wide variety

of complex problems, such as navigating through a crowd
of pedestrians. BRPO improves on the original ensemble
of experts and achieves much higher rewards than existing
Bayesian RL algorithms by sensing more efficiently and
acting more robustly.

Although out of scope for this work, a few key challenges
remain. First is an efficient construction of an ensemble
of experts, which becomes important for continuous latent
spaces with infinitely many MDPs. Infinitely many MDPs
do not necessarily require infinite experts, as many may
converge to similar policies. An important future direction
is subdividing the latent space and computing a qualitatively
diverse set of policies. Another challenge is developing an
efficient Bayes filter, which is an active research area. In
certain occasions, the dynamics of the latent MDPs may not
be accessible, which would require a learned Bayes filter.
Combined with a tractable, efficient Bayes filter and an effi-
ciently computed set of experts, we believe that BRPO will
provide an even more scalable solution for BRL problems.
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APPENDIX

A. Bayesian RL and Posterior Sampling RL
Posterior Sampling Reinforcement Learning (PSRL) [7]

is an online RL algorithm that maintains a posterior over
latent MDP parameters φ. However, the problem setting it
considers and how it uses this posterior are quite different
than what we consider in this paper.

This work focuses on scenarios where the agent can
only interact with the test MDP for a single episode; latent
parameters are resampled for each episode. The PSRL regret
analysis assumes MDPs with finite horizons and repeated
episodes with the same test MDP, i.e. the latent parameters
are fixed for all episodes.

Before each episode, PSRL samples an MDP from its
posterior over MDPs, computes the optimal policy for the
sampled MDP, and executes it on the fixed test MDP. Its
posterior is updated after each episode, concentrating the
distribution around the true latent parameters. During this
exploration period, it can perform arbitrarily poorly. Further-
more, sampling a latent MDP from the posterior determinizes
the parameters; as a result, there is no uncertainty in the
sampled MDP, and the resulting optimal policies that are
executed will never take sensing actions.



B. Proofs

a) Proof of Lemma 1: We prove this by induction. The
base case (T = 0) holds trivially since M and Mr share
the same initial state distribution P0. Assuming that it holds
for T = t, pick any ξ and let its last element be s. Consider
an s′-extended sequence ξ′ = (ξ, s′). Conditioned on ξ, the
probability of ξ′ is equal in (π,M) and (πr,Mr), which
we can see by marginalizing over all state-action sequences:
∑

τ ′r

πr(τ
′
r|ξ) =

∑

ar

πr(ar|s)Tr(s′|s, ar) (4)

=
∑

ar

πr(ar|s)
∑

a

T (s′|s, a)πe(a− ar|s)

(5)

=
∑

a

∑

ar

πr(ar|s)πe(a− ar|s)T (s′|s, a) (6)

=
∑

a

π(a|s)T (s′|s, a) (7)

=
∑

τ ′

π(τ ′|ξ) (8)

The transition from (4) to (5) comes from (2) and (6) to (7)
comes from (3). It follows that,

π(ξ′) = π(ξ)
∑

τ ′

π(τ ′|ξ) = πr(ξ)
∑

τ ′r

πr(τ
′
r|ξ) = πr(ξ

′),

which proves the lemma. Note that this proof directly leads
to the proof of Theorem 1.

b) Proof of Lemma 2: BRPO uses PPO for optimiza-
tion [33]. PPO’s clipped surrogate objective approximates the
following objective,

max
θ

Ê
[
πθ(at|st)
πθold(at|st)

Ât − β ·KL(πθold(·|st), πθ(·|st))
]
,

where πθ is a policy parameterized by θ and πθold is the policy
in the previous iteration, which correspond to the current
and previous residual policies πri , πri−1

in Algorithm 1.
Â is the generalized advantage estimate (GAE) and KL
is the Kullback–Leibler divergence between the two policy
distributions. PPO proves monotonic improvement for the
policy’s expected return by bounding the divergence from the
previous policy in each update. This guarantee only holds if
both policies are applied to the same residual MDP, i.e. the
ensemble is fixed.

c) Proof of Theorem 2: From Lemma 2, we have that
πr monotonically improves on the residual MDPMr. From
Theorem 1, monotonic improvement of πr on Mr implies
monotonic improvement of the mixture policy π on the actual
MDPM. If the initial residual policy’s actions are small, the
expected return of the mixture policy π onM is close to that
of the ensemble πe.

C. Ablation Study: Residual Policy Inputs

The BRPO policy takes the belief distribution, state,
and ensemble recommendation as inputs (Figure 2). We
considered two versions of BRPO with different inputs: only

Belief + Rec. Rec. only Ensemble

1.2E+05
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+500

(a) Maze4

1.2E+03
0

+500

(b) Maze10

1.2E+05
0

+100

(c) Door4

Fig. 7: Ablation study on input features. Including both
belief and recommendation as policy inputs results in faster
learning in Door4.
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Fig. 8: Ablation study on information-gathering reward
(Equation 9). BRPO is robust to this reward.

recommendation (which implicitly encodes belief), and one
with both recommendation and belief.

Figure 7 shows that providing both belief and recom-
mendation as inputs to the policy is important. Although
BRPO with only the recommendation performs comparably
to BRPO with both inputs on Maze4 and Maze10, the one
with both inputs learns faster on Door4.

D. Ablation Study: Information-Gathering Reward Bonuses

Because BRPO maximizes the Bayesian Bellman equa-
tion (Equation 1), exploration is incorporated into its long-
term objective. As a result, auxiliary rewards to encourage
exploration are unnecessary. However, existing work that
does not explicitly consider the belief has suggested various
auxiliary reward terms to encourage exploration, such as
surprisal rewards [36] or intrinsic rewards [37]. To investigate
whether such rewards benefit the BRPO agent, we augment
the reward function with the auxiliary bonus from [38]:

r̃(s, b, a) = r(s, b, a) + ε · Eb′ [‖b− b′‖1] (9)

where the latter term rewards belief change in belief.
Figure 8 summarizes the performance of BRPO when

training with ε = 0, 10, 100. Too much emphasis on
information-gathering causes the agent to over-explore and
therefore underperform. In Door4 with ε = 100, we qual-
itatively observe that the agent crashes into the doors more
often. Crashing significantly changes the belief for that door;
the huge reward bonus outweighs the penalty of crashing
from the environment.

We find that BPO and UP-MLE are unable to learn
without an exploration bonus on Maze4, Maze10, and
Door4. We used ε = 1 for Maze4 and Door4, and ε = 100
for Maze10. Upon qualitative analysis, we found that the
bonus helps BPO and UP-MLE learn to sense initially, but
the algorithms are unable to make further progress.


