
Lazy Incremental Search for Efficient
Replanning with Bounded Suboptimality
Guarantees

Inr. Journal of Robotics Research
XX(X):1–29
©The Author(s) 2023
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Jaein Lim1, Mahdi Ghanei1, R. Connor Lawson1, Siddhartha Srinivasa2 and Panagiotis
Tsiotras1

Abstract
We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version,
Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation
efficiency of lazy search algorithms for fast replanning in problem domains where edge-evaluations are more expensive
than vertex-expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal
version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge
evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair.
We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded
Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for
navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that
is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results
support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions
faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation
changes often.

Keywords
Replanning, Lazy Search, Incremental Search, Bounded Suboptimality

Introduction

Replanning is essential to every decision-making agent
operating in a complex or dynamic environment. Agents in
such environments often operate with limited computational
resources and with partial information, making it prohibitive
to construct an accurate model of a complex environment
once and for all. Even if constructing an accurate
representation of the environment were feasible, it may not
be prudent to do so, as the model itself becomes out-of-date
in a dynamic environment, and hence any initial plan quickly
becomes obsolete or irrelevant. The ability to replan fast in
order to adapt to environment changes is crucial for robust
and responsive autonomy.

In this paper, we (re)consider path-planning problems
on graph representations of a complex and dynamic
environment suitable for efficient replanning. To better
understand the issues involved, consider the case of a mobile
robot navigating through a partially known environment with
limited sensing. To produce a motion plan all the way to
a distant location, the robot must make assumptions about
the feasibility or cost of out-of-sight, or yet unexplored,
edges on the underlying search graph, some of which will
likely be incorrect. As the robot executes its initial plan
and perceives new information about the environment, it
may need to update the plan to avoid unknown or dynamic
obstacles and leverage discovered shortcuts (Stentz, 1995;
Koenig and Likhachev, 2005).

Replanning also appears in settings where the world
may be fully known but is too complex to be modeled
accurately. In this case, an initial solution on a coarse model

may be improved via replanning on refined models as the
on-board resources allow. Sampling-based motion planning
algorithms offer a case in point. These algorithms generate
an increasingly dense series of graphs by sampling the free
configuration space in an anytime fashion. Sampling-based
planning becomes especially useful in high-dimensional
spaces where a global graph representation is neither
sufficient nor tractable in order to find a good quality
path (Lavalle, 1998; Karaman and Frazzoli, 2011). The rate
of convergence toward the optimal solution is determined
by the choice of the replanning strategy used to efficiently
update the old plan upon refinement by sampling, and by
employing an efficient replanning strategy. These have been
shown to indeed improve the convergence rate in a variety
of problems (Arslan and Tsiotras, 2013; Gammell et al.,
2015; Strub and Gammell, 2020b,a). The key idea to efficient
replanning is to restrict the replanning routine to only
the relevant paths that could possibly improve the current
solution upon subsequent graph densifications. As a result,
the exploitation (replanning) phase can be shortened, leaving
more resources available for the exploration (sampling)
phase.

The necessity of replanning is not limited to improving
solutions over time; replanning can also help find a solution

1Georgia Institute of Technology, Atlanta, Georgia
2University of Washington, Seattle, WA

Corresponding author:
Jaein Lim, Georgia Institute of Technology, Atlanta, Georgia 30332.
Email: jaeinlim126@gatech.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Inr. Journal of Robotics Research XX(X)

of a complex problem rather quickly by solving the problem
sequentially in relaxed settings. For instance, the multi-
agent path finding problem (MAPF) (Stern et al., 2019)
deals with finding collision-free paths of multiple agents
on a graph. This problem has intractable complexity (Yu
and LaValle, 2013), as the size of the joint planning
space grows exponentially with the number of agents.
There exist complete and optimal MAPF solvers (Sharon
et al., 2015; Boyarski et al., 2015; Felner et al., 2018; Li
et al., 2020) which relax the search complexity of the joint
planning space by decomposing the problem into multiple
single-agent planning problems with incremental inter-agent
collision avoiding constraints. This decomposition reduces
the exponential complexity of the search at the expense of
many replannings of the individual agents, as they repair
their old paths to satisfy additionally discovered inter-
agent constraints online. Efficient replanning of individual
planning problems, thus, helps find the overall solution
faster (Boyarski et al., 2020). Fortunately, in these settings
the change in the environment is often relatively small,
such that a large part of the previous plan can be
reused. Incremental search algorithms that reuse existing
search results can facilitate the update of the current plan,
resulting in reduced computations compared to searching
from scratch (Ramalingam and Reps, 1996; Koenig et al.,
2004; Koenig and Likhachev, 2005). These incremental
methods minimally propagate the cost inconsistencies
induced by changes in the graph to repair the search tree
to become consistent again. The efficiency of this minimal
inconsistency propagation has been widely manifested in
many classical robotics applications (Arslan and Tsiotras,
2013; Gammell et al., 2015; Boyarski et al., 2020).

Unfortunately, existing incremental search
algorithms (Koenig et al., 2004; Koenig and Likhachev,
2005; Aine and Likhachev, 2016) are designed specifically
to reduce the number of vertex expansions, and they are
agnostic to the number of edge evaluations. These methods
often evaluate edges excessively to find the new optimal
(or bounded suboptimal) solution, incurring a significant
computational overhead in problem domains where edge
evaluations are expensive. Indeed, in many replanning
problems (e.g., navigating in a partially known environment,
nonholomic dynamics, sampling-based planning, multi-
agent path finding problem), evaluating an edge can
be more expensive than expanding a vertex. An edge
evaluation typically involves multiple collision checks in the
configuration space (Kavraki et al., 1996; Lavalle, 1998),
solving a two-point boundary value problem (Karaman
and Frazzoli, 2010; Webb and van den Berg, 2013),
propagating the system dynamics with a closed-loop
controller (Kuwata et al., 2009), or checking all-to-all
inter-agent collisions (Shome et al., 2020). In this work, we
seek to remedy such excessive edge evaluations of prior
incremental search algorithms by borrowing ideas from the
lazy search framework of (Bohlin and Kavraki, 2000; Cohen
et al., 2014; Hauser, 2015; Dellin and Srinivasa, 2016;
Mandalika et al., 2018, 2019) in problem domains where
edge evaluations are more expensive than vertex expansions.

Consider, for example, a scenario where a distributed team
of nonholonomic vehicles needs to replan their trajectories
to avoid collisions with one another (see Figure 1). A
popular and practical approach to solve this problem is

Figure 1. Multi-agent motion planning scenario for distributed
nonholonomic vehicles, where each agent needs to replan
asynchronously to find a collision-free trajectory. Edge
evaluations entail finding dynamically feasible trajectories,
collision checks against static obstacles, and collision checks
against all other agents trajectories.

to have each of the agents asynchronously communicate
and replan a collision-free trajectory by considering other
agents’ pre-planned trajectories as dynamic obstacles until
a consensus is reached (Liu et al., 2018; Tordesillas and
How, 2022). Although such a deconfliction strategy does not
guarantee completeness, it has been proven robust in real-
world scenarios with imperfect communication links and
stochastic environments (Zhou et al., 2022). The approach
proposed in this paper can expedite each re-planning instance
by deferring expensive edge evaluations, which may involve
finding dynamically feasible trajectories, collision checks
against static obstacles, and collision checks against all other
trajectories.

In this paper we present a class of incremental search
algorithms that improve upon existing incremental search
algorithms such as Lifelong Planning A* (LPA*) (Koenig
et al., 2004) and D*-Lite (Koenig and Likhachev, 2005)
and their bounded suboptimal variants, namely, Truncated
LPA* (TLPA*) and Truncated D*-Lite (TD*) (Aine and
Likhachev, 2016). We address their common drawback,
often overlooked in classical planning, namely, excessive
edge evaluations, and we propose to generalize the current
incremental search algorithms using a lazy search framework
to mitigate unnecessary edge evaluations.

This paper extends our previous work in Lim et al.
(2022), where we proposed L-GLS, an algorithm that
combines the vertex efficiency of LPA* (Koenig et al.,
2004) with the edge efficiency of GLS (Bohlin and Kavraki,
2000; Mandalika et al., 2018, 2019) for more efficient
replanning in problem domains where edge-evaluations
are expensive, by adding several implementation details,
and by relaxing the optimality constraint so as to find a
bounded suboptimal solution more quickly based on the two
relaxation techniques, namely, truncation of inconsistency
propagation during repair (Aine and Likhachev, 2016)
and by adding an inflation heuristic edge estimate during
search (Pohl, 1970). In addition to L-GLS we introduce
three additional algorithms (B-LGLS, GD*, B-GD*) and
show that by relaxing the optimality constraint of previous
lazy incremental search algorithms we can further save

Prepared using sagej.cls

Lim et al. 3

computational resources, especially when the changes are
frequent, yet rarely significant. Extensive experimental
results are also included to demonstrate the efficacy of the
proposed methods for replanning applications in dynamic
environments.

The paper is organized as follows: in the next section we
provide a taxonomy and a comprehensive literature review of
the relevant algorithms, namely, those that utilize either lazy
search, bounded suboptimal search, or incremental search,
highlighting the connections with the proposed algorithms.
Then, we formally introduce the problem formulation and
the notation used throughout the paper and we present
an optimal lazy incremental search algorithm, namely,
Lifelong-GLS (L-GLS). Afterwards we present its bounded
suboptimal version, namely, Bounded L-GLS (B-LGLS),
which ensures that a replanned solution does not exceed the
optimal solution by a given factor. The next two sections
present dynamic versions of the lazy incremental search
algorithms L-GLS and B-LGLS, called Generalized D*
(GD*) and Bounded Generalized D* (B-GD*), respectively,
for non-stationary planning queries in a partially known
environment. We provide extensive experimental results
comparing the proposed algorithms for solving replanning
problems in dynamic environments using sampling-based
algorithms and navigation problems in dynamic graphs.
Finally, we conclude the paper with a summary of our results
and their impact on real-world replanning applications.

Contributions
We introduce a class of incremental search algorithms
that improve upon existing incremental algorithms by
minimizing their often excessive edge evaluations that hinder
fast re-planning for nonholonomic systems. Using lazy re-
planning ideas, our proposed extension saves a significant
amount of computation that is wasted when evaluating
irrelevant edges. As a result, the proposed algorithms find
the solution much faster compared to classical incremental
search algorithms, especially in problem domains where
edge evaluations are expensive.

We provide theoretical results that guarantee the
completeness and correctness of the proposed algorithms.
Specifically, we show that the returned solution is bounded
above by a user-chosen multiplicative factor of the optimal
solution, given the graph. Our numerical experiments
support our claim that generalizing incremental search
algorithms within the lazy search framework indeed result
in much faster replanning.

Related Work
Many prior works have studied incremental graph search and
lazy motion planning, but few integrate these approaches into
a single algorithm. In this section we offer a comprehensive
literature review of these works and situate our own work
within the existing taxonomy of lazy and incremental search
algorithms.

We classify planners according to their utilization in terms
of three important properties:

1. Lazy search: The planner uses an admissible edge-
weight heuristic to reduce the number of relatively
expensive edge evaluations. Lazy planners vary

primarily in the manner they select edges for full
evaluation.

2. Bounded suboptimality: The planner returns a solution
with cost within a specified multiplicative bound of
the optimal cost. Given a bounded suboptimal planner,
an anytime asymptotically optimal planner may be
constructed by repeatedly solving the same query,
while decreasing the suboptimality bound.

3. Lifelong planning: The planner reuses prior search
results to accelerate subsequent planning queries.
For sequences of similar queries, lifelong planning
significantly reduces the total cost of solving all
queries compared to replanning from scratch. We
restrict the definition of lifelong planning to include
only planners that can handle arbitrary changes to the
underlying graph.

Figure 2 illustrates some of the most popular current
planners according to the above classification. The following
subsections give a brief summary each class of planners,
describing the salient features of each algorithm.

Lazy Search
The earliest and most widely studied category of planners are
based lazy search. Lazy edge evaluation as a form of heuristic
for faster motion planning stems from the observation that in
many practical settings, the time spent on edge evaluation
dominates the rest of the computation time (Hauser, 2015).
Thus, reducing the number of edge evaluations presents a
natural opportunity to speed up planning. When inexpensive
admissible heuristics that underestimate the cost of an edge
are available, planning may proceed for a while using only
these heuristics to guide the search, deferring evaluation until
it is necessary to ensure correctness.

The Lazy Probabilistic Roadmap (LazyPRM) by Bohlin
and Kavraki (2000) was the first algorithm to introduce
laziness, initializing all edges by a heuristic instead of
performing actual edge evaluations. Upon completing the
graph search, the edges on the candidate solution path are
evaluated, after which the graph is updated with their true
edge costs, and the search begins anew. The first solution
containing only already-evaluated edges is the optimal one.

The Lazy Shortest Path (LazySP) (Haghtalab et al., 2018)
framework generalizes LazyPRM by explicitly introducing
an edge selector function. Upon finding a new candidate
solution, the user-specified edge selector function can choose
any combination of edges to evaluate, including those not
belonging to the candidate path. The authors in (Haghtalab
et al., 2018) demonstrate this approach by incorporating prior
information about the environment into the edge selector.
Evaluating edges on a candidate path in order, from start to
goal, as in LazyPRM, is called forward selection.

Both LazyPRM and LazySP algorithms search for a
complete candidate path to the goal before any edge
evaluation is performed, a behavior of infinite lookahead.
Infinite lookahead is proven to minimize edge evaluations
before an optimal path is found, but it requires a high
search effort to generate many complete candidate paths.
Lazy Receding-Horizon A* (LRA*) (Mandalika et al., 2018)
introduces the more general notion of n-step lookahead, in
which the search is limited to n edges beyond the current
evaluated frontier, after which a cost-to-go heuristic is used

Prepared using sagej.cls

4 Inr. Journal of Robotics Research XX(X)

Figure 2. Taxonomy of relevant motion planning algorithms.

to estimate the remainder of the path cost. The parameter n
allows the user to tune the computational effort spent on lazy
search.

Generalized Lazy Search (GLS) (Mandalika et al., 2019)
further generalizes LazySP by introducing user-specified
evaluation events. In GLS the search continues until the
conditions of a specified event are met, at which point the
search immediately stops and edge evaluation commences.
Infinite and n-step lookahead are examples of evaluation
events. The user may also specify an arbitrary edge selector,
as in LazySP. The theoretical properties of GLS do not
explicitly depend on the underlying search algorithm. The
new algorithms presented in this work are instances of
the GLS framework, specifying particular underlying search
algorithms and evaluation events that preserve correctness,
while incorporating additional desirable properties.

The Advanced Informed Trees (AIT*) and Effort
Informed Trees (EIT*) (Strub and Gammell, 2020b; Strub
and Gammell, 2022) are two recent algorithms that also
use lazy edge evaluations to build informed heuristics
via a reverse search rooted at the goal vertex. The lazy
reverse search gets incrementally informed by subsequent
forward searches with actual edge evaluations. While AIT*
and EIT* are comparable in spirit and performance to
the other lazy algorithms presented here, they notably
lack flexibility. Specifically, a reverse heuristic search
tree must be connected to a forward search tree to be
functional, which limits their applications to undirected
planning problems only. In contrast, the GLS framework
offers more flexibility in balancing computational effort
between search and evaluation in both undirected and
directed planning problems. Furthermore, GLS offers the
potential to incorporate prior knowledge into both the search
and heuristic estimation. Hence, in this work we limit our
attention to GLS-based algorithms.

Lastly, it is worth noting that if multiple processors
are available for planning, strategies that separate search
and evaluation in parallel can significantly accelerate the
planning process. The Massively Parallelized Lazy Planning

(MPLP) by Mukherjee et al. (2022b) leverages asynchronous
graph search, delegating edge evaluations to multiple
processors for parallel execution. Similarly, Edge-Based
Parallel A* for Slow Evaluations (ePA*SE) (Mukherjee
et al., 2022a) parallelizes edge evaluations during the search
by distributing them across multiple processors.

However, it is important to acknowledge that parallelized
algorithms introduce inherent stochasticity and necessitate
the implementation of either a locking mechanism or reliable
communication with a termination detection mechanism
(Kishimoto et al., 2013; Matocha and Camp, 1998), thereby
increasing the overall complexity of the algorithms. In
addition, the practical utilization of multiple processors
for planning purposes may be limited in many robotic
applications due to constraints on available computational
resources. Parallel planning is work-inefficient as it
speculatively evaluates extra edges, leading to faster goal
discovery but wasting CPU resources, which can be costly
when tasks compete for CPU time.

Given these considerations, for the remainder of our
developments, we will specifically focus on algorithms
designed to run on a single processor, acknowledging
nonetheless the potential benefits of parallelization in certain
problem instances.

Bounded Suboptimality
Strictly optimal motion planning is computationally difficult
and may also be unnecessary in many problem instances.
Algorithms with bounded suboptimality exploit this fact to
achieve dramatic performance improvements by returning
suboptimal solutions with cost within a constant factor of the
optimal one. Note that, unlike lazy search, the heuristic in
these algorithms estimates the cost-to-go rather than the cost
of traversing an edge.

Weighted A∗ (wA∗) (Pohl, 1970) inflates the given
heuristic by a constant factor to bias the search. Increasing
the inflation factor prioritizes expansion of vertices close to
the goal, since the heuristic comprises a smaller proportion
of their estimated solution cost. This modification lends the

Prepared using sagej.cls

Lim et al. 5

search a greedy character, leading to faster discovery of an
initial solution. The returned solution suboptimality factor
equals the heuristic inflation factor. Anytime Repairing A∗

(ARA∗) (Likhachev et al., 2003) tracks and propagates only
the inconsistencies introduced by changing the suboptimality
bound in Weighted A∗, resulting in a more efficient anytime
implementation. Note that ARA* is an anytime algorithm
but not a lifelong-planning algorithm as it does not handle
general graph changes.

Focal search (A∗
ε) (Pearl and Kim, 1982) incorporates

directly the use of an inadmissible heuristic. Without
modification, A∗ always uses an admissible heuristic to
decide vertex expansions, increasing the lower bound
on possible solutions at every iteration until an optimal
solution is found. A∗

ε , on the other hand, applies a
suboptimality factor to the current A∗ lower bound,
producing a range of solution costs which it considers in
focus and a corresponding focal set of in-focus vertices. The
inadmissible heuristic can be used to order the expansion
of the focal set without violating the suboptimality bound.
When the focal set is empty, A∗

ε expands the next vertex
by an admissible heuristic, raising the lower bound and
replenishing the focal set. Since inadmissible heuristics
can be much better estimators of path cost compared to
admissible heuristics, A∗

ε can find a solution with far fewer
expansions than A∗.

Several extensions based on focal search have been
explored. Cohen et al. (2018) introduce the Anytime Focal
Search (AFS) framework that addresses considerations for
transforming focal search into an efficient anytime algorithm,
concluding that the use of bounded-cost rather than bounded-
suboptimal subsearches yields a more efficient algorithm
overall. Explicit Estimation Search (EES) (Thayer and Ruml,
2011) builds on focal search, using an additional heuristic
to take the potential cost increment into consideration to
remove the negative correlation between OPEN and FOCAL.
Multi-Heuristic A∗ (MHA∗) (Aine et al., 2016) provides
a framework to combine multiple arbitrarily inadmissible
heuristics with a single admissible heuristic for bounded
suboptimal search and a finite number of expansions of
each vertex. It should be noted that these algorithms solve a
single-query problem, and they do not handle general graph
changes.

Lifelong Planning
Incremental search algorithms solve a sequence of similar
problems efficiently by reusing the previous search results
to facilitate finding a new plan quickly (Ramalingam and
Reps, 1996; Koenig et al., 2004; Aine and Likhachev, 2013;
Aine and Likhachev, 2016). Instead of building a new search
tree from scratch, these methods identify the portion of
the previous search tree that is inconsistent with the graph
changes. Expanding only the inconsistent vertices produces
a new optimal solution and a tree consistent with the changed
graph. These methods can often expand significantly fewer
vertices compared to searching from scratch after each graph
change.

The LPA* algorithm of Koenig et al. (2004) utilizes a
consistent heuristic to restrict the repair of the search tree
to only the relevant part for the current problem, making
the search tree consistent with the relevant graph changes.
LPA* chooses the inconsistent vertices from a priority queue

similar to the one used in A* search (Hart et al., 1968),
such that only the optimal path candidates are chosen to
be repaired, in a best-first search fashion. LPA* stores, for
each vertex, two distinct cost-to-come values to identify
cost inconsistencies, and finds the new optimal solution
by propagating the cost-to-come inconsistency upon graph
changes. LPA* is provably optimal and efficient, in the sense
that no vertex is expanded more than twice; also, it does
not make any limiting assumptions about the structure of the
underlying graph. It can work with any type of graphs as well
as any type of changes (e.g., edge addition/removal, weight
increase/decrease). These theoretical properties have made
the LPA* algorithm (and, in particular, its dynamic version,
D*-Lite) the backbone to numerous applications where
efficient replanning is imperative (Koenig and Likhachev,
2005; Arslan and Tsiotras, 2013; Gammell et al., 2015;
Koenig and Likhachev, 2002).

Recently, the efficiency of LPA* has been further
improved at the expense of optimality, by truncating the
inconsistency propagation as early as the current solution is
guaranteed to be bounded suboptimal (Aine and Likhachev,
2016). Finding the optimal solution exactly is usually a
computationally expensive process, especially when there
exists many good optimal path candidates (Pearl and Kim,
1982). If finding a good enough solution instead of the
exact solution is satisfactory, then a significant amount of
computations spent to find the best among a set of good
solutions can be eliminated. Truncated Lifelong Planning
A* (TLPA*) (Aine and Likhachev, 2016) achieves this by
stopping the repair procedure of LPA* as soon as the current
solution is guaranteed not to exceed the best possible solution
in the current graph more than a given factor. Compared to
LPA*, which uses a binary notion of change to propagate
all changes to find the optimal solution regardless of their
impact, TLPA* only expands the vertices with significant
changes. Hence, TLPA* can expand much fewer vertices
compared to LPA*, as it restricts repair to both the relevant
and the significantly changed part of the tree.

Unfortunately, both of the LPA* and TLPA* algorithms
are vertex-optimal, but they are indifferent to the number of
edge evaluations. They often incur a significant amount of
unnecessary edge evaluations, slowing down the replanning
process. In this paper we address this issue by generalizing
these algorithms within the lazy search framework. Before
delving into this topic further, let us first discuss the two
properties of LPA*/TLPA* that cause unnecessary edge
evaluations.

LPA* needs to evaluate all the incident edges when
expanding an inconsistent vertex to find a new optimal
parent. Similar to A*, which expands the frontier vertices
with the lowest cost estimates (the so-called f -value)
as a best-first search to grow the optimal search tree,
LPA*/TLPA* expands only the inconsistent vertices in a
best-first manner to repair the optimal search tree. Hence,
when a vertex is expanded to find the new optimal parent,
all the values of the incident edges must have been
known for the correctness of the algorithm. This A*-like
propagation is often referred as a “zero-step lookahead” in
the literature (Mandalika et al., 2018, 2019), where a no
heuristic estimate of the edge value is used to prioritize the

Prepared using sagej.cls

6 Inr. Journal of Robotics Research XX(X)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. The propagation of the LPA* search from (a) to (h) while it searches to find the shortest path from the start vertex () to
the goal vertex () given the graph in a dynamic environment. The colored lines are the evaluated edges, where the bold edges are
part of the current search tree and the dashed edges are not. The expanded vertices are shown with blue dots. The search begins
by expanding the start vertex as shown in (b), and stops after expanding the goal vertex, as shown in (f). The optimal solution is
found in the search tree in (g). All the incident edges of the expanded vertices are evaluated regardless of their relevancy to the
current problem. After finding the optimal solution, the environment changes in the bottom left corner in (h), where the previous
solution does not change. Evaluating this edge does not produce any cost-to-come inconsistencies which are relevant to the new
problem instance.

next best vertex*. Regardless of their potential to be a part of
the optimal path, in LPA* all the incident edges are evaluated
upon expanding a vertex. Among those edges, some edges
are not relevant to the current problem, i.e., they are not
helpful in constructing a new optimal search tree, and hence
evaluating them is not necessary. Figure 3(a)-(f) illustrates
this point, where all the incident edges of expanded vertices
are evaluated regardless of their relevancy to the current
problem.

In order to identify the inconsistent part of the tree in the
current graph, LPA* also needs to evaluate all the changed
edges before repair propagation begins. When a new edge
is evaluated, the vertex corresponding to the child (end)
vertex of the edge is updated by assigning a new optimal
parent and a new cost-to-come value. This vertex is then
inserted in the priority queue if the cost-to-come is altered
since last search (and is therefore inconsistent), so that the
inconsistency information can propagate to its successor
vertices. When the updated vertex in the search tree cannot
possibly be on the optimal path, which can be determined
using a consistent heuristic cost-to-go, then the vertex is
not expanded, as the change cannot help find the optimal
path in the current search, and the propagation stops. When
the change is not relevant, LPA* never uses this new edge
information to find a new optimal solution, and therefore it
does not waste computational resources by evaluating the
edge. Regardless of whether the propagation continues or
stops, LPA* needs to evaluate all changed edges. When
there are many changed edges, then evaluating those edges
can result in significant computational overhead. Figure 3(h)
illustrates this case, where the edge in the bottom left is
evaluated as the obstacle disappears, although such an edge
is not relevant to the new problem instance.

Our proposed algorithms eliminate these evaluations
by restricting edge evaluations only to the relevant and
significant part of the graph.

Problem Formulation
We first introduce the common variables and notation that
will be used throughout the rest of the paper. Additional
notation and definitions will appear in each section of the
proposed algorithms, as they become relevant to describe
each specific algorithm.

Lazy Edge Weight Function
Let G = (V,E) be a directed graph with vertex set V
and edge set E. For a vertex v ∈ V , we denote the set
of predecessor vertices of v with pred(v) and the set of
its successor vertices with succ(v). For each edge e ∈ E,
a weight function w : E → (0,∞] assigns a positive real
number, including infinity, to this edge, e.g., the distance
to traverse this edge, and infinity if traversing the edge
is infeasible. We denote an admissible heuristic weight
function with ŵ : E → (0,∞), which assigns to an edge a
non-overestimating positive real number such that ŵ(e) ≤
w(e) for all e ∈ E. We assume that evaluating the true
weight w is computationally expensive, but the heuristic
edge ŵ-value is relatively easy to compute. Let Eeval ⊆ E
be the subset of the edge set E, whose actual w-values have
been computed in the current graph. We introduce a lazy
weight function w : E → (0,∞] which assigns to an edge
its admissible heuristic weight ŵ before evaluation and its
true weight w after evaluation, that is,

w(e) ··=

{
w(e), if e ∈ Eeval,

ŵ(e), otherwise.
(1)

∗This terminology is different from the one-step lookahead used in
LPA* (Koenig et al., 2004), which refers to the rhs-value of an inconsistent
vertex being one-step better informed than its g-value with respect to the
current graph.

Prepared using sagej.cls

Lim et al. 7

Path Planning Problem
Define a path π = (v1, v2, . . . , vm) on the graph G =
(V,E) as an ordered set of distinct vertices vi ∈ V , i =
1, . . . ,m such that, v1 = vs the start vertex and vm = vg
the goal vertex, and such that for any two consecutive
vertices vi, vi+1, there exists an edge e = (vi, vi+1) ∈ E.
Throughout this paper, we will interchangeably denote a
path as the sequence of such edges. With some abuse
of notation, we denote the cost of a path as w(π) ··=∑

e∈π w(e). Likewise, we denote w(π) ··=
∑

e∈π w(e) for
the lazy cost estimate of the path π. Let vs, vg ∈ V be
the start and goal vertices, respectively, and define a path-
planning problem as the problem of finding a path given a
tuple P = (G,w, vs, vg). Let Π be the set of all finite-cost
paths connecting vs to vg in G. Then, the shortest path-
planning problem seeks to solve

π∗ ··= argmin
π∈Π

w(π). (2)

Given a tuple P ε = (G,w, vs, vg, ε) with ε > 1, a bounded-
suboptimal path-planning problem is the problem of finding
a path πε such that w(πε) ≤ εw(π∗). In this case, we say
that the path πε is ε-bounded.

Replanning Problem
The optimal replanning problem is the problem of finding
the shortest paths (π∗

i)i∈N, given a sequence of path-
planning problem instances (Pi)i∈N, where each Pi =
(Gi, wi, vsi , vgi) is a path-planning problem, possibly
with different graph, weight, start and goal vertices. The
stationary optimal replanning problem finds the shortest
paths given a sequence of path-planning problems (Pi)i∈N
where the start and goal vertices remain the same, i.e.,
vsi = vs and vgi = vg for all i ∈ N. The stationary bounded-
suboptimal replanning problem solves bounded-suboptimal
path-planning problems given a sequence of of path-planning
problems (P ε

i)i∈N, where each P ε
i = (Gi, wi, vs, vg, εi) has

the same start and goal vertices. The non-stationary optimal
replanning problem is to find the shortest paths given a
sequence of path-planning problems with different start
vertices but with the same goal vertex. Similarly, the non-
stationary bounded-suboptimal replanning problem is to
find a bounded suboptimal path given a sequence of path-
planning problems with different start vertices but with the
same goal vertex.

Lifelong Lazy Search
In this section we present our first proposed lazy incremental
search algorithm, namely, Lifelong-GLS (L-GLS) (Lim
et al., 2022) that combines the vertex efficiency of LPA*
with the edge efficiency of GLS to solve a stationary optimal
replanning problem. L-GLS returns the shortest path given
the current graph, regardless of changes in either the graph
topology or the edge values. L-GLS maintains a lazy LPA*
search tree to update the inconsistencies that arise both from
graph changes as well as from edge value discrepancies
between the heuristic weight and the actual weight. Unlike
LPA* however, L-GLS restricts the edge evaluations only to
the optimal path candidates, and unlike GLS, L-GLS uses
previous search results to find a new optimal path.

The lazy LPA* search tree is identical to the standard
LPA* search tree (Koenig et al., 2004), except that lazy LPA*
uses the lazy weight function w instead of the actual weight
function w.

Lazy LPA* Search Tree
Each vertex of the lazy search tree corresponds to a unique
vertex in G, storing the two cost-to-come values to reach that
vertex from the start vertex, namely, the g-value and the rhs-
value. Similarly to LPA*, these two cost-to-come values are
used to identify the inconsistent vertices of the search tree.
The g-value is the accumulated cost-to-come by traversing
the previous search tree, whereas the rhs-value is the cost-
to-come based on the g-value of the predecessor and the w-
value of the current edge. Hence, the rhs-value is potentially
better informed than the g-value, and it is defined as follows:

rhs(v) ··=

{
0, if v = vs,

minu∈pred(v)(g(u) + w(u, v)), otherwise.

(3)
A vertex v with g(v) = rhs(v) is called consistent,
otherwise it is called inconsistent. An inconsistent vertex
is locally overconsistent if g(v) > rhs(v) and locally
underconsistent if g(v) < rhs(v). Additionally, the rhs-
value minimizing the predecessor of v is stored as a
backpointer, denoted with

bp(v) ··= argmin
u∈pred(v)

(g(u) + w(u, v)). (4)

Hence, the subpath from vs to v is readily retrieved by
following the backpointers from v to vs. Note that during
implementation, if equation (3) is undefined in case g(u) +
w(u, v) equals to ∞ for all predecessors of v, we assign
rhs(v) to ∞. In that case, we also assign bp(v) to a null
pointer.

A queue Q prioritizes the inconsistent vertices using the
key

k(v) = [min(g(v), rhs(v)) + h(v) ;min(g(v), rhs(v))],
(5)

with lexicographic ordering, where h(v) is a consistent
heuristic cost-to-go from v to vg. Note that during
implementation, if both key values are infinity, we assign the
minimum value of the key to infinity.

Lifelong-GLS
The proposed algorithm, Lifelong-GLS (L-GLS), consists
of two loops: the inner loop and the outer loop. The inner
loop is the main search loop which guarantees to return the
shortest path in the current graph upon termination. The outer
loop updates the current graph heuristically to reflect any
external graph changes. The edge evaluations in the inner
loop may induce internal changes to the graph. Both external
and internal changes are efficiently repaired by a lazy LPA*
search tree.

In the inner loop, the lazy LPA* search tree updates the
new shortest path from vs toward vg in the current graph
G based on the previous search results. The lazily evaluated
LPA* search tree uses the lazy estimates of the edge values
when it propagates the inconsistencies to find the shortest
subpath to the goal in the current graph. The first unevaluated

Prepared using sagej.cls

8 Inr. Journal of Robotics Research XX(X)

edge on the shortest subpath returned by the lazy LPA* is
then evaluated. If the evaluation results in an inconsistency,
then the lazy LPA* search tree is updated and returns the next
best subpath for evaluation. If all the edges on the current
shortest path to the goal returned by the lazy LPA* have
already been evaluated, then L-GLS has found the optimal
solution and exits the inner loop.

In the outer loop, L-GLS waits for graph changes. When
the edges of the graph G change, L-GLS assigns admissible
heuristic values to the changed edges instead of assigning
the true edge values by evaluation. Then, the inner loop
begins again to search for the new optimal path. As long as
the heuristic edge values do not overestimate the true edge
values, L-GLS finds the new optimal path, a result we prove
in the Section “Analysis of the L-GLS Algorithm” below. By
assigning admissible heuristic values to the changed edges,
only a subset of the changed edges that could potentially
be on the shortest path in the current graph are actually
evaluated.

Details of the Algorithm and Main Procedures
In this section we describe step-by-step the procedures used
in L-GLS in greater detail. Before the first search begins,
all g-values of the vertices are initialized with ∞, similar
to the regular LPA*, and all lazy estimates of edge values
are assigned with admissible heuristic values. The first
search begins by setting rhs(vs) = 0 and by inserting vs
in the priority queue Q. In the main search loop (Line 35-
39 of Algorithm 1) the lazy LPA* search tree is grown
with COMPUTESHORTESTPATH(EVENT) until an EVENT is
triggered by the expansion of a leaf vertex which just became
consistent upon this expansion (Line 16 of Algorithm 1).
EVENT is a binary function that returns true by checking
whether the current expansion of a vertex satisfies a user-
defined condition, for example, the path to the goal is found
or the path of a certain depth is found (see Algorithm 2).
When EVENT returns true, the subpath to this leaf vertex
which triggered the EVENT is returned for evaluation
(Line 37 of Algorithm 1). Then, EVALUATEEDGES evaluates
the unevaluated edges along this subpath and updates the
lazy estimates with their true weights. If the evaluation
of an edge results in a different value than the previous
lazy estimate, then EVALUATEEDGES returns the edge
for the lazy LPA* to update this change accordingly by
UPDATEVERTEX. The inconsistency is propagated by the
lazy LPA* again until the next time the EVENT is triggered.
If the path to the goal is found, and all the edges along this
path have been evaluated, then the path is the optimal path
in the current graph. This procedure repeats again when the
graph changes.

The procedure UPDATEVERTEX is identical to that
of the regular LPA*. The only difference is that when
UPDATEVERTEX(v) is called, the rhs-value of the vertex
v is updated based on the lazy estimate of the incident edge
values. This is done to avoid edge evaluations of irrelevant
incident edges of v. When a minimizing predecessor is
found lazily, then the vertex assigns its backpointer to this
predecessor. Finally, the key of this vertex is updated with
CALCULATEKEY to be prioritized in the queue Q.

The choice of the EVENT function determines the balance
between vertex expansions (Line 13 of Algorithm 1) and
edge evaluations (Line 37 of Algorithm 1), as in the GLS

Algorithm 1 Lifelong-GLS(G, vs, vg)

1: procedure CALCULATEKEY(v) return
2: [min(g(v), rhs(v)) + h(v) ;min(g(v), rhs(v))];
3: procedure UPDATEVERTEX(v)
4: if v ̸= vs then
5: bp(v)← argminu∈pred(v)(g(u) + w(u, v));
6: rhs(v)← g(bp(v)) + w(bp(v), v);
7: if v ∈ Q then Q.REMOVE(v);
8: if g(v) ̸= rhs(v) then ▷ only insert inconsistent v
9: Q.INSERT((v, CALCULATEKEY(v)));

10: procedure COMPUTESHORTESTPATH(EVENT)
11: while Q.TOPKEY ≺ CALCULATEKEY(vg) or
12: g(vg) ̸= rhs(vg) do
13: u← Q.POP(); ▷ expand u
14: if g(u) > rhs(u) then ▷ overconsistent u
15: g(u)← rhs(u);
16: if EVENT(u) is triggered then ▷ stop search
17: return path from vs to u;
18: for all v ∈ succ(u) do UPDATEVERTEX(v);
19: else ▷ underconsistent u
20: g(u)←∞;
21: for all v ∈ succ(u) ∪ {u} do
22: UPDATEVERTEX(v);
23: procedure EVALUATEEDGES(π)
24: for each e ∈ π do
25: if e /∈ Eeval then
26: w(e)← w(e); ▷ update with true weight
27: Eeval ← Eeval ∪ {e};
28: if w(e) ̸= ŵ(e) then return e;
29: procedure MAIN()
30: for all e ∈ E do w(e)← ŵ(e);
31: for all v ∈ V do g(v)←∞; rhs(v)←∞;
32: Q← ∅; Eeval ← ∅; rhs(vs)← 0;
33: UPDATEVERTEX(vs); ▷ initialize search
34: while true do
35: repeat ▷ inner loop
36: π ← COMPUTESHORTESTPATH(EVENT);
37: (u, v)← EVALUATEEDGES(π);
38: UPDATEVERTEX(v); ▷ repair search
39: until vg ∈ π and π ⊆ Eeval

40: Wait for changes in E;
41: L←the set of edges that changed;
42: for all e = (u, v) ∈ L do
43: w(e)← ŵ(e); ▷ assign heuristic estimate
44: Eeval ← Eeval\{e};
45: UPDATEVERTEX(v);

Algorithm 2 Candidate EVENT Definitions (Mandalika
et al., 2019)

1: procedure SHORTESTPATH(v)
2: if v = vg then return true;
3: procedure CONSTANTDEPTH(v, depth α)
4: π ← path from vs to v;
5: αv ← number of unevaluated edges in π;
6: if αv = α or v = vg then return true;

Prepared using sagej.cls

Lim et al. 9

framework. For example, if one chooses the SHORTESTPATH
as the EVENT, then the algorithm becomes a lifelong
version of LazySP (Dellin and Srinivasa, 2016). That is,
the lazy LPA* repairs the inconsistent part of the tree
all the way up to the goal vertex, and then returns the
shortest path to the goal for evaluation. This minimizes the
number of edge evaluations of the inner loop. On the other
hand, if one chooses the CONSTANTDEPTH of GLS as the
EVENT, then the algorithm becomes a lifelong version of
LRA* (Mandalika et al., 2018). The number of tree repair
steps (vertex expansions) of the lazy LPA* is reduced, since
the inconsistency propagation is restricted not to exceed a
certain depth before evaluating the edges. This comes at the
expense of possibly more edge evaluations. Some candidate
EVENT definitions of GLS (Mandalika et al., 2019) are
reproduced in Algorithm 2.

Note that the lazy LPA* algorithm maintained under the L-
GLS algorithm is almost identical to the regular LPA* algo-
rithm, except for three points. First, the procedure UPDAT-
EVERTEX of L-GLS updates an inconsistent vertex with
respect to the lazy estimates of the incident edges instead
of their actual values. Second, COMPUTESHORTESTPATH
is identical to that of LPA* in the way it expands the
inconsistent vertices of the lowest key first, that is, when it
expands an inconsistent vertex, it makes an underconsistent
vertex overconsistent and an overconsistent vertex consis-
tent. The difference is that when the overconsistent vertices
are expanded, the EVENT checks whether to continue or stop
propagating the inconsistency information to the successor
vertices. Finally, when the graph changes, L-GLS updates
the changed edge values with admissible heuristic values
lazily instead of evaluating them to find the exact values.
Hence, the lazy LPA* inherits all the theoretical properties
of the regular LPA*, albeit with respect to a different weight,
namely, w rather than w. This becomes useful when proving
the correctness of the algorithm.

The L-GLS algorithm is different from the GLS algorithm
in the following points. First, L-GLS stores the previous
search results to propagate any inconsistencies efficiently
in dynamic graphs, whereas GLS is explicitly designed for
a shortest path planning problem in a static graph. L-GLS
can possibly evaluate much fewer edges compared to the
GLS from scratch, since the search tree of L-GLS is better
informed than that of GLS. Second, the exact values for all
feasible edges are known a priori in the GLS framework, that
is, the heuristic estimates of all feasible edges are accurate.
The edge evaluation in GLS only reveals a binary trait of the
edge, that is, whether the edge is feasible or not, rather than
its exact cost. This is relaxed in L-GLS, such that the edge
costs can vary upon evaluation. This relaxation is important
in problem domains where obtaining an accurate heuristic
edge cost may be difficult. As long as the heuristic edge cost
does not overestimate the actual edge cost, L-GLS finds the
optimal solution in the current graph.

Note that detecting edge changes in the outer loop (Line 41
of Algorithm 1) may require edge evaluations unless the
changes are explicitly provided by the user. However, in
our proposed framework, the aim of detecting changes is to
restore the admissibility of the lazy edge weight rather than
obtaining the exact weight. Hence, we incorporate following
strategies to defer full edge evaluations.

First, we only check previously evaluated edges for
changes, as previously unevaluated edges already have an
admissible lazy edge weight. Moreover, the number of
evaluated edges is kept minimal due to the algorithm’s
structure.

Second, we initially check the end vertices of an edge for
changes. Detecting changes in a vertex implies changes in the
incident edges, allowing us to identify edge changes without
performing a complete edge evaluation.

Furthermore, any necessary edge evaluations made during
the change detection process can be directly added to the set
of evaluated edges (Eeval), avoiding redundant computation
during the subsequent inner loop search.

Note that any alternative approach for detecting edge
changes in the outer loop (Lines 40-45 of Algorithm 1) is
permissible as long as the edge estimate update remains
admissible and any inconsistent vertex is updated with
UPDATEVERTEX.

Illustrative Example
We visualize the search and evaluation process of L-GLS
with infinite-lookahead and compare the results to those of
LPA* in a dynamic 2D environment, as depicted in Figure 4.
An implicit graph is first constructed whose vertices are
arranged in a grid and edges are defined for two vertices
within a certain distance. The same graph topology is
used throughout this example, and only some of the edge
weights are changed because of environment changes. Each
algorithm finds the shortest path within the graph using the
previous search tree.

In the first search, LPA* is equivalent to A*, and L-GLS
is equivalent to GLS (See Figure 4.a). LPA* evaluated 390
edges and expanded 45 vertices, whereas L-GLS and GLS
both evaluated 61 edges and expanded 314 vertices.

After the first search, only a small part of the environment
changes (see Figure 4.b), opening a shorter passage to the
goal. LPA* evaluated 18 edges corresponding to the change,
then expanded 4 inconsistent vertices to find the shortest
path in the current graph. L-GLS evaluated 4 edges that
belong to the new shortest path to the goal, and expanded
4 inconsistent vertices. The GLS evaluated 7 edges and
expanded 6 inconsistent vertices.

When the environment changed in the irrelevant region
(see Figure 4.c), LPA* evaluated 153 edges corresponding to
this environment change, but did not expand any vertices, as
they were irrelevant to the current search. L-GLS did not do
any additional operations to find the shortest path, since the
path was already optimal. GLS was identical to the previous
search with 7 edge evaluations and 6 vertex expansions.

Finally, the environment changed back to that of the
first search episode with the addition of a new obstacle
in the irrelevant region. The GLS search was identical to
the first search episode with 61 edge evaluations and 314
vertex expansions. On the other hand, L-GLS evaluated
only 11 edges and expanded 83 vertices. This is because
the majority of the relevant edges were already evaluated
during the previous searches, and the majority of the relevant
vertices were already consistent. Similarly, LPA* expanded
a fewer number of vertices and evaluated a fewer number
of edges compared to the first search episode with 273
edge evaluations and 9 vertex expansions, since it utilized

Prepared using sagej.cls

10 Inr. Journal of Robotics Research XX(X)

(a) (b) (c) (d)

Figure 4. LPA*(top row) and L-GLS with∞-lookahead (bottom row) search results to find the shortest path from start vertex() to
goal vertex() per environment change, from left to right: (a) first search, (b) second search, (c) third search, and (d) final search.
Lines() are the evaluated edges, and dots () are the expanded vertices during the current search. Bold lines() are the edges
belonging to the current search tree. Blue and red colors represent free space and obstacles, respectively.

the previous search results. The results are summarized in
Table 1.

Table 1. Number of edge evaluations and number of vertex
expansions for different planners over four consecutive search
queries in a dynamic environment of Figure 4.

LPA* GLS L-GLS

First Query
Edge Evaluation 390 61 61
Vertex Expansion 45 314 314

Second Query
Edge Evaluation 18 7 4
Vertex Expansion 4 6 4

Third Query
Edge Evaluation 153 7 0
Vertex Expansion 0 6 0

Fourth Query
Edge Evaluation 273 61 11
Vertex Expansion 9 314 83

Total
Edge Evaluation 834 136 76
Vertex Expansion 81 640 401

Analysis of the L-GLS Algorithm
We next present some of the properties of L-GLS to provide
further insights how the algorithm works. We also prove
the completeness and correctness of the algorithm, based on
the inherited properties from both the LPA* and the GLS
algorithms. First, let us state two facts that are invariant
during the main search loop.

Invariant 1. The lazy estimate of an edge never
overestimates the true edge value, that is, w ≤ w.

Proof. Since w(e) = w(e) for all e ∈ Eeval, and w(e) =
ŵ(e) ≤ w(e) for all e /∈ Eeval, it follows that w(e) ≤ w(e)
for all e ∈ E.

The next invariant property shows that when the lazy
LPA* returns the shortest subpath to the goal, then this
subpath is optimal. This follows from the theoretical
properties of LPA*, which are similar to A*.

Invariant 2. The returned subpath π from vs to v of
COMPUTESHORTESTPATH(EVENT) is optimal with respect
to w, that is, π = argminπ∈Πv

w(π), where Πv is the set of
paths from vs to v.

Proof. COMPUTESHORTESTPATH with an EVENT returns
the path π from vs to v, when the triggering vertex v
is expanded. Right before the expansion, v was locally
overconsistent (Line 14 of Algorithm 1). Theorem 6
of LPA* (Koenig et al., 2004) states that whenever
COMPUTESHORTESTPATH selects a locally overconsistent
vertex for expansion, then the g-value of v is optimal with
respect to w.

Next, we show the completeness and correctness of the
inner loop of L-GLS. The first theorem is due to the
completeness of GLS (Mandalika et al., 2019), which we
restate here.

Theorem 3. Let EVENT be a function that, upon halting,
ensures that there is at least one unevaluated edge on the
current shortest path or that the goal is reached. Then, the
inner loop (Line 35-39) of L-GLS implemented with EVENT
on a finite graph terminates.

Proof. Suppose the path to the goal has not been evaluated,
such that COMPUTESHORTESTPATH(EVENT) returns at
least one unevaluated edge to evaluate. Since there is a finite
number of edges, the inner loop will eventually terminate.

Prepared using sagej.cls

Lim et al. 11

Theorem 4. L-GLS finds the shortest path with respect
to the current graph when the inner loop (Line 35-39)
terminates.

Proof. Let π∗ be the optimal path with respect to w in the
current graph, that is, w(π∗) = minπ∈Π w(π), where Π is
the set of all paths from vs to vg. L-GLS terminates its inner-
loop when vg ∈ π and π ⊆ Eeval, where π is the output
subpath of COMPUTESHORTESTPATH(EVENT). Then, we
have

w(π) =
∑
e∈π

w(e) ≤
∑
e′∈π∗

w(e′) ≤
∑
e′∈π∗

w(e′) = w(π∗),

(6)
where the first inequality holds by Invariant 2, and the second
inequality follows by Invariant 1. Hence, w(π) ≤ w(π∗),
and since π ⊆ Eeval, we have w(π) = w(π) ≤ w(π∗). But
w(π∗) ≤ w(π), since π∗ is the optimal path. Therefore, π
must be the optimal path with respect to w.

Bounded Suboptimal Lazy Search
The lazy search framework relies on using an admissible
heuristic edge evaluation, and its efficiency depends on the
accuracy of the heuristic edge values. In other words, the
lazy search works best when the error between the actual
edge value and the heuristic edge value is minimal. As in any
heuristic search, the smaller the gap between the heuristic
and the actual value, the faster the search. Similarly to A*,
as a perfect heuristic cost-to-go leads to the minimal search
(i.e., the minimum number of vertex expansions) (Hart
et al., 1968), a perfect heuristic edge value leads L-GLS
to the minimal search and evaluation. However, obtaining
an accurate and admissible heuristic can be as difficult as
solving the original problem itself.

Finding an inadmissible heuristic, on the other hand, is
relatively easy, which then often provides a more informed
guidance in many problem domains (Pohl, 1970; Likhachev
et al., 2008; Barer et al., 2014). One way is to inflate the
heuristic value by multiplying with some constant factor
greater than 1. The inflation of the heuristic cost-to-go allows
a goal-oriented greedy search, and it proves to be faster in
many problem domains, as a bounded solution can be found
rather quickly at the expense of optimality (Pohl, 1970; Pearl
and Kim, 1982; Aine et al., 2016; Likhachev et al., 2003).

Unfortunately, the L-GLS algorithm cannot be directly
used with inadmissible edge heuristics, as it will harm the
efficiency of the algorithm. If the heuristic estimate is not
admissible and there is a discrepancy between the actual
value and the heuristic value, then the entire subtree must
be repaired upon evaluation to find another admissible path,
making the lazy search inefficient. This excessive search
is necessary to find the optimal path. Truncation (Aine
and Likhachev, 2016) can relax this excessive search, as
it restricts replanning to only the part of the tree needed
to maintain a bounded suboptimal path. Incorporating
truncation in the lazy search framework is the main topic of
this section.

To this end, we present a bounded version of L-GLS,
called B-LGLS, that uses a lazy version of Truncated
LPA* (TLPA*) (Aine and Likhachev, 2016) in place of
lazy LPA* to handle more general cases of heuristic edge
weight functions. In fact, this extension is beneficial in two

different aspects. First, when an accurate heuristic is difficult
to compute, or a more informed heuristic is available but
not necessarily admissible, B-LGLS can handle inadmissible
heuristics with a guaranteed solution quality. Second, when
the change in the environment is not significant, such
that complete and thorough replanning may not produce a
significantly better quality solution, B-LGLS can reduce the
search effort.

In essence, B-LGLS uses inflation of the heuristic edge
weight and truncation of the inconsistency propagation.
Truncation stops the propagation of inconsistencies of the
lazy search tree, and inflation restricts the evaluation of
non-promising edges. Both inflation and truncation are two
techniques to make the search itself lazy, in the sense that
they restrict the repair of the tree to only the part where it is
necessary to guarantee that the current solution is bounded-
suboptimal.

Next, we first describe the core elements of B-LGLS,
namely the lazy-TLPA* search, and then we provide a
complete description of B-LGLS which builds on the lazy-
TLPA*.

Lazy-TLPA* Search Tree
The lazy-TLPA* search tree is identical to TLPA* except
that lazy-TLPA* uses a lazy weight function w̃ instead of
the actual weight function w. The lazy weight function w̃ :
E → (0,∞] assigns to an edge its inflated heuristic weight
ε1ŵ before evaluation and its true weight w after evaluation,
that is,

w̃(e) ··=

{
w(e), if e ∈ Eeval,

ε1ŵ(e), otherwise,
(7)

for some constant factor ε1 ≥ 1, where ŵ ≤ w is an
admissible heuristic weight, and Eeval, as before, is the
subset of the edge set E whose actual w-values have been
computed in the current graph. We call ε1 the inflation factor.
Hence, the theoretical properties of TLPA* hold exactly the
same for the lazy-TLPA*, except that now they hold with
respect to w̃ instead of the actual w.

Similarly to lazy-LPA*, the rhs-value of a vertex v is
defined as follows:

rhs(v) ··=

{
0, if v = vs,

minu∈pred(v)(g(u) + w̃(u, v)), otherwise.

(8)
Also, the rhs-value minimizing the predecessor of v is stored
as a backpointer, denoted with

bp(v) ··= argmin
u∈pred(v)

(g(u) + w̃(u, v)). (9)

Next, we briefly describe the fundamental properties of
TLPA*. A full description can be found in Aine and
Likhachev (2016).

TLPA* is identical to LPA*, except that it uses
two truncation rules to stop the best-first inconsistency
propagation of the LPA* search. Recall that LPA* uses
the two cost-to-come values, the g-value, and rhs-value to
identify inconsistent vertices. In addition to these, TLPA*
uses an additional cost-to-come value, denoted by gπ-value,
which assigns to a vertex the cost-to-come along the current
path following its backpointer to vs. The gπ-value of a

Prepared using sagej.cls

12 Inr. Journal of Robotics Research XX(X)

vertex reflects the cost-to-come on the current tree with or
without repair, whereas the rhs-value of a vertex reflects
the cost-to-come after the repair. Hence, the gπ-value may
be different than the rhs-value. Also, the gπ-value may be
different than the g-value, the previous cost-to-come value
without any repair. The gπ-value reflects the in-process cost-
to-come value during repair propagation. TLPA* uses the gπ-
value to decide whether an inconsistency should be further
propagated or not when an inconsistent vertex from the
priority queue is chosen for expansion. The decision is based
on the two truncation rules.

The first truncation rule applies to all inconsistent vertices
selected for expansion. When an inconsistent vertex v with
the lowest key value from the priority queue is selected for
expansion, TLPA* first checks whether the current solution
cost is already within the bound even without any further
repair. That is, given some truncation factor ε2 ≥ 1, TLPA*
checks whether the inequality

gπ(vg) ≤ ε2(min{g(v), rhs(v)}+ h(v)), (10)

holds for the vertex v selected for expansion. If so, then
TLPA* stops expanding any remaining inconsistent vertices
and returns an existing bounded suboptimal solution. Since
the lowest key value of the priority queue is a lower
bound on the optimal solution cost of the current graph,
i.e., min[g(v), rhs(v)] + h(v) ≤ g∗(vg), once the inequality
(10) is satisfied, then the current solution cost without further
repair does not exceed the optimal solution by more than
ε2, that is, gπ(vg) ≤ ε2g

∗(vg) holds. Thus, truncating the
propagation still guarantees that the current solution is within
the desired suboptimality bound.

The second truncation rule applies to an underconsistent
vertex (i.e., a vertex v with g(v) < rhs(v)) selected for
expansion by checking whether

gπ(v) + h(v) ≤ ε2(g(v) + h(v)). (11)

If this inequality holds, then the underconsistent vertex is put
in the Truncated list instead of the regular priority queue,
so that the propagation of inconsistency constrained to this
vertex stops. Since g(v) is the previous shortest path cost
and h(v) is a consistent heuristic cost-to-go, g(v) + h(v)
is a lower bound on the solution cost constrained to pass
through v. Thus, if gπ(v) + h(v) ≤ ε2(g(v) + h(v)), then
any vertex v′ that uses g(v) to compute its rhs(v′) will not
underestimate the actual solution cost by more than an ε2
factor. Truncating this inconsistency propagation guarantees
that the solution is within the desired bound as the old path
has not deteriorated beyond this bound.

The rest of the TLPA* algorithm is similar to LPA*.
It uses the same CALCULATEKEY procedure to compute
the key values of inconsistent vertices as in LPA*,
and it prioritizes inconsistent vertices according to the
lexicographical ordering of the key values. TLPA* uses
the same UPDATEVERTEX procedure to update the rhs-
value, except that TLPA* does not insert an inconsistent
vertex into the priority queue if the vertex is already
truncated, i.e., is in the Truncated list. The main propagation
loop, the procedure COMPUTEPATH is equivalent to the
procedure COMPUTESHORTESTPATH of LPA*, except that
COMPUTEPATH computes the gπ-value of a goal and an
underconsistent vertex and applies the two truncation rules

mentioned above. The auxiliary routines of TLPA*, namely,
computing the gπ-value and obtaining the path, are provided
in Algorithm 4. For now, line 19 in Algorithm 4 can
be ignored. It can be shown that TLPA* guarantees the
following properties:

• Bounded Suboptimality: When the COMPUTEPATH
function returns the path constructed using OBTAIN-
PATH(vg), the path has cost less than or equal to
ε2g

∗(vg) for a chosen ε2 ≥ 1.
• Efficiency: In COMPUTEPATH, no vertex is expanded

more than twice.

The Bounded L-GLS Algorithm
Bounded L-GLS (B-LGLS) is identical to L-GLS, except
that the heuristic search tree is repaired with the lazy-
TLPA* instead of the lazy-LPA*, and the heuristic edge
value is inflated. Like L-GLS, B-LGLS contains two loops:
an inner loop and an outer loop. In the inner loop, the
inconsistency between the heuristic search tree and the actual
path is repaired using the lazy-TLPA* to produce a bounded
suboptimal path candidate. In the outer loop, any changes
are updated lazily with inflated heuristic edge values. The
B-LGLS algorithm is presented in Algorithm 3, where the
differences between B-LGLS and L-GLS are colored in blue.

Details of the Algorithm and Main Procedures. In this
section we describe step-by-step the procedures of B-LGLS
in greater detail. Before the first search begins, all the cost-
to-come values are initialized with∞, and all the edges are
assigned with an inflated heuristic value. The search begins
by assigning the rhs-value and the gπ-value of the start
vertex vs to 0, and inserting vs in the priority queue via
UPDATEVERTEX. In the main search loop (Lines 42-49 of
Algorithm 3), the lazy TLPA* search tree is grown with
COMPUTEPATH(EVENT) until the first truncation rule is
satisfied or an EVENT is triggered. Then, EVALUATEEDGES
evaluates the unevaluated edges along the subpath and
updates their lazy estimate. The inconsistency induced by
the edge evaluation is propagated by the lazy TLPA* until
next time the first truncation rule applies, or an EVENT is
triggered when expanding an overconsistent vertex. If the
path to the goal is found, and all the edges along this path are
evaluated, then the path is a bounded suboptimal solution.
This procedure repeats again when the graph changes.

When the graph changes, the weights of the changed
edges are updated with inflated heuristic values, and the end
vertices of the updated edges are put in the priority queue
via UPDATEVERTEX. The procedure UPDATEVERTEX is
identical to that of LPA*, except that it uses the lazy edge
estimate w̃ to update the rhs-value and its bp, and also it
does not put a vertex in the priority queue if that vertex has
been already truncated.

Illustrative Example
We visualize the differences between LPA*, TLPA*, L-GLS,
and B-LGLS for two consecutive planning problems in a
2D environment shown in Figure 5. The top row shows the
first problem instance and the bottom row shows the second
problem instance with a new opening in the middle of the
map.

Prepared using sagej.cls

Lim et al. 13

(a) LPA* (b) TLPA*(1.44) (c) L-GLS (d) B-LGLS

Figure 5. First search (top row) and second search (bottom row) to find a bounded suboptimal path from start vertex () to goal
vertex () per environment change with ε1 = 1.2 and ε2 = 1.2, from left to right: (a) LPA*, (b) TLPA*, (c) L-GLS, and (d) B-LGLS.
Lines () are the evaluated edges during the current search. Blue and red colors represent free space and obstacles, respectively.
Bold lines () are the edges belonging to the current search tree and the path is drawn with the boldest lines ().

Table 2. Number of edge evaluations, number of vertex expansions, and solution length for different planners over two consecutive
search queries in a dynamic environment of Figure 5.

LPA* TLPA*(1.44) GLS L-GLS B-LGLS(1.2,1.2)

First Query in scene 1
Edge Evaluation 826 826 66 66 68
Vertex Expansion 58 58 2000 2000 604
Solution Length 0.924 0.924 0.924 0.924 0.956

Second Query in scene 2
Edge Evaluation 267 93 35 14 0
Vertex Expansion 23 1 871 315 1
Solution Length 0.84 0.924 0.84 0.84 0.956

Total
Edge Evaluation 1093 919 101 80 68
Vertex Expansion 81 59 2871 2315 605

Each problem instance was solved using a graph with a
fixed topology whose vertices are sampled with a Halton
sequence (Halton, 1964) and an edge is defined for two
vertices within a certain distance. The vertices are shown
with black dots, and the evaluated edges are shown in either
blue (feasible) or red (infeasible) lines. Unevaluated edges
which belong to the lazy search trees are drawn in black thin
lines in Figures 5(c) and 5(d). Unused edges are not drawn.
The final search trees grown from the start vertex (green dot)
in the lower left toward the goal vertex (magenta dot) in the
upper right are drawn with bold blue lines, and the resulting
path is marked with thick blue lines, which is best viewed in
color. From left to right, the search trees of LPA*, TLPA*,
L-GLS, and B-LGLS of each instance are shown.

LPA* and L-GLS find the optimal paths for both of
the problem instances, whereas TLPA* and B-LGLS do
not waste computational resources to replan, as the current
solution is guaranteed to be within a user-given parameter of
ε1ε2 = 1.44. Compared to TLPA*, B-LGLS finds the same
solution with a significant fewer number of edge evaluations.

Compared to L-GLS, B-LGLS saves both edge evaluations
and vertex expansions. These results are summarized in
Table 2.

Analysis of the Bounded L-GLS Algorithm
The completeness of B-LGLS can be proven using the same
argument as in Theorem 3. Next, we prove that B-LGLS
returns a bounded suboptimal solution. First, let us consider
two useful invariants.

Invariant 5. The lazy estimate of an edge never
overestimates the true edge value by more than a factor of
ε1, that is, w̃ ≤ ε1w.

Proof. Since w̃(e) = w(e) for all e ∈ Eeval, and w̃(e) =
ε1ŵ(e) ≤ ε1w(e) for all e /∈ Eeval, it follows that w̃(e) ≤
ε1w(e) for all e ∈ E.

Invariant 6. When COMPUTEPATH of TLPA* selects a
locally overconsistent vertex v for expansion, the path

Prepared using sagej.cls

14 Inr. Journal of Robotics Research XX(X)

Algorithm 3 Bounded L-GLS(G, vs, vg)

1: procedure CALCULATEKEY(v) return
2: [min(g(v), rhs(v)) + h(v) ;min(g(v), rhs(v))];
3: procedure UPDATEVERTEX(v)
4: if v ̸= vs then
5: bp(v)← argminu∈pred(v)(g(u) + w̃(u, v));
6: rhs(v)← g(bp(v)) + w̃(bp(v), v);
7: if v ∈ Q then Q.REMOVE(v);
8: if g(v) ̸= rhs(v) and v /∈ Truncated then
9: Q.INSERT((v, CALCULATEKEY(v)));

10: procedure COMPUTEPATH(EVENT)
11: while Q.TOPKEY ≺ CALCULATEKEY(vg) or
12: g(vg) ̸= rhs(vg) do
13: u← Q.POP(); ▷ expand u
14: gπ(vg)← COMPUTEGPI(vg);
15: if gπ(vg) ≤ ε2(min{g(u), rhs(u)}+ h(u)) then
16: return OBTAINPATH(vg); ▷ 1st truncation rule
17: if g(u) > rhs(u) then
18: g(u)← rhs(u);
19: if EVENT(u) is triggered then
20: return OBTAINPATH(u);
21: for all v ∈ succ(u) do UPDATEVERTEX(v);
22: else
23: gπ(u)← COMPUTEGPI(u);
24: if gπ(u) + h(u) ≤ ε2(g(u) + h(u)) then
25: Truncated.INSERT(u); ▷ 2nd truncation rule
26: else
27: g(u)←∞;
28: for all v ∈ succ(u) ∪ {u} do
29: UPDATEVERTEX(v);
30: procedure EVALUATEEDGES(π)
31: for each e ∈ π do
32: if e /∈ Eeval then
33: w̃(e)← w(e); Eeval ← Eeval ∪ {e};
34: if w̃(e) ̸= ŵ(e) then return e;
35: procedure MAIN()
36: for all e ∈ E do w̃(e)← ε1ŵ(e);
37: for all v ∈ V do g(v)←∞; rhs(v)←∞;
38: Q← ∅; Truncated← ∅;
39: Eeval ← ∅; rhs(vs)← 0; gπ(vs)← 0;
40: UPDATEVERTEX(vs); ▷ initialize search
41: while true do
42: repeat
43: π ← COMPUTEPATH(EVENT);
44: (u, v)← EVALUATEEDGES(π);
45: UPDATEVERTEX(v);
46: for all s ∈ Truncated do ▷ clear Truncated
47: Truncated.REMOVE(s);
48: gπ(s)←∞;

49: until vg ∈ π and π ⊆ Eeval

50: Wait for changes in E;
51: L←the set of edges that changed;
52: for all e = (u, v) ∈ L do
53: w̃(e)← ε1ŵ(e);
54: Eeval ← Eeval\{e};
55: UPDATEVERTEX(v);

constrained to pass through v does not overestimate the
optimal solution cost by more than an ε2 factor, that is,
gπ(v) + h(v) ≤ ε2g

∗(vg).

Proof. Suppose a locally overconsistent vertex v is selected
for expansion, that is, g(v) ≥ rhs(v). From Lemma 6 of
Aine and Likhachev (2016) we have that rhs(v) + h(v) ≤
g∗(vg) and from Lemma 7 of Aine and Likhachev (2016)

Algorithm 4 Lazy Truncated LPA*: auxiliary routines:
(Aine and Likhachev, 2016)

1: procedure COMPUTEGPI(v)
2: cost←0; v′ ← v;
3: visited← ∅;
4: while v′ ̸= vs do
5: if v′ ∈ visited or bp(v′) = null then
6: gπ(v)←∞; return
7: else
8: insert v′ in visited;
9: cost← cost + w̃(bp(v′), v′); v′ ← bp(v′);

10: return gπ(v)← cost;
11: procedure OBTAINPATH(v)
12: π ← v
13: while v ̸= vs do
14: if bp(v) ∈ Truncated then
15: π ← π ∪ π(bp(v)); return π;
16: π ← π ∪ bp(v); v ← bp(v)

17: return π;

we have that gπ(v) + h(v) ≤ ε2(rhs(v) + h(v)). Hence, the
result gπ(v) + h(v) ≤ ε2g

∗(vg) follows.

Now we are ready to prove that B-LGLS is correct, that
is, it returns a bounded suboptimal path when the inner loop
terminates. This is stated in the next theorem.

Theorem 7. B-LGLS finds a path that is not longer than the
shortest path by more than a factor of ε1ε2 with respect to the
current graph when the inner loop (Lines 42-49) terminates.

Proof. Let π∗ be the optimal path with respect to w in the
current graph, that is, w(π∗) = minπ∈Π w(π), where Π is
the set of all paths from vs to vg. B-LGLS terminates its
inner-loop when vg ∈ π and π ⊆ Eeval, where π is the output
subpath of COMPUTEPATH(EVENT). Then, we have

w̃(π) =
∑
e∈π

w̃(e) ≤ ε2
∑
e′∈π∗

w̃(e′)

≤ ε2
∑
e′∈π∗

ε1w(e
′) = ε1ε2w(π

∗),
(12)

where the first inequality holds by Invariant 6, and the second
inequality follows by Invariant 5. Hence, w̃(π) ≤ ε1ε2w(π

∗)
and since π ⊆ Eeval, we have w(π) = w̃(π) ≤ ε1ε2w(π

∗).
Therefore, the path cost of π is not greater than the optimal
path cost by a factor ε1ε2.

Generalized Dynamic Search (GD*)
Mobile robots usually operate in environments that are only
partially known or continuously changing. Therefore, they
need to quickly replan, as the environment changes or when
previously unknown parts of it become known. D*-Lite is
an algorithm that is based on similar ideas as LPA* and
uses previous search information to quickly replan while the
robot is moving. Hence, D*-Lite has been used in many
practical applications. It uses the same underlying tree as
LPA* to repeatedly compute the shortest path to the goal.
Compared to LPA*, the D*-Lite algorithm is primarily aimed
to handle environment changes while the robot moves along
the previously calculated optimal solution.

Prepared using sagej.cls

Lim et al. 15

In this section, we detail a new algorithm, called
Generalized D* (GD*), which generalizes D*-Lite (Koenig
and Likhachev, 2005) in the lazy search framework.

The Generalized D* (GD*) algorithm consists of two
loops: an inner loop that conducts the actual search given the
current graph, and the outer loop that is mainly responsible
for perceiving the environment changes and for updating the
graph. Note that, similarly to D*-Lite, the search direction in
the GD* algorithm is reversed, and the search is started from
the goal vertex, progressing towards the start vertex. Thus,
the rhs(v) and g(v) values are estimated distances calculated
from the vertex v to the goal vertex. Similarly, the heuristic
values are computed from the start vertex instead of the goal.

In the inner loop, the candidate shortest path is computed
from the goal vertex to the start vertex based on the current
heuristic weight values of the GD* tree. Once a candidate
solution is found, the first unevaluated edge along the
shortest subpath is then evaluated. If the evaluation results
in an inconsistency (e.g., collision with an obstacle), then
GD* gets updated and returns a new candidate shortest path.
Finally, if all the edges along the candidate path are evaluated
and they produce no inconsistency, the candidate shortest
path is the actual shortest path with respect to the current
graph with the true edge values.

Once the shortest path is found, the robot executes the
optimal plan and moves along a small segment of the shortest
path in the outer loop. The algorithm then scans for graph
changes. In case a change is perceived, instead of evaluating
the changed edges, the algorithm assigns lazy estimates
using the admissible heuristic function for those edges. This
ensures that the lazy estimate of the path cost does not
overestimate the optimal path cost. Then the inner loop finds
the new optimal path with respect to the updated graph.
Therefore, only a subset of the changed edges that could be
part of the shortest path are evaluated. Algorithm 5 lays out
the main procedures for GD*.

Details of the GD* Algorithm
The procedures for the GD* are very similar to the ones of
LPA* described in Section “Lifelong Lazy Search” and are
summarized briefly below. Given a graph, the g-values of
all the vertices are set to ∞ and the lazy edge values are
set via an admissible heuristic. As the robot moves along
the path, the priorities in the queue must be recalculated
to maintain the correct order for expansion. D*-Lite avoids
this repeated reordering by adjusting the key values using
an additional km variable (Line 2). The km variable alters
the priorities of the new vertices when they are added to the
queue. Secondly, when a vertex is selected for expansion, its
key is recomputed (Line 15) and is expanded only if its key
value is indeed a lower bound of the queue. Otherwise, the
vertex gets reinserted into the queue with the recomputed key
value. Note that the km value is incremented each time the
robot moves (Line 49).

The search is initialized by setting the rhs-value
of the goal vertex to zero and inserting it in the
priority queue. Furthermore, the km value is set to
zero since the robot has not moved yet. The main
search loop of the algorithm (Line 43) expands the
search tree via the procedure COMPUTESHORTESTPATH.
COMPUTESHORTESTPATH continues expanding the search
tree via expanding the frontier vertices until an event is

Algorithm 5 GD* (G, vs, vg)

1: procedure CALCULATEKEY(v) return
2: [min(g(v), rhs(v)) + h(v, vs) + km,min(g(v), rhs(v))]

3: procedure UPDATEVERTEX(v)
4: if v ̸= vg then
5: bp(v)← argminu∈succ(v) g(u) + w(u, v);
6: rhs(v)← g(bp(v)) + w(bp(v), v);

7: if v ∈ Q then Q.Remove(v);
8: if g(v) ̸= rhs(v) then
9: Q.Insert((v, CALCULATEKEY(v)));

10: procedure COMPUTESHORTESTPATH(event)
11: while Q.TOPKEY<CALCULATEKEY(vg) OR
12: g(vg) ̸= rhs(vg) do
13: kold← Q.TOPKEY;
14: u← Q.POP();
15: if kold < CALCULATEKEY(u) then
16: Q.INSERT(u, CALCULATEKEY(u));
17: else if g(u) > rhs(u) then
18: g(u)← rhs(u);
19: if EVENT(u) is triggered then
20: return path from vg to u

21: for all v ∈ Pred(u) do UPDATEVERTEX(v);
22: else
23: g(u)←∞;
24: for all v ∈ Pred(u) ∪ u do
25: UPDATEVERTEX(v);
26: procedure EVALUATEEDGES(π)
27: for all e ∈ π do
28: if e ̸∈ Eeval then
29: w(e)← w(e);
30: Eeval ← Eeval ∪ {e};
31: if w(e) ̸= ŵ(e) then return e

32: procedure MAIN()
33: for all e ∈ E do w(e)← ŵ(e)

34: for all v ∈ V do g(v)←∞; rhs(v)←∞;
35: km← 0;
36: vlast = vcurrent;
37: Eeval ← ∅;
38: Q← ∅;
39: rhs(vg) = 0;
40: UPDATEVERTEX(vg);
41: while vcurrent ̸= vg do
42: repeat
43: π ← COMPUTESHORTESTPATH(event);
44: (u, v)← EVALUATEEDGES(π);
45: UPDATEVERTEX(v);
46: until vs ∈ π and π ⊆ Eeval

47: vcurrent ← bp(vcurrent);
48: Move to vcurrent;
49: km← km+ h(vcurrent, vlast);
50: vlast ← vcurrent;
51: Perceive the edge changes in E;
52: for all e = (u, v) with changed edge cost do
53: w(e)← ŵ(e);
54: Eeval ← Eeval\{e};
55: UPDATEVERTEX(v);

triggered after that particular frontier vertex has just become
consistent. Similarly to L-GLS (Algorithm 1), the edges of
the subpath from the goal to this frontier vertex are returned
for evaluation (Line 44).

Similarly to L-GLS (Algorithm 1), all the evaluated
edges are then evaluated, and all lazy estimates get updated
with their true weight values in EVALUATEEDGES. If the

Prepared using sagej.cls

16 Inr. Journal of Robotics Research XX(X)

(a) First (b) Env. Change (c) Second

Figure 6. D*-Lite (top row) and GD* with∞-lookahead (bottom row) search results to find the shortest path from start vertex () to
goal vertex () per environment change, from left to right: (a) first search, (b) environment change, (c) second search. The current
robot position is shown with . Lines () are the evaluated edges during the current search. Bold lines() are the edges belonging
to the current search tree. Blue and red represents free space and obstacle, respectively.

evaluation results in a different weight value compared to the
previous lazy estimate for a particular edge, then this change
is reflected via UPDATEVERTEX (Line 45). The vertex that
caused the inconsistency is then updated and the changes
from the inconsistency are handled by propagating them
through the lazy D*-Lite tree COMPUTESHORTESTPATH
until interrupted by a triggered EVENT (Line 19). Once a
path is found, the goal and all the edges are evaluated,
and the path found will be the optimal path to the goal,
given the current graph. Similarly to D*-Lite, the robot
then progresses towards the goal by traversing the optimal
path until it reaches the successor (Line 48) of the current
vertex (vcurrent). The km-value also gets updated via the
heuristic to reflect the new start position for the algorithm.
The algorithm then scans the graph for changes and repeats
the same procedures in case of a change in the environment.

The procedure UPDATEVERTEX is similar to that of the
regular D*-Lite (Koenig and Likhachev, 2005), the main
difference being that the lazy estimate of the edge value
(w) is used for updating the rhs-value of the current vertex.
Notice that this is done to avoid evaluation of the irrelevant
edges. The backpointer of the current vertex is set to the
minimizing successor using w. As the last step, and if the
vertex is inconsistent, the priority of the current vertex is
updated based on the newly calculated key value using
CALCULATEKEY.

Note that similarly to the L-GLS algorithm (Algorithm
1) the choice of the EVENT function determines the trade-
off between edge evaluations and vertex expansions, as
explained in Section “Lookahead Variation” later on. Also,
the procedures of the GD* algorithm are identical to the
ones of the D*-Lite algorithm except for three places. First,
the GD* algorithm uses the lazy weight function instead
of the actual weight function during the UPDATEVERTEX
procedure. Second, the GD* algorithm assigns admissible

heuristic weights to the edges instead of the actual weights
when their values are changed (Line 53). Lastly, when a
vertex is made overconsistent in COMPUTESHORTESTPATH,
the algorithm checks whether EVENT is triggered to continue
or stop propagating the inconsistency information to the
predecessors (Line 19).

Table 3. Number of edge evaluations and number of vertex
expansions for different planners over two consecutive search
queries in the dynamic environment of Figure 6.

D*-Lite GD*

First Query
Edge Evaluation 1255 154
Vertex Expansion 113 3305

Second Query
Edge Evaluation 82 4
Vertex Expansion 7 18

Total
Edge Evaluation 1347 158
Vertex Expansion 120 3323

Illustrative Example
We visualize the progression of the D*-Lite and the GD*
algorithms with an infinite-step lookahead, as shown in
Figure 6. Note that the same implicit graph is used for both
algorithms with the only change being the edge weights due
to environment changes. Similarly to LPA*, both algorithms
find the shortest path during replanning using the previous
search tree information.

The first search of D*-Lite is equivalent to the A* search
with reversed order (swapping start and goal). The D*-Lite
algorithm evaluates 1255 edges and expands 113 vertices,
whereas GD* only evaluates 154 edges and expands 3305

Prepared using sagej.cls

Lim et al. 17

vertices. After finding the optimal path, the agent traverses
the first segment of the found path, at which point an
opening appears, making the path no longer optimal. The
environment change causes both D*-Lite and GD* to find
the optimal path via replanning. Using the previous search
tree information, the D*-Lite algorithm expands 7 vertices
and evaluates 82 edges when replanning, while GD* only
evaluates 4 edges and expands 18 vertices. Notice that the
GD* algorithm finds the same optimal solution with almost
an order of magnitude fewer edge evaluations for this simple
2D example. These results are summarized in Table 3.

Generalized Bounded Dynamic Search
(B-GD*)
As mentioned earlier, using an inflated heuristic can help
find an initial suboptimal solution to the goal faster. Note
that this solution is suboptimal due to the heuristic function
being inadmissible. Similarly to the B-LGLS algorithm, in
this section we combine the idea of an inflated heuristic
with truncation rules to introduce a bounded version of the
Generalized D* (B-GD*). We will first discuss the lazy
version of Truncated D*-Lite (TD*) (Aine and Likhachev,
2016), and then include the inflated heuristic to obtain the
bounded lazy D*.

Generalized TD*
The truncation rules described for the Lazy-TLPA* search
tree search can be easily applied to D*-Lite. Using
truncation, TD* (Aine and Likhachev, 2016) terminates the
solution early once the solution cost during the replanning
is found to be within the chosen bounds of the optimal cost.
Similarly to TLPA*, TD* having a reversed search direction,
also uses an extra cost-to-come value gπ(s) along with the
current path to the goal vertex for each vertex π(s), in order
to check for possible truncation. The truncation conditions
are checked in COMPUTESHORTESTPATH (Lines 20 and 31)
for terminating the propagation of inconsistency of a vertex
early. Furthermore, the vertices are only updated if they are
not truncated in the UPDATEVERTEX. The auxiliary routines
for TD* are identical to those of the TLPA* (Algorithm 4)
except for the reversed search direction. The rest of the TD*
algorithm procedures remain the same as D*-Lite.

Bounded Generalized D*
Bounded-GD* (B-GD*) is similar to the GD* except that a
lazy TD* tree is used as the underlying search tree instead of
lazy D*-Lite and that the heuristic edge values are inflated.
Algorithm 6 outlines the B- GD* with the differences with
the GD* version (Algorithm 5) outlined in blue. Note that
the procedure EVALUATEEDGES for the B-GD* algorithm is
the same as the one in the B-LGLS (Algorithm 3) and hence
is skipped.

Analysis of the Bounded GD* Algorithm
As TD* inherits the same theoretical properties of TLPA*,
B-GD* inherits the same theoretical properties as B-LGLS.
Namely, the final solution is bounded suboptimal, and a
vertex is expanded at most twice. These properties can
be proved similarly to the ones of the TLPA* with minor
modifications, thus we omit the details.

Algorithm 6 Bounded-GD* (G, vs, vg) Subroutines

1: procedure CALCULATEKEY(v)
2: return [min(g(v), rhs(v)) + h(v, vs) + km,
3: min(g(v), rhs(v))]

4: procedure UPDATEVERTEX(v)
5: if v ̸= vg then
6: bp(v)← argminu∈succ(v) g(u) + w(u, v);
7: rhs(v)← g(bp(v)) + w(bp(v), v);

8: if v ∈ Q then Q.REMOVE(v)
9: if g(v) ̸= rhs(v) and v ̸∈ Truncated then

10: Q.Insert((v, CALCULATEKEY(v)));
11: procedure COMPUTESHORTESTPATH(event)
12: while Q.TOPKEY<CALCULATEKEY(vg) OR
13: g(vg) ̸= rhs(vg) do
14: kold← Q.TOPKEY;
15: u← Q.POP();
16: if kold < CALCULATEKEY(u) then
17: Q.INSERT(u, CALCULATEKEY(u));
18: else
19: gπ(vs)← COMPUTEGPI(vs);
20: if gπ(vs) ≤ ε2(min{g(u), rhs(u)}+ h(u)) then
21: return OBTAINPATH(vs)
22: if g(u) > rhs(u) then
23: g(u)← rhs(u);
24: if EVENT(u) is triggered then
25: return path from vg to u

26: for all v ∈ Pred(u) do
27: UPDATEVERTEX(v);
28: else
29: gπ(u)← COMPUTEGPI(u);
30: if gπ(u) + h(u) ≤
31: ε2(min{g(u), rhs(u)}+ h(u)) then
32: Truncated.INSERT(u);
33: else
34: g(u)←∞;
35: for all v ∈ Pred(u) ∪ u do
36: UPDATEVERTEX(v);
37: procedure MAIN()
38: for all e ∈ E do w(e)← ε1ŵ(e);

39: for all v ∈ V do g(v)←∞; rhs(v)←∞;
40: Q← ∅; Truncated← ∅;
41: km← 0 ; vlast ← vcurrent;
42: Eeval ← ∅ ; rhs(vg)← 0 ; gπ(vg)← 0;
43: UPDATEVERTEX(vg);
44: while vcurrent ̸= vg do
45: repeat
46: π ← COMPUTESHORTESTPATH(event);
47: (u, v)← EVALUATEEDGES(π);
48: UPDATEVERTEX(v);
49: for all s ∈ Truncated do
50: Truncated.REMOVE(s);
51: gπ(s)←∞;
52: until vs ∈ π and π ⊆ Eeval;
53: vcurrent ← bp(vcurrent); Move to vcurrent;
54: km← km+ h(vcurrent, vlast);
55: vlast ← vcurrent;
56: Perceive the edge changes in E;
57: for all e = (u, v) with changed edge cost do
58: w(e)← ε1ŵ(e);
59: Eeval ← Eeval\{e};
60: UPDATEVERTEX(v);

Illustrative Example
Using the same underlying graph, we visualize the results
for D*-Lite, TD*, GD*, and B-GD* for two consecutive

Prepared using sagej.cls

18 Inr. Journal of Robotics Research XX(X)

(a) D*-Lite (b) TD* (1.2) (c) GD* (d) Bounded GD*

Figure 7. First search (top row) and second search (bottom row) to find a bounded suboptimal path from start vertex () to goal
vertex () per environment change with ε1 = 1.2 and ε2 = 1.2, from left to right: (a) D*-Lite, (b) TD*, (c) GD*, and (d) Bounded
B-GD*. The current robot position is shown with . Lines () are the evaluated edges during the current search. Bold lines () are
the edges belonging to the current search tree. Blue and red represents free space and obstacle, respectively.

Table 4. Number of edge evaluations, number of vertex expansions, and solution length for different planners over two consecutive
search queries in a dynamic environment of Figure 7.

D*-Lite TD*(1.2) GD* B-GD*(1.2,1.2)

Planning in scene 1
Edge Evaluation 832 832 67 78
Vertex Expansion 64 64 2622 449
Solution Length 0.878 0.878 0.878 0.907

Replanning in scene 2
Edge Evaluation 267 117 15 0
Vertex Expansion 22 4 226 0
Solution Length 0.767 0.857 0.767 0.879

Total
Edge Evaluation 1099 949 82 78
Vertex Expansion 86 68 2848 449

planning steps in the 2D environment in Figure 7. The top
row shows the first search. The bottom row shows the second
search after the environment changes, which occurs when
the robot traverses one segment of the optimal path from the
first plan. Both D*-Lite and GD* find the optimal solution,
whereas the TD* and B-GD* find a bounded suboptimal
path, saving computational resources. Moreover, the GD*
and B-GD* algorithms save computational resources via
reducing unnecessary edge evaluations compared to the
D*-Lite and TD* algorithms. The performance comparison
in terms of the number of edge evaluations and vertex
expansions for the algorithms are summarized in Table 4.

Experimental Results

In this section we compare the algorithms developed in
the previous sections (L-GLS, B-LGLS, GD*, B-GD*)
to existing incremental search and lazy search algorithms
using various examples. This section is divided into two

different parts. The first part tests the algorithms in a
stationary replanning problem instance, while the second
part compares the various algorithms in a non-stationary
replanning problem instance. We also implement the
proposed algorithms on a scaled ground vehicle platform to
show their experimental performance for robot navigation
problems.

Stationary Query Experiment (L-GLS, B-LGLS)
In this section we present numerical results comparing our
lazy incremental search algorithms with LPA*, TLPA*,
and GLS for a stationary replanning experiment, in which
the start and goal of the planning instances are fixed,
but either the environment or the graph approximation
of the environment changes over time. We demonstrate
the efficiency of lazy incremental search algorithms in
two different scenarios: first, a scenario in which the
path planning problem is solved consecutively in a
dynamic environment with a fixed-topology graph, and

Prepared using sagej.cls

Lim et al. 19

a second scenario in which graph approximations of a
static environment become denser over time via incremental
sampling. We consider three different environments for
benchmark testing: The Piano Movers’ problem in SE(2),
a manipulation problem in R7 using a PR2 robot (a
mobile robot with 7DoF arm), and a non-holonomic
motion planning problem in SE(2) using the RACECAR/J
platform robot†. All the algorithm implementations were
done in C++, and the experiments were run on a 2.20
GHz Intel(R) Core(TM) i7-8750H CPU machine with
15.5GB of RAM within a Docker container running
Ubuntu 18.04 LTS. The RACECAR/J experiment was run
onboard using an NVIDIA Jetson TX2. The source code
is available at https://github.com/DCSLgatech/
lazy_incremental_search.

Dynamic Environment and Static Graph. We first consider
scenarios where the environment is dynamic, and we have
available a topologically fixed graph approximating the
environment. The search is performed on a pre-built graph
with uniformly distributed vertices in the configuration
space, in which an edge is added between two vertices if they
belong to the first k-nearest neighbors. The graph topology
does not change throughout the experiment, and only the
edge values change due to underlying environment changes.
We repeat the experiment 100 times with randomly sampled
start and goal pairs, comparing 5 different planners: LPA*,
TLPA*, GLS, L-GLS, and B-LGLS. We report the average
number of edge evaluations, the average number of vertex
expansions, and the average total runtime of these planners.

Piano Movers’ Problem: The purpose of the first
experiment is to find the shortest path of a piano in a compact
and dynamic apartment environment. For each experiment,
we find the shortest paths from the Apartment scenario
in OMPL (Şucan et al., 2012) from a start configuration
to a goal configuration without colliding with the moving
obstacles (see Figure 8). There were six consecutive searches
in the environment, where the first search was on scene 1
(Figure 8(a)), the second search was on scene 2 (Figure 8(b)),
and the third search was on scene 3 (Figure 8(c)), and
the fourth, the fifth, and the sixth searches were again
repeated on scene 1, scene 2, and scene 3, respectively.
The search was performed on a randomly generated graph
with 5,000 randomly sampled vertices and edges connecting
two vertices if they belong to the first 20-nearest vertices,
analogous to k-PRM (Kavraki et al., 1996) with k = 20. The
vertices were sampled from SE(2) bounded by the map size.
Figure 8 shows an example of this experiment.

We compare the search results, namely, the number of
edge evaluations, the number of vertex expansions, and
the total runtime for 5 different algorithms: LPA*, TLPA*
(ε2=2), GLS (1-step lookahead), L-GLS (1-step lookahead),
and B-LGLS (1-step lookahead, ε1 =

√
2, ε2 =

√
2). We

repeated the experiment 100 times with randomly sampled
start and goal pairs with 100 different graphs and report the
average values. The results are summarized in Figure 9.

The average number of edge evaluations for the
regular incremental search algorithms, namely, LPA* and
TLPA*, are similar across the search instances. TLPA*
reduces the number of vertex expansions in subsequent
planning instances compared to LPA*, as it halts the cost
inconsistency propagation as early as the current solution

is guaranteed to be bounded suboptimal. Lazy search
algorithms including GLS, L-GLS, and B-LGLS reduce edge
evaluations by a significant amount compared to the regular
incremental search algorithms, and yet these algorithms
expand more vertices to repair the cost inconsistencies
between the heuristic edge value and the actual value. L-
GLS uses fewer edge evaluations and vertex expansions
compared to GLS, as it reuses the previous search results.
Although Bounded-LGLS uses more vertex expansions in
the first search, it uses both fewer edge evaluations and vertex
expansions in subsequent planning instances compared to L-
GLS, as it halts as soon as the current solution is guaranteed
to be bounded suboptimal.

PR2 Robot: The purpose of the second experiment is to
find a path for the 7DoF right arm of a PR2 robot from a start
configuration to a goal configuration without collision in a
dynamic environment where the obstacle moves, as shown
in Figure 10.

There were six consecutive searches in the environment,
where the first search was on scene 1 (Figure 10(a)), the
second search was on scene 2 (Figure 10(b)), and the
remaining searches were repeated alternating between the
two scenes. We repeated the experiment 100 times with
random start and goal pairs and 100 random graphs.

For each experiment, similarly to the Piano Movers’
problem, the search was performed on a randomly generated
graph with 5,000 vertices. The vertices were randomly
uniformly sampled in R7, bounded by the PR2 arm’s joint-
angle bounds. We implemented LPA*, TLPA*, GLS, L-GLS,
and B-LGLS as an OMPL Planner (Şucan et al., 2012) with
the MoveIt! interface by Coleman et al. (2014).

We compared the search results, namely, the number of
edge evaluations and the number of vertex expansions for
5 different algorithms: LPA*, TLPA* (ε2=2), GLS (1-step
lookahead), L-GLS (1-step lookahead), and B-LGLS (1-
step lookahead, ε1 =

√
2, ε2 =

√
2). The number of edge

evaluations, the number of vertex expansions, and the
runtime were recorded for each planning instance, and we
took the averages of them over 100 random experiments. The
results are summarized in Figure 11.

A similar trend to the Piano Movers’ problem is observed
for this PR2 robotic arm experiment as well. The regular
incremental search algorithms, namely, LPA* and TLPA*,
incur unnecessary edge evaluations compared to the lazy
search algorithms. LPA* and TLPA* resulted in the same
amount of edge evaluations, but TLPA* saves a few
more vertex expansions compared to LPA* in consecutive
searches. The lazy search algorithms, namely, GLS, L-GLS,
and B-LGLS save a significant amount of edge evaluations
at the expense of more search. The lazy incremental search
algorithms, L-GLS and B-LGLS save both edge evaluations
and vertex expansions in consecutive searches compared to
GLS, as they use the previous search results. B-LGLS further
saves a number of edge evaluations and vertex expansions
compared to L-GLS in consecutive searches as it halts the
search as soon as the current solution is guaranteed to be
bounded suboptimal.

RacecarJ Experimental Platform: The purpose of the
third experiment is to find a dynamically feasible path for a

†https://racecar.mit.edu/

Prepared using sagej.cls

https://github.com/DCSLgatech/lazy_incremental_search
https://github.com/DCSLgatech/lazy_incremental_search
https://racecar.mit.edu/

20 Inr. Journal of Robotics Research XX(X)

(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 8. The shortest paths of the Piano Movers’ problems in a dynamic environment.

1 2 3 4 5 6
10

1

10
2

10
3

10
4

10
5

(a) Edge evaluation

1 2 3 4 5 6
10

0

10
1

10
2

10
3

(b) Vertex expansion

1 2 3 4 5 6

0

1

2

3

4

5

(c) Total time

Figure 9. The average number of edge evaluations, the average number of vertex expansions, and the average total runtime of
100 random experiments for the Piano Movers’ problem.

(a) Scene 1 (b) Scene 2

Figure 10. The shortest paths of the right arm of PR2 robot for the same query in dynamic environment.

1 2 3 4 5 6
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

(a) Edge evaluation

1 2 3 4 5 6
10

-1

10
0

10
1

10
2

10
3

(b) Vertex expansion

1 2 3 4 5 6

0

2

4

6

8

10

12

14

16

(c) Total time

Figure 11. The average number of edge evaluations, the average number of vertex expansions, and the average total runtime
taken over 100 random experiments for the PR2 robotic arm problem.

non-holonomic vehicle from a start configuration to a goal
configuration without collision in a dynamic environment
where the obstacle moves, as shown in Figure 12.

There were six consecutive searches in the environment,
where after each search, a randomly chosen 10 percent of the
edges changed. Figure 12 shows an example of consecutive
searches.

The search was performed on a randomly sampled graph
with 500 vertices where the edges were defined for two
vertices if they belong to the first 10-nearest vertices. The
vertices were sampled using a uniform distribution in R3

bounded by the map size, and the edges were connected
using Reeds-Shepp curves (Reeds and Shepp, 1990). The
length of the Reeds-Shepp curve connecting the two end
vertices is the edge weight. We implemented LPA*, TLPA*,

Prepared using sagej.cls

Lim et al. 21

(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 12. The shortest paths of the nonholonomic vehicle for the same query in a dynamic environment.

1 2 3 4 5 6
10

-1

10
0

10
1

10
2

10
3

10
4

(a) Edge evaluation

1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

(b) Vertex expansion

1 2 3 4 5 6
10

-4

10
-3

10
-2

10
-1

10
0

(c) Total time

Figure 13. The average number of edge evaluations, the average number of vertex expansions, and the average total runtime for
six consecutive searches for the non-holonomic RacecarJ problem.

GLS, L-GLS, and B-LGLS as an OMPL Planner (Şucan
et al., 2012) on board a RacecarJ 1/10 scale robotic vehicle
equipped with an NVIDIA Jetson TX2 board (Figure 14).

Figure 14. The RacecarJ platform (Karaman et al., 2017).

We compared the search results, namely the number of
edge evaluations and the number of vertex expansions for
5 different algorithms: LPA*, TLPA* (ε2=2), GLS (infinite-
step lookahead), L-GLS (infinite-step lookahead), and
B-LGLS (infinite-step lookahead, ε1 =

√
2, ε2 =

√
2).

The number of edge evaluations, the number of vertex
expansions, and the runtime were recorded for each
planning instance, and the average values over 100 random
experiments are plotted in Figure 13.

A similar trend as before is observed in this experiment
as well. The regular incremental search algorithms, namely,
LPA* and TLPA*, incur unnecessary edge evaluations

compared to the lazy search algorithms. The lazy search
versions of the algorithms, namely, GLS, L-GLS, and B-
LGLS save a significant number of edge evaluations at
the expense of more search. The lazy incremental search
algorithms, L-GLS and B-LGLS save computation time in
consecutive searches compared to GLS, as they make use of
previous search results. B-LGLS further reduces the number
of edge evaluations and vertex expansions compared to L-
GLS in consecutive searches, as it halts the search as soon as
the current solution is guaranteed to be bounded suboptimal.

Static Environment and Dynamic Graph. In this section,
we consider scenarios where the graph representation of a
static environment becomes denser over time via incremental
sampling, a common strategy of many recent sampling-
based planning algorithms (Karaman and Frazzoli, 2011;
Arslan and Tsiotras, 2013; Janson et al., 2015; Gammell
et al., 2015). A batch of 100 random uniform samples was
added per instance, with rejection of infeasible samples
due to obstacles. Edges were then added for the k-nearest
neighbors. An improved solution is sought incrementally for
each instance based on the previous search result‡.

For each search instance, the time to evaluate the edges,
the time to expand the vertices, and the total time to find a
new solution was recorded. Each experiment was repeated
50 times, and the average and the standard deviation of the
accumulated time of edge evaluations, the accumulated time
of vertex expansions, and the solution length as a function of

‡Technically, the required k-value for asymptotic optimality would increase
beyond any fixed constant value as the number of samples increases.
However, in practice, we found that k=20 is sufficiently large to observe
asymptotically optimal solutions within the scope of our experiments.

Prepared using sagej.cls

22 Inr. Journal of Robotics Research XX(X)

time were obtained. Only experiments with a success ratio
exceeding 80% in finding a solution are displayed.

First, we study the effect of the three parameters of B-
LGLS, namely the lookahead value, the inflation factor, and
the truncation factor.

Lookahead Variation: The lookahead value determines
how far the heuristic search tree is repaired before evaluating
the edges along the path. Hence, a larger lookahead value
delays edge evaluation, but the search tree may become
inconsistent often when there is a discrepancy between the
heuristic value and the actual value, requiring more vertex
expansions. On the other hand, a smaller lookahead value
reduces the number of vertex expansions at the expense
of more edge evaluations. In all of the Piano Movers’
problem instances, the PR2 robotic arm, and the non-
holonomic racecar problems, this trend is clear. Figures 15,
16, and 17 show the total edge evaluation time and the
total vertex expansion time accumulated as the number of
vertices in the current graph for the Piano Movers’ problem,
the PR2 robotic arm problem, and the non-holonomic
racecar problem, respectively. The larger the lookahead
value, the lower the accumulated time to evaluate edges.
The smaller the lookahead value, the lower the accumulated
time to expand vertices. The trade-off between the edge
evaluation and the vertex expansion determines the solution
convergence rate.

Effect of Inflation Factor: We also investigated the effect
of the inflation factor on the solution quality and speed.
We inflated the heuristic edge value of the unevaluated
edges by a multiplicative factor. The inflation factor has two
effects. First, it makes the search greedy, resulting in finding
the first solution faster. Second, it defers the evaluation
of newly added edges unless such edges are promising to
improve the current solution significantly. Although a high
inflation factor makes it faster to find a first solution, it may
not converge asymptotically to the optimal solution if the
current solution is already within the given bound. To address
this issue, we dynamically varied the inflation factor as a
function of the number of vertices in the graph. We chose
ε1 = 1 + 5/q, where q is the number of vertices (Strub and
Gammell, 2020a). Having a dynamic inflation factor finds
a first solution fast, and then it asymptotically converges to
the optimal solution as ε1 converges to 1. Figures 18, 19,
and 20 show the total edge evaluation time and the total
vertex expansion time accumulated as the number of vertices
in the current graph for the Piano Movers’ problem, the
PR2 robotic arm problem, and the non-holonomic racecar
problem, respectively. Having an inflation factor greater than
1 reduced the edge evaluation time, but it also incurred
more vertex expansion time, generally resulting in slower
convergence.

Truncation Factor Variation: The truncation factor deter-
mines when to truncate the inconsistency propagation given
the changes in the graph. It truncates the inconsistency
propagation as soon as the current solution is guaranteed
to be bounded suboptimal, saving computational resources
until the samples are drawn, which could potentially improve
the current solution significantly. Truncation saves both edge
evaluation and vertex expansion times; however, as a result
of ignoring samples that do not improve the solution by a
certain margin, the solution may not converge to the optimal

solution. To address this issue, we dynamically reduce the
truncation factor as a function of the number of vertices,
i.e., ε2 = 1 + 10/q, where q is the number of vertices. As
ε2 approaches 1, the solution asymptotically converges to
the optimal solution. Figures 21, 22, and 23 show the total
edge evaluation time and the total vertex expansion time
accumulated as the number of vertices in the current graph
for the Piano Movers’ problem, the PR2 Robot problem,
and the non-holonomic RacecarJ problem, respectively. In
all three experiments, having a truncation factor greater than
1 helped find the first solution faster. Having a dynamic
truncation factor improved the convergence in the Piano
Movers’ problem and the PR2 Robot arm problem.

Comparison between LPA*, TLPA*, L-GLS, and B-
LGLS: Having examined the effects of the lookahead, the
inflation factor, and the truncation factor, in this section we
compare the performance of our proposed lazy incremental
search algorithms to their non-lazy incremental search
counterparts. We compared LPA*, TLPA*, L-GLS, and B-
LGLS using the same experiments. All of these incremental
search algorithms improve the solution as the graph becomes
denser as we add 100 samples per iteration. Figures 24, 25
and 26 show the total time to evaluate edges, the total time
to expand vertices, and the solution length as a function of
time, respectively, for the Piano Movers’ problem, the PR2
Robot problem, and the non-holonomic RacecarJ problem.

LPA* and TLPA* do not use heuristic edge values
when they propagate the cost inconsistencies, incurring a
significant number of edge evaluations. The proposed lazy
incremental search algorithms save time when evaluating
edges per search iteration of more than one order of
magnitude for the Piano Movers’ problem and more than two
orders of magnitude for the PR2 Robot arm problem and the
non-holonomic RacecarJ problem. These savings resulted in
a faster solution convergence rate. B-LGLS finds the first
solution faster than L-GLS, guided by the inflated heuristic
edge weight. As the inflation factor and the truncation factor
asymptotically approaches 1, B-LGLS also asymptotically
converges to the optimal solution.

Our experimental findings suggest that enhancing the
convergence rate of asymptotically optimal sampling-based
motion planners is achievable by reducing unnecessary
edge evaluations and focusing on repairing only the
promising paths. Contemporary state-of-the-art sampling-
based motion planners, including ABIT*, AIT*, and
EIT* (Strub and Gammell, 2020a; Strub and Gammell,
2022), also leverage these concepts to improve convergence
rates, incorporating additional optimization techniques such
as informed sampling and bidirectional search. Notably,
we refrain from directly comparing our approach to those
sampling-based motion planners, which are optimized to
solve single-problem instances.

For the remaining part of the paper, we describe non-
stationary versions of the proposed lazy incremental search
algorithms for replanning when the start vertex changes.
We use D*-Lite and Truncated D*-Lite algorithms to find
a solution quickly for a mobile robot with expensive edge
evaluations and compare the results.

Non-Stationary Query Experiment
In this section, we present numerical simulations of our lazy
algorithms and compare them to D*-Lite and TD*. Similar

Prepared using sagej.cls

Lim et al. 23

2000 2500 3000 3500 4000 4500 5000

0

5

10

15

20

25

30

35

40

45

50

(a) Edge Evaluation

2000 2500 3000 3500 4000 4500 5000

0

20

40

60

80

100

120

(b) Vertex Expansion

20 40 60 80 100 120

402

404

406

408

410

412

414

416

418

420

(c) Solution Length

Figure 15. Lookahead variation for the Piano Movers’ problem with ε1 = 1 and ε2 = 1.

0 1000 2000 3000 4000 5000 6000

0.5

1

1.5

2

2.5

3

(a) Edge Evaluation

0 1000 2000 3000 4000 5000 6000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) Vertex Expansion

0 0.5 1 1.5 2 2.5 3

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

(c) Solution Length

Figure 16. Lookahead variation for the PR2 Robot problem with ε1 = 1 and ε2 = 1.

0 1000 2000 3000 4000 5000

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
10

-3

(a) Edge Evaluation

0 1000 2000 3000 4000 5000

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

(b) Vertex Expansion

0.005 0.01 0.015 0.02 0.025 0.03

8

10

12

14

16

18

20

22

24

26

28

(c) Solution Length

Figure 17. Lookahead variation for the RacecarJ problem with ε1 = 1 and ε2 = 1.

2000 2500 3000 3500 4000 4500 5000

10

15

20

25

30

35

40

45

50

(a) Edge Evaluation

2000 2500 3000 3500 4000 4500 5000

0

20

40

60

80

100

120

140

160

(b) Vertex Expansion

20 40 60 80 100 120 140 160 180 200

400

405

410

415

420

425

(c) Solution Length

Figure 18. Inflation factor variation for the Piano Movers’ problem.

to the stationary replanning problem instances, we conduct
the experiments in the PR2 Robot simulation environment,
the Piano Movers problem, and the RacecarJ environment.
For the first two experiments, we generated a random graph
with 5,000 vertices each connected to 20 nearest neighbors,

and solved the motion planning problem for 100 randomly
sampled start and goal configurations similar to the previous
stationary case. However, we now change the environment
while the robot is moving towards the goal on the previously
found solution path, and thus force the robot to replan.

Prepared using sagej.cls

24 Inr. Journal of Robotics Research XX(X)

1000 1500 2000 2500 3000 3500 4000 4500 5000

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) Edge Evaluation

1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.5

1

1.5

2

2.5

3

3.5

(b) Vertex Expansion

1 1.5 2 2.5 3 3.5 4 4.5

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

(c) Solution Length

Figure 19. Inflation factor variation for the PR2 Robot problem.

0 1000 2000 3000 4000 5000

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
10

-3

(a) Edge Evaluation

0 1000 2000 3000 4000 5000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(b) Vertex Expansion

0.005 0.01 0.015 0.02 0.025 0.03 0.035

10

15

20

25

30

35

(c) Solution Length

Figure 20. Inflation factor variation for the RacecarJ problem.

3000 3500 4000 4500 5000

15

20

25

30

35

40

45

50

(a) Edge Evaluation

3000 3500 4000 4500 5000

20

40

60

80

100

120

140

160

(b) Vertex Expansion

60 80 100 120 140 160 180

405

410

415

420

425

430

(c) Solution Length

Figure 21. Truncation factor variation for the Piano Movers’ problem.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) Edge Evaluation

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) Vertex Expansion

0.5 1 1.5 2 2.5 3

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

(c) Solution Length

Figure 22. Truncation factor variation for the PR2 Robot problem.

Comparison of the Algorithms. For the first experiment,
we find the shortest path for a random start and goal
configuration in scene 1 (Figure 8(a)) of the Piano Movers’
problem. Once an optimal path is computed, the piano is
moved towards the goal over one segment along the optimal

path when the environment is changed to the one in scene 2
(Figure 8(b)). The piano again traverses one segment of the
newly found path and the environment is changed again into
the one in the scene 3 (Figure 8(c)), forcing the planner to

Prepared using sagej.cls

Lim et al. 25

0 1000 2000 3000 4000 5000

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
10

-3

(a) Edge Evaluation

0 1000 2000 3000 4000 5000

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(b) Vertex Expansion

0 0.005 0.01 0.015 0.02 0.025

8

10

12

14

16

18

20

22

24

26

28

(c) Solution Length

Figure 23. Truncation factor variation for the RacecarJ problem.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

1

10
2

10
3

(a) Edge Evaluation

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
1

10
2

(b) Vertex Expansion

10
2

10
3

390

400

410

420

430

440

450

(c) Solution Length

Figure 24. Comparison between LPA*, TLPA*, B-LGLS for the Piano Movers’ problem.

0 1000 2000 3000 4000 5000
10

-1

10
0

10
1

10
2

10
3

10
4

(a) Edge Evaluation

0 1000 2000 3000 4000 5000

10
0

(b) Vertex Expansion

10
0

10
1

10
2

10
3

4.5

5

5.5

6

6.5

7

7.5

8

8.5

(c) Solution Length

Figure 25. Comparison between LPA*, TLPA*, B-LGLS for the PR2 robotic arm problem.

0 1000 2000 3000 4000 5000
10

-3

10
-2

10
-1

10
0

10
1

10
2

(a) Edge Evaluation

0 1000 2000 3000 4000 5000
10

-3

10
-2

(b) Vertex Expansion

10
-3

10
-2

10
-1

10
0

10
1

10
2

5

10

15

20

25

30

35

(c) Solution Length

Figure 26. Comparison between LPA*, TLPA*, B-LGLS for the RacecarJ problem.

find a new solution. We cycle through the environments once
more to obtain a total of six consecutive searches.

We compared the results for four different algorithms,
namely, D*-Lite, GD* (1-step lookahead), TD* (ε2 = 2),
and B-GD* (1-step lookahead, ε1 =

√
2, ε2 =

√
2) for 100

randomly sampled start and goal configurations. The average
results from the performance comparison of the different
algorithms in terms of the number of edge evaluations, vertex
expansions, and runtime for the piano movers problem is
shown in Figure 27. As shown in Figure 27, the proposed

Prepared using sagej.cls

26 Inr. Journal of Robotics Research XX(X)

1 2 3 4 5 6

10
1

10
2

10
3

10
4

10
5

(a) Edge evaluation

1 2 3 4 5 6
10

-2

10
-1

10
0

10
1

10
2

10
3

(b) Vertex expansion

1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

4

(c) Total time

Figure 27. The average number of edge evaluations, the average number of vertex expansions, and the average total runtime
taken over 100 random experiments in the Piano Movers’ environment.

1 2 3 4 5 6
10

-2

10
0

10
2

10
4

(a) Edge evaluation

1 2 3 4 5 6
10

-2

10
-1

10
0

10
1

10
2

10
3

(b) Vertex expansion

1 2 3 4 5 6

0

2

4

6

8

10

12

(c) Total time

Figure 28. The average number of edge evaluations, the average number of vertex expansions, and the average total runtime
taken over 100 random experiments in the PR2 Robot environment.

1 2 3 4 5 6
10

-1

10
0

10
1

10
2

10
3

10
4

(a) Edge evaluation

1 2 3 4 5 6

0

1

2

3

4

5

6

7

(b) Vertex expansion

1 2 3 4 5 6
10

-4

10
-3

10
-2

10
-1

10
0

10
1

(c) Total time

Figure 29. The average number of edge evaluations, the average number of vertex expansions, and the average total runtime
taken over 100 random experiments for the RacecarJ environment.

lazy algorithms significantly reduce the number of edge
evaluations. Furthermore, the bounded algorithms generally
reduce the number of vertex expansions via early termination
in case a bounded suboptimal solution is found. Thus,
the average runtime is also reduced for the generalized
algorithms.

A similar experiment for the PR2 environment was
conducted. Once an optimal path is computed for the
environment in scene 1 (Figure 10(a)) the robot moves
towards the goal traversing one segment along the optimal
path. The environment is then changed to the one shown
in scene 2 (Figure 10(b)), and thus the algorithms replan
to find a new optimal path to the goal. We cycle through
the environments twice more to obtain a total of six
consecutive searches. We conducted the experiment for 100
different randomly generated start and goal configurations

for the robot. The comparison of the average performance
results solved by the four different algorithms, namely, D*,
GD* (1-step lookahead), TD* (ε2 = 2), and B-GD* (1-step
lookahead, ε1 =

√
2, ε2 =

√
2) is shown in Figure 28.

It can be seen that the lazy algorithms (GD* and B-
GD*) significantly reduce the number of edge evaluations,
and hence the total runtime. The bounded version of the
algorithm (B-GD*) further reduces the total runtime via
terminating upon finding a bounded suboptimal solution.
Note that for the PR2 experiment, the GD* algorithm results
in an approximately 7X speed-up to find the first solution.

Lastly, a similar experiment was conducted in the
RacecarJ environment (Figure 12). We constructed the graph
via 500 randomly sampled vertices, each having edges
connected to the 10 nearest neighbors via Reeds-Shepp
curves similar to the stationary case. Once an optimal path is

Prepared using sagej.cls

Lim et al. 27

found, the RacecarJ traverses one segment along the optimal
path and we randomly change 10 percent of the edges in the
graph simulating a dynamic environment. We repeat this to
obtain a total of six consecutive searches. We gathered the
experimental data using 100 randomly generated start and
goal configurations.

The comparison of the average performance results solved
by the four different algorithms, namely, D*, GD* (infinite-
step lookahead), TD* (ε2 = 2), and B-GD* (infinite-step
lookahead, ε1 =

√
2, ε2 =

√
2) is shown in Figure 29. As

expected, the generalized algorithms, namely, GD* and B-
GD* significantly reduce the number of edge evaluations in
the graph in all six consecutive searches with the trade-off
of increasing the number of vertex expansions (conducting
more search). Note that the runtime is also significantly
reduced for the first search in this environment.

Parametric Study. The choice of the lookahead value
can have a significant effect on the performance of the
algorithms. We demonstrate this for the dynamic algorithms
for some sample experimental cases. The comparison
between 1-step lookahead and infinite-step lookahead for
the PR2 experiments are shown in Figure 30. As shown
in Figure 30, an infinite-step lookahead reduces edge
evaluations, while a 1-step lookahead minimizes vertex
expansions within the lazy framework. For this particular
problem, the infinite-step lookahead is about 5X faster than
the 1-step lookahead. However, the optimal lookahead value
is dependent on the problem.

1

10

100

1000

First Second

N
u

m
b

er
 o

f
E

d
g

e
E

v
al

u
ti

o
n

GD*(1) GD*(�) BGD*(1) BGD*(�)

(a) Edge evaluation

1

10

100

1000

10000

First Second

N
u

m
b

er
 o

f
V

er
te

x

E
x

p
an

si
o

n

GD*(1) GD*(�) BGD*(1) BGD*(�)

(b) Vertex expansion

Figure 30. Performance comparison for the extreme lookahead
values (1−step and∞).

Figure 31 demonstrates the effect of different values of
the truncation and inflation factors in the PR2 simulation
environment. As expected, increasing the bounds on the
suboptimal solution generally leads to the reduction of both
the number of vertex expansions and edge evaluations,
resulting in reduced total solution time.

Conclusion
We have presented a novel replanning framework that
combines the vertex efficiency of incremental search
methods with the edge efficiency of lazy search methods.
Within the proposed lazy incremental search framework, we
have presented four different algorithms: L-GLS, B-LGLS,
GD*, and B-GD*. L-GLS and B-LGLS solve a sequence of
planning problems with fixed start and goal vertices using
the previous search results to efficiently restrict unnecessary
edge evaluations. GD* and B-GD* solve a sequence of
planning problems with moving start vertices, generalizing
D*-Lite and TD* within the lazy search framework. We

1

10

100

1000

First Second

N
u

m
b

er
 o

f
E

d
g

e
E

v
al

u
at

io
n

GD*

BGD*(1.2,1.2)

BGD*(1.5,1.5)

BGD*(2.5,1.5)

(a) Edge evaluation

1

10

100

1000

10000

First Second

N
u

m
b

er
 o

f
V

er
te

x
 E

x
p

an
si

o
n

GD*

BGD*(1.2,1.2)

BGD*(1.5,1.5)

BGD*(2.5,1.5)

(b) Vertex expansion

Figure 31. Performance comparison for the different truncation
(ε2) and inflation factors (ε1).

have proven that these algorithms are complete and correct
in returning a bounded suboptimal solution given a graph
change. In our numerical experiments, it was shown that
our generalization significantly improves the performance
of the classical incremental search algorithms via reducing
unnecessary edge evaluations, speeding up replanning. The
proposed improvements enable classical algorithms to be
applied in a broader range of applications where edge
evaluation is expensive.

Acknowledgements

This work has been supported by ARL under DCIST CRA
W911NF-17-2-0181 and SARA CRA W911NF-20-2-0095, and by
NSF under award IIS-2008686.

References

Aine S and Likhachev M (2013) Aytime truncated d*: Anytime
replanning with truncation. In: International Symposium on
Combinatorial Search, volume 4. AAAI Press, pp. 2–10.

Aine S and Likhachev M (2016) Truncated incremental search.
Artificial Intelligence 234: 49 – 77. DOI:https://doi.org/10.
1016/j.artint.2016.01.009.

Aine S, Swaminathan S, Narayanan V, Hwang V and Likhachev
M (2016) Multi-Heuristic A*. The International Journal of
Robotics Research 35: 224 – 243.

Arslan O and Tsiotras P (2013) Use of relaxation methods in
sampling-based algorithms for optimal motion planning. In:
IEEE International Conference on Robotics and Automation.
Karlsrühe, Germany, pp. 2421–2428.

Barer M, Sharon G, Stern R and Felner A (2014) Suboptimal
variants of the conflict-based search algorithm for the multi-
agent pathfinding problem. In: Seventh Annual Symposium on
Combinatorial Search. Prague, Czech Republic, pp. 19–27.

Bohlin R and Kavraki LE (2000) Path planning using lazy PRM. In:
IEEE International Conference on Robotics and Automation,
volume 1. San Francisco, CA, pp. 521–528.

Boyarski E, Felner A, Harabor D, Stuckey P, Cohen L, Li J and
Koenig S (2020) Iterative-Deepening Conflict-Based Search.
In: International Joint Conference on Artificial Intelligence,
volume 4. Yokohama, Japan, pp. 4084–4090. DOI:10.24963/
ijcai.2020/565.

Boyarski E, Felner A, Stern R, Sharon G, Tolpin D, Betzalel O
and Shimony E (2015) ICBS: Improved conflict-based search
algorithm for multi-agent pathfinding. In: Proceedings of
the International Conference on Artificial Intelligence. Buenos
Aires, Argentina, pp. 740–746.

Prepared using sagej.cls

28 Inr. Journal of Robotics Research XX(X)

Cohen B, Phillips M and Likhachev M (2014) Planning single-arm
manipulations with n-arm robots. In: Proceedings of Robotics:
Science and Systems. Berkeley, CA, pp. 226–227.

Cohen L, Greco M, Ma H, Hernández C, Felner A, Kumar TKS
and Koenig S (2018) Anytime focal search with applications.
In: International Joint Conference on Artificial Intelligence.
Stockholm, Sweden, pp. 1434–1441.

Coleman D, Şucan IA, Chitta S and Correll N (2014) Reducing the
barrier to entry of complex robotic software: a MoveIt! case
study. Journal of Software Engineering for Robotics 5(1): 3–
16. DOI:10.6092/JOSER 2014 05 01 p3.

Dellin CM and Srinivasa SS (2016) A unifying formalism for
shortest path problems with expensive edge evaluations via
lazy best-first search over paths with edge selectors. In:
Proceedings of the International Conference on Automated
Planning and Scheduling. London, UK, pp. 459–467.

Felner A, Li J, Boyarski E, Ma H, Cohen L, Kumar TKS
and Koenig S (2018) Adding heuristics to conflict-based
search for multi-agent path finding. In: Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 28. Delft, The Netherlands, pp. 83–87.

Gammell JD, Srinivasa SS and Barfoot TD (2015) Batch
informed trees (BIT*): Sampling-based optimal planning via
the heuristically guided search of implicit random geometric
graphs. In: IEEE International Conference on Robotics and
Automation. Seattle, WA, pp. 3067–3074.

Haghtalab N, Mackenzie S, Procaccia AD, Salzman O and
Siddhartha SS (2018) The provable virtue of laziness in
motion planning. In: Proceedings of the 28th International
Conference on Automated Planning and Scheduling. Delft, The
Netherlands, pp. 6161–6165.

Halton JH (1964) Algorithm 247: Radical-inverse quasi-random
point sequence. Communications of the ACM 7(12): 701–702.
DOI:10.1145/355588.365104.

Hart PE, Nilsson NJ and Raphael B (1968) A formal basis for
the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2): 100–
107. DOI:10.1109/TSSC.1968.300136.

Hauser K (2015) Lazy collision checking in asymptotically-optimal
motion planning. In: IEEE International Conference on
Robotics and Automation. Seattle, WA, pp. 2951–2957. DOI:
10.1109/ICRA.2015.7139603.

Janson L, Schmerling E, Clark A and Pavone M (2015) Fast
marching tree: A fast marching sampling-based method
for optimal motion planning in many dimensions. The
International Journal of Robotics Research 34(7): 883–921.

Karaman S, Anders A, Boulet M, Connor J, Gregson K, Guerra W,
Guldner O, Mohamoud M, Plancher B, Shin R and Vivilecchia
J (2017) Project-based, collaborative, algorithmic robotics
for high school students: Programming self-driving race cars
at mit. In: IEEE Integrated STEM Education Conference.
Princeton, NJ, pp. 195–203. DOI:10.1109/ISECon.2017.
7910242.

Karaman S and Frazzoli E (2010) Optimal kinodynamic motion
planning using incremental sampling-based methods. In:
Proceedings of the 49th IEEE Conference on Decision and
Control. Atlanta,GA, pp. 7681–7687. DOI:10.1109/CDC.
2010.5717430.

Karaman S and Frazzoli E (2011) Sampling-based algorithms
for optimal motion planning. The International Journal of
Robotics Research 30(7): 846–894.

Kavraki LE, Svestka P, Latombe J and Overmars MH (1996)
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and
Automation 12(4): 566–580. DOI:10.1109/70.508439.

Kishimoto A, Fukunaga A and Botea A (2013) Evaluation of a
simple, scalable, parallel best-first search strategy. Artificial
Intelligence 195: 222–248.

Koenig S and Likhachev M (2002) D* lite. In: Eighteenth
National Conference on Artificial Intelligence. Edmonton,
Canada. ISBN 0262511290, p. 476–483.

Koenig S and Likhachev M (2005) Fast replanning for navigation in
unknown terrain. IEEE Transactions on Robotics 21(3): 354–
363. DOI:10.1109/TRO.2004.838026.

Koenig S, Likhachev M and Furcy D (2004) Lifelong planning A*.
Artificial Intelligence 155(1): 93 – 146. DOI:https://doi.org/10.
1016/j.artint.2003.12.001.

Kuwata Y, Teo J, Fiore G, Karaman S, Frazzoli E and How
JP (2009) Real-time motion planning with applications to
autonomous urban driving. IEEE Transactions on Control
Systems Technology 17(5): 1105–1118.

Lavalle SM (1998) Rapidly-exploring random trees: A new tool
for path planning. Technical report, Computer Science
Department, Iowa State University.

Li J, Gange G, Harabor D, Stuckey PJ, Ma H and Koenig S (2020)
New techniques for pairwise symmetry breaking in multi-agent
path finding. Proceedings of the International Conference on
Automated Planning and Scheduling 30(1): 193–201.

Likhachev M, Ferguson D, Gordon G, Stentz A and Thrun S (2008)
Anytime search in dynamic graphs. Artificial Intelligence
172(14): 1613 – 1643. DOI:https://doi.org/10.1016/j.artint.
2007.11.009.

Likhachev M, Gordon GJ and Thrun S (2003) ARA*: Anytime
a* with provable bounds on sub-optimality. In: Neural
Information Processing Systems. Vancouver, Canada.

Lim J, Srinivasa SS and Tsiotras P (2022) Lazy Lifelong Planning
for Efficient Replanning in Graphs with Expensive Edge
Evaluation. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. Kyoto, Japan, pp. 8778–8783.

Liu S, Mohta K, Atanasov N and Kumar V (2018) Towards search-
based motion planning for micro aerial vehicles. arXiv e-prints
: arXiv:1810.03071.

Mandalika A, Choudhury S, Salzman O and Srinivasa SS
(2019) Generalized lazy search for robot motion planning:
Interleaving search and edge evaluation via event-based
toggles. In: Proceedings of the International Conference on
Automated Planning and Scheduling, volume 29. Berkeley,
CA, pp. 745–753.

Mandalika A, Salzman O and Srinivasa SS (2018) Lazy
receding horizon A* for efficient path planning in graphs
with expensive-to-evaluate edges. In: Proceedings of
the International Conference on Automated Planning and
Scheduling. Delft, Netherlands, pp. 476–484.

Matocha J and Camp T (1998) A taxonomy of distributed
termination detection algorithms. Journal of Systems
and Software 43(3): 207–221. DOI:https://doi.org/10.1016/
S0164-1212(98)10034-1.

Mukherjee S, Aine S and Likhachev M (2022a) ePA*SE: Edge-
based parallel A* for slow evaluations. In: International
Symposium on Combinatorial Search, volume 15. AAAI Press,
pp. 136–144.

Prepared using sagej.cls

Lim et al. 29

Mukherjee S, Aine S and Likhachev M (2022b) MPLP: Massively
parallelized lazy planning. IEEE Robotics and Automation
Letters 7(3): 6067–6074.

Pearl J and Kim JH (1982) Studies in semi-admissible
heuristics. IEEE Transactions on Pattern Analysis and
Machine Intelligence 4(4): 392–399. DOI:10.1109/TPAMI.
1982.4767270.

Pohl I (1970) Heuristic search viewed as path finding in a graph.
Artificial Intelligence 1(3): 193–204. DOI:https://doi.org/10.
1016/0004-3702(70)90007-X.

Ramalingam G and Reps T (1996) An incremental algorithm for
a generalization of the shortest-path problem. Journal of
Algorithms 21: 267–305.

Reeds JA and Shepp LA (1990) Optimal paths for a car that goes
both forwards and backwards. Pacific Journal of Mathematics
145(2): 367 – 393.

Sharon G, Stern R, Felner A and Sturtevant NR (2015) Conflict-
based search for optimal multi-agent pathfinding. Artificial
Intelligence 219: 40–66.

Shome R, Solovey K, Dobson A, Halperin D and Bekris KE (2020)
dRRT*: Scalable and informed asymptotically-optimal multi-
robot motion planning. Autonomous Robots 44(3): 443–467.
DOI:10.1007/s10514-019-09832-9.

Stentz A (1995) The focussed D* algorithm for real-time
replanning. In: Proceedings of the International Joint
Conference on Artificial Intelligence, volume 2. Montreal,
Quebec, Canada, pp. 1652–1659.

Stern R, Sturtevant NR, Felner A, Koenig S, Ma H, Walker TT, Li
J, Atzmon D, Cohen L, Kumar TKS, Barták R and Boyarski
E (2019) Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. In: Twelfth Annual Symposium on Combinatorial
Search. Vienna, Austria, pp. 151–158.

Strub MP and Gammell JD (2020a) Adaptively informed trees
(AIT*): Fast asymptotically optimal path planning through
adaptive heuristics. In: IEEE International Conference on
Robotics and Automation. pp. 3191–3198. DOI:10.1109/
ICRA40945.2020.9197338.

Strub MP and Gammell JD (2020b) Advanced BIT* (ABIT*):
Sampling-based planning with advanced graph-search tech-
niques. In: IEEE International Conference on Robotics and
Automation. Paris, France, pp. 130–136.

Strub MP and Gammell JD (2022) Adaptively informed trees
(AIT*) and effort informed trees (EIT*): Asymmetric
bidirectional sampling-based path planning. The International
Journal of Robotics Research 41(4): 390–417. DOI:10.1177/
02783649211069572.

Şucan IA, Moll M and Kavraki LE (2012) The Open Motion
Planning Library. IEEE Robotics & Automation Magazine
19(4): 72–82. DOI:10.1109/MRA.2012.2205651. https:
//ompl.kavrakilab.org.

Thayer JT and Ruml W (2011) Bounded suboptimal search: A
direct approach using inadmissible estimates. In: International
Joint Conference on Artificial Intelligence. Barcelona, Spain,
pp. 674–679.

Tordesillas J and How JP (2022) Mader: Trajectory planner in
multiagent and dynamic environments. IEEE Transactions on
Robotics 38(1): 463–476. DOI:10.1109/TRO.2021.3080235.

Webb DJ and van den Berg J (2013) Kinodynamic RRT*:
Asymptotically optimal motion planning for robots with linear
dynamics. In: IEEE International Conference on Robotics

and Automation. Karlsrühe, Germany, pp. 5054–5061. DOI:
10.1109/ICRA.2013.6631299.

Yu J and LaValle SM (2013) Structure and intractability of optimal
multi-robot path planning on graphs. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Bellevue, WA, pp.
1443–1449.

Zhou X, Wen X, Wang Z, Gao Y, Li H, Wang Q, Yang T, Lu H, Cao
Y, Xu C and Gao F (2022) Swarm of micro flying robots in
the wild. Science Robotics 7(66): eabm5954. DOI:10.1126/
scirobotics.abm5954. URL https://www.science.
org/doi/abs/10.1126/scirobotics.abm5954.

Prepared using sagej.cls

https://ompl.kavrakilab.org
https://ompl.kavrakilab.org
https://www.science.org/doi/abs/10.1126/scirobotics.abm5954
https://www.science.org/doi/abs/10.1126/scirobotics.abm5954

	Introduction
	Related Work
	Lazy Search
	Bounded Suboptimality
	Lifelong Planning

	Problem Formulation
	Lazy Edge Weight Function
	Path Planning Problem
	Replanning Problem

	Lifelong Lazy Search
	Lazy LPA* Search Tree
	Lifelong-GLS
	Details of the Algorithm and Main Procedures
	Illustrative Example
	Analysis of the L-GLS Algorithm

	Bounded Suboptimal Lazy Search
	Lazy-TLPA* Search Tree
	The Bounded L-GLS Algorithm
	Details of the Algorithm and Main Procedures.

	Illustrative Example
	Analysis of the Bounded L-GLS Algorithm

	Generalized Dynamic Search (GD*)
	Details of the GD* Algorithm
	Illustrative Example

	Generalized Bounded Dynamic Search (B-GD*)
	Generalized TD*
	Bounded Generalized D*
	Analysis of the Bounded GD* Algorithm
	Illustrative Example

	Experimental Results
	Stationary Query Experiment (L-GLS, B-LGLS)
	Dynamic Environment and Static Graph.
	Static Environment and Dynamic Graph.

	Non-Stationary Query Experiment
	Comparison of the Algorithms.
	Parametric Study.

	Conclusion

