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Abstract: State estimation is an integral part of inference in partially observ-
able environments. In this paper we propose predictive state controlled models
(PSCMs); a method to estimate the state of a partially observable environment.
PSCMs extend two-stage regression for predictive state representations to con-
trolled environments. They enjoy several favorable qualities: They can represent
controlled environments which can be affected by actions, they have a scalable
and theoretically justified learning algorithm, and they use a non-parametric rep-
resentation that is suitable for non-linear dynamics. We show promising results
for the proposed method in two settings: learning to predict observations in an en-
vironment controlled by an external agent, and learning to control the environment
using reinforcement learning.
An extended version of this work can be found at https://arxiv.org/abs/
1702.03537
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1 Introduction

Many important tasks in robotics involve reasoning about dynamic environments. Two of these tasks
are prediction (estimating future observations of an environment that is controlled by an external
agent) and control (learning a control policy from previous interactions with the environment in
order to maximize cumulative rewards).

In a partially observable environment, it is crucial to obtain an appropriate state representation. This
state provides a summary of previous observations and actions that is sufficient to decide on an
action or make a prediction. Maintaining the state representation is also known as filtering.

In this work we propose predictive state controlled models (PSCMs) as a method to obtain a state
representation. PSCMs combines the following three concepts: (1) predictive state representations:
where the state is represented by a conditional distribution of future observations given future ac-
tions. Expressing the state in terms of observable quantities enables consistent initialization through
the two-stage regression method, which is free of local optima, (2) Hilbert space embedding of dis-
tributions: which represents conditional distributions as infinite dimensional operators, allowing for
non-parametric representation of non-linear dynamics, and (3) Random Fourier features and random
projections: which enable scalable learning and inference by approximating kernel operations.

To our knowledge, this is the first filtering method for partially observable controlled systems that
simultaneously enjoys these qualities: a learning algorithm with no local optima, flexibility to rep-
resent non-linear systems and efficient training and inference. In the following sections we describe
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the aforementioned concepts in more detail. We then describe our proposed method and demonstrate
its performance in learning to predict and learning to control.

2 Predictive State Representations and Two Stage Regression

Predictive state representations (PSRs) are a class of models for filtering in dynamical systems. In
a latent state model such as a Hidden Markov model, the filtering algorithm maintains a belief state
in terms of a latent variable (e.g. as a distribution over HMM states). A predictive state filter, on the
other hand, maintains the state as a distribution over future observations. This distribution can be
represented by a vector of expected sufficient statistics of future observations, i.e.:

qt ≡ E[ψ(ot:t+k−1) | o1:t−1],

where qt is the predictive state at time t and ψ is a feature function that is computed from k future
observations 1. In order to maintain the state, we need to learn a state update function

qt+1 = f(qt, ot)

By representing the state in terms of an observable quantity (observation features), predictive states
allow for learning a filter by reduction to supervised learning [1, 2]. To learn the state update, we
follow the approach in [2]: we define the extended predictive state pt to represent the distribution of
the next k + 1 observations, i.e.

pt = E[ξ(ot:t+k) | o1:t−1],

where ξ is an extended feature function. We assume an unknown linear map W such that pt =Wqt
and a fixed conditioning function ffilter such that qt+1 = ffilter(pt, ot). The definition of ffilter

follows from the choice of ψ and ξ (e.g. if ψ and ξ produce indicator vectors, it follows that qt and
pt are probability tables and ffilter amounts to applying Bayes rule).

To learn W , we apply two-stage regression: In stage 1, we collect training examples as triplets
(ψt, ξt, ht) where ψt = ψ(ot:t+k−1), ξt = ξ(ot:t+k) and ht = h(ot−l:t−1) indicate future, extended
future and history features. We then build regression models to predict

q̂t ≡ E[ψt | ht], p̂t ≡ E[ξt | ht]. (1)

In stage 2, we use q̂t and p̂t predicted by stage 1 models to learn W by solving a regression problem

p̂t ≈Wq̂t. (2)

Hefny et al. [2] prove the consistency of this algorithm assuming that stage 1 regression models are
consistent. Extending this framework to controlled systems requires changing the predictive state qt
to encode the conditional distribution of future observations ot:t+k−1 conditioned on future actions
at:t+k−1. This representation makes the state independent of the policy used to generate actions.
We discuss the new representation and its implications in the following sections.

3 Hilbert State Embeddings of Distributions

As mentioned in the previous section, we need a state representation that encodes a conditional
distribution. For a discrete system with a few observations and actions, a suitable representation is
a conditional probability table. In this section we describe how to extend the notion of a conditional
probability table to the continuous case through Hilbert space embedding (HSE) of distributions [3,
4, 5]. Let kX be a kernel function defined on X ×X . This function is associated with a reproducing
kernel Hilbert space (RKHS) HX and a feature function φX : X 7→ HX such that k(x1, x2) =
〈φX (x1), φX (x2)〉HX , where 〈., .〉HX denotes inner product inHX .

Given a random variable X ∈ X , the mean map of X is defined as µX ≡ E[φX (X)]. If the kernel
kX is universal (e.g. the Gaussian RBF), then the mean map µX is a sufficient representation of the
distribution of X . Given two random variables X ∈ X and Y ∈ Y , the covariance operator of X
and Y is defined as CXY ≡ E[φX (X) ⊗ φY(Y )], where ⊗ denotes outer product. The covariance

1The choice of k depends on the observability of the system. A system is k-observable if each belief state
defines a unique distribution of the next k observations. In practice, k can be chosen using cross-validation.
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operator is a sufficient representation of the joint distribution P (X,Y ). The conditional operator
WX|Y is a linear operator satisfying

µX|Y =y ≡ E[φX (x) | Y = y] =WX|Y φY(y) ≡ apply(WX|Y , y).

According to kernel Bayes rule [6], the following relation holds 2

WX|Y = CXY C
−1
Y Y .

Given the above discussion, a natural representation of the state is the conditional operator
Wot:t+k−1|at:t+k−1

. This is the essence of Hilbert space embedding of predictive state represen-
tations (HSE-PSRs) [7]. Since Wot:t+k−1|at:t+k−1

is typically infinite dimensional, Boots et al. [7]
use a Gram matrix formulation for training and inference, resulting in costly procedure whose com-
putational and space complexity that scale polynomially in the number of training examples. To
obtain a two-stage regression method that scales linearly with training examples, we need an effi-
cient approximation of kernel operations and we need an adaptation of stage 1 regression to estimate
conditional states. We discuss these issues in Sections 3.1 and 4.2 respectively.

3.1 Kernel Approximation for Scalable Learning and Inference

To avoid the need for a costly Gram matrix formulation, we resort to kernel approximations. Kernel
approximations attempt to replace the infinite dimensional vector φX (x) with a finite dimensional
approximation φ̂X (x) ∈ RD such that kX (x1, x2) ≈ φ̂X (x1)

>φ̂X (x2). In this work, we use Ran-
dom Fourier features (RFF) approximation [8]. RFF approximation is simple to implement but it
is data independent and typically requires D to be very large to give an acceptable approximation.
Therefore we post-process RFF vectors by projecting them on a p dimensional space using ran-
domized PCA [9]. Under this representation, mean maps are p-dimensional vectors and covariance
operators are p × p matrices. States are also p × p conditional matrices but we use PCA again to
project them into p-dimensional vectors in order to reduce the number of parameters.

4 Predictive State Controlled Models

We are now ready to specify PSCMs in more detail. As described in Sections 3, the predictive state
qt is a p-dimensional approximation of Wot:t+k−1|at:t+k−1

. The extended state pt consists of two

vectors. p(1)
t approximatesWot,ot:t+k|at,at+1:t+k

while p(2)
t approximatesWot|at

. 3

4.1 State Update

Given a predictive state qt, an action at and the resulting observation ot, qt+1 is computed as follows:
(1) We compute p(1)

t = W (1)qt and p(2)
t = W (2)qt , where W (1) and W (2) are appropriate blocks

of W in Equation 2. (2) Given p(2)
t we apply at to obtain a distribution over ot represented by

Cotot . (3) Given p(1)
t and Cotot we use kernel Bayes rule to obtainWot+1:t+k|at,at+1:t+k,ot . 4 (4) By

applying ot and at we obtainWot+1:t+k|at+1:t+k
≡ qt+1.

4.2 Learning Model Parameters

The parameters W (1) and W (2) can be learnt using the two stage regression method described in
Section 2. However, stage 1 regression to estimate q̂t = E[qt | ht] needs to be adapted to the
conditional distribution representation 5. We propose two approaches. In the joint approach we

2It is informative to match HSE concepts to their discrete counterparts. If X and Y are discrete variables
with cardinality m and we use the delta kernel k(x1, x2) = 1(x1 = x2), it follows that φ(x) is an indicator
(one-hot) vector, µX is a probability vector, CXY is a joint probability table, and WX|Y is a conditional
probability table.

3In an abuse of notation we denote by Wot|at the operator that satisfies Cot,ot = Wot|atφ(at). The
covariance Cot,ot is needed to condition on ot using kernel Bayes rule.

4We think of p(1)t as a 4-mode tensor, with modes corresponding to ot, ot:t+k | at and at+1:t+k, and we
multiply the ot mode with C−1

ot,ot .
5We assume that training data is gathered from an exploratory blind policy.
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Figure 1: (a) Mean square error for 10-step prediction on synthetic model (left) and swimming
robot simulation (right). Baselines with very high MSE are not shown for clarity. (b) average
reward in best 3 out of 5 runs on swimmer (left) and hopper (right). FM1(FM5) models use the last
observation(5 observations) as input to policy.

train regression models to estimate Ĉot:t+k−1at:t+k−1
≡ E[φO(ot:t+k−1) ⊗ φA(at:t+k−1) | ht] and

Ĉat:t+k−1at:t+k−1
and then use kernel Bayes rule to compute q̂t = Ĉot:t+k−1at:t+k−1

Ĉ−1
at:t+k−1at:t+k−1

.
In the conditional approach we learn a function q̂t = g(ht) by directly solving the problem

min
g∈G

∑
t

‖apply(g(ht), at:t+k−1)− φO(ot:t+k−1)‖2.

4.3 Local Refinement by Backpropagation

Two stage regression algorithm is an instance of the method of moments, which is known for its
statistical inefficiency. Therefore, it is common to use method of moments to initialize a local
optimization procedure. Noting that a PSCM essentially defines a recurrent computation qt+1 =
fcond(W

(1)qt,W
(2)qt, ot, at) means hat we can optimize the parameters W (1) and W (2) using

backpropagation through time [10] to minimize the objective
∑

t ‖apply(qt, at:t+k−1)−ot:t+k−1‖2.
Our experiments show that this results in significant gains in prediction accuracy.

5 Experiments: Prediction

In this experiment, we test the ability of PSCM to learn a model of a controlled environment with
continuous non-linear dynamics , and to predict future observations given future actions. We com-
pare our method against a set of common filtering methods on a synthetic non-linear benchmark
[7] and on a simulation of a swimming robot. In both cases, we test the ability to predict up to 10
observations in the future. Results are shown in Figure 1 (a). With local refinement, PSCMs with
joint S1 outperforms other baselines, especially in long-range predictions.

6 Experiments: Reinforcement Learning

In this experiment, we employ PSCMs in a reinforcement learning (RL) setting. The RL agent
consists of a PSCM and a reactive policy. The PSCM provides predictive states, which are used as
inputs by the reactive policy. The reactive policy is represented by a feed-forward neural network
that, given a predictive state, computes the mean vector and diagonal covariance matrix of a Gaussian
distribution over actions.

We jointly train the PSCM and the reactive policy using alternating optimization: given a batch of
trajectories generated by interaction with the environment using the current policy, the PSCM is
updated to minimize prediction error using back-propagation through time as described in Section
4.3 while the reactive policy is updated by a step of Trust-region Policy Optimization algorithm
(TRPO) [11].

We applied our method to two partially observable environments with continuous controls. These
environments are based on Mujoco environments[12] from OpenAI Gym[13]; however, only joint
positions are given to the agent as observations. Results are shown in Figure 1 (b). PSCM is competi-
tive in the Walker environment and clearly outperforms other methods in the Swimmer environment.
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7 Conclusion

We described a method for maintaining a state representation in a partially-observable controlled
environment with continuous non-linear dynamics. Predictive state controlled models combine pre-
dictive state representations, Hilbert space embedding and kernel approximation to obtain a model
with scalable and local minima-free learning and inference. Our experiments show that PSCMs
constitute a promising method for prediction and control. For future work, we aim to develop ex-
ploration strategies for reinforcement learning using PSCMs.
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