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Abstract—Human-robot handoffs are a primary task for a
personal robot. Previously, robots put the majority of the handoff
burden on the human, where in the case of the human to robot
handoff the human had to position and orient the object into
the robot’s hand. This works well because it is a very easy
task for humans, but what happens if humans handoff objects
while they are distracted or if they have some impairment? Is
the handoff still possible? The recent arrival of reliable human-
tracking systems like the Kinect and smart control algorithms
that use the human-tracking feedback and other sensor data can
allow for rich human-robot interaction where the robot is aware
of the human and can actively collaborate together towards a
final goal. In this paper, we use rich 3D RGB-D data for human-
tracking and object detection, combined with incremental control
methods, to create a handoff system that is reliable and allows
the robot to actively collaborate in a handoff with a human.

I. INTRODUCTION

Handoffs are an important function in everyday life. For
humans, handoffs are an easy task and are usually routine
rather than deliberative. Even if a human performs several
handoffs on a daily basis with different types of objects and
in different situations, they cannot remember how exactly they
performed the handoff. Also, the motion of the giver and the
receiver is often synchronized and they work together until the
transfer of the object is complete [1].

What happens when one of the humans is replaced by a
robot? Edsinger at al [2] demonstrate that subjects without
explicit instructions can successfully hand objects to a robot
and take objects from a robot in response to reaching gestures.
Moreover, when handing an object to the robot, subjects
usually fix the position and the pose of the object to match
the configuration of the robot’s hand. Finally, the robot knows
to open and close his hand when it senses a force on its end-
effector, meaning the human must physically push or pull the
object into the robot’s stationary hand for the handoff to be
successful.

Other recent results include the AIST HRP-2 [3] and the
HERMES robot [4]. While these publications include handoffs
between a robot and a human, they are not focused on the
performance of the handoff nor the burden on the human to
complete the handoff.

In the works above, robots put the majority of the handoff
burden on the human. In the case of the human to robot
handoff, the human has to position and orient the object into
the robot’s hand and then push for the robot to know that it
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should close its hand. This works well because it is an easy
task for humans, but if humans handoff objects while they are
distracted the robot needs to participate actively to complete
the handoff. We could not find any previous work on handoffs
where the robot takes an object instead of receives it. The
main reason that this has not been done is that it is very hard
to reliably track humans.

The recent arrival of sensors like the Microsoft Kinect can
enable robotic systems to perceive the presence of humans.
The Kinect is a RGB-D camera that records two images, a
RGB image and a depth image. These images can be used
by the software bundled with the Kinect to detect and track
humans in a fast and reliable way. This new technology can en-
able the active participation of robots in human-robot handoffs
that was previously unavailable by improving the perception
capabilities of robots. However, the Kinect human tracking
is not perfect and is sensitive to fast human movement, non-
frontal views of humans, and situations where the human is
near other objects.

In this paper we present our progress towards a working
human to robot handoff algorithm, where the robot actively
takes the object from the human. In Section III, we talk
about how we sense what the human is doing including
compensating for noise from the human tracking software,
detecting handoff intent, and detecting objects in the human’s
hand. Then, in Section IV we talk about two different robot
control methods. In Section V we outline an informal study
that we used to test our algorithm. Finally in Sections VI and
VII we talk about the results of our user-study and what we
learned from this work about human-robot handoffs.

II. THE FRAMEWORK

We use HERB, the Home-Exploring Robotic Butler [5].
HERB has two Barrett WAM arms mounted on a segway base
that enable him to move around an environment and perform
advanced manipulation tasks. HERB has a suite of sensors
to help him perceive the world, including a spinning laser
scanner for building 3D world models, a vision system for
object recognition and pose estimation [6], and a commercial
system for indoor localization.

HERB typically works in a domestic kitchen environment,
as shown in Fig. 1. In this paper, HERB is positioned next to
and facing a table which has two types of items on it: Pop-
Tarts boxes and Fuze bottles. We have already demonstrated



Fig. 1. Scenario.
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Fig. 2. Hand frame.

HERB’s ability to recognize and manipulate these objects
autonomously [5], while avoiding humans safely. In this paper,
our goal is to explore how HERB can actively collaborate with
a human to accomplish the task.

A Microsoft Kinect camera is located 2.5m from the table
in order to have a complete view of the scene. Images from
the camera provide two types of data at 30H z: raw depth and
color, and human tracking data. The human tracking data is a
14-point skeleton outlining a human’s pose from head to feet.

We combine information from four different coordinate
frames (Fig. 1): the fixed world frame w located at the bottom
of the kitchen cabinets, the fixed camera frame ¢ located on
the Kinect camera, the robot frame r located on HERB’s base,
and the moving human hand frame A located on the hand.

We use the HERB’s localization system to obtain its trans-
form r. We calibrate the extrinsics of the camera c with a
calibration procedure where salient point correspondences on
the kitchen cabinets and on HERB are matched. When we
detect a human, we compute a hand frame h online (Fig. 2).
We use this frame as a target for the robot’s planning and
control. The Z-axis of the hand frame lies on the world X-Y
plane and points along the shoulder-hand direction, and the
Y-axis points upwards opposing gravity.

III. PERCEPTION

Although the Kinect provides useful human tracking data,
we had to address various perception issues to make it suitable
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Fig. 3. Skeleton tracking

for handoffs. Our post-processing included refining the skele-
ton tracking for better wrist positions particularly when the
human is close to or partially occluded by HERB, detecting the
intention of a human to handoff an object, learning to identify
if an object was held and recognizing the object type, and
calculating where HERB should put his hand for the handoff.

A. Correcting Hand Pose

Although the Kinect human tracking system is reliable, the
tracked position of the hand has been observed to have errors.
These errors occur when the human is moving fast and when
the human is near or touching other objects.

In the former case, the human tracker often lags the true
human motion. We address this issue with a correction that
moves the hand to the closest 3D point in a small box around
the estimate (Fig 3a) . This correction is fast, and is naturally
robust: if the hand tracking is originally good, the correction
does not change the estimate.

In the latter case, when HERB is close to the human, the two
are often partially merged into the human point cloud. This
is of particular concern to us since the human and the robot
need to be close to each other in the final part of the handoff
(Fig 3b). We take advantage of the fact that we can query
the joint configuration of the robot. We filter out data when
the robot hand and the human hand are closer than 15¢m and
the robot hand position is embedded within the human point
cloud. Since the human does not move much when very close
to the robot, this approximation is far better than incorrect
tracking.

B. Handoff Gesture

After correcting the hand pose, we infer impending handoff
based on two features: 1) the human is in a handoff pose and
2) the human is holding an object. We detect the former by
analyzing the human skeleton, and the latter using a support
vector machine (SVM) to classify an image patch around the
detected hand.

1) Handoff Pose Detection: Humans use several cues to
signal a handoff including speech, gaze, motion, and posture.
In this paper, we focus on postural cues inferred from human
tracking. We used the following cues, motivated by studying
human-human handoffs, to infer the handoff signal:

1) The human is near HERB.
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2) The vector from the shoulder to the hand points towards
HERB’s hand or upper body, as shown in Fig. 4.
3) The human elbow is bent at an angle o < apax = 150°.

To avoid false positives when the human is moving and
momentarily assumes a handoff pose, we trigger a detection
only if the human is in the handoff pose for 5 consecutive
frames (which at 5fps is 1sec).

2) Object detection: People often wave their arms and
assume postures that are akin to handoffs. To reliably detect
a true handoff, we found it critical to detect if the human was
actually holding an object before starting a handoff response in
HERB. To enable this, we developed an efficient and reliable
object detection system that detects if the human is holding
an object, and identifies the held object.

Our system is composed of two main components: an
algorithm for extracting the bounding box around the human
hand, and a support vector machine (SVM) [7] that classifies
the bounding box.

The algorithm for extracting the bounding box consists in
the following steps (Fig. 5):

1) Obtain a depth image in the camera frame ¢ (Fig. 5a).

2) Transform the depth image into the hand frame h. Crop
to an axis-aligned bounding box (Fig. 5b).

3) Decimate the depth into clusters of contiguous points,
removing stray outliers. The hand is often detected as
a single cluster (Fig 5c). However, sometimes the hand
and the robot are detected together as one cluster (Fig
5d).

4) Since the transformed depth image is centered at the
hand, the cluster closest to the origin is labeled the hand
cluster.

5) To detect if HERB’s hand is clustered with the human
hand, we use forward kinematics to determine the pose
of HERB’s hand and check if it lies within the cluster
(Fig Se).

a) If HERB’s hand is within the hand cluster, bypass
object detection and trigger the final phase of
handoff.

Featur Training  Test Cross Prediction
catures Set Set Validation ~ Accuracy

RGB (48) 4766 1623 99.96% 93.16%

RGB (48) + Height (1) 4827 1623 99.96% 96.61%

TABLE I: SVM PERFORMANCE.

b) If not, we crop the human hand. We assume that
the object is held farthest from the hand and fit a
smaller box tightly around the points. (Fig. 5f). If
the human is not holding anything, the smaller box
contains just the hand.

Once the final box is computed, we compute color and
geometry features and learn an SVM [7] to predict three
classes: Pop-Tart boxes, Fuze bottles, and empty hands. SVMs
have proven to be quite useful for data classification We use
color histograms (16 bins for RGB, with a total of 48 features)
and the height of the bounding box (1 feature) and an RBF
kernel.

Despite their simplicity, color histograms have demonstrated
good results in practice [8], [9]. We found that although the
color features are often able to predict the object correctly, the
height feature allows us to distinguish better between objects
with similar color but different height, like for instance a
Fuze bottle and a pink empty hand. Table I reports the results
achieved with our algorithm considering the same testing data
with and without the height feature.

Because the object is small and far from the camera, we
found local descriptors like NARF [10] to be far less useful
when compared with global descriptors like color histograms.
For the same reason, we found the depth information in the
bounding box to be far too corrupted by noise and quantization
to be useful beyond a global descriptor like the height of the
object.

IV. PLANNING AND CONTROL

As soon as the perception system triggers an impending
handoff, HERB moves to take the object. We compared two
autonomous motion strategies, a planner and a controller. Both
strategies receive the same input: a target human hand pose
from the perception system at 5fps. Both strategies control the
arm via joint velocities (converted internally by the arm driver
into joint torques) and have access to the 6 axis force-torque
sensor on the wrist for detecting forces.

The execution of these two strategies differs in the temporal
position of the planning phase with respect to the execution
loop as shown in Figure 6. The controller plans in the near
future during each iteration of the execution loop, while the
planner plans for the entire execution before the execution
loop begins. The effects of this are that the controller begins
execution immediately but cannot predict problems in the
future like joint limits and collisions, while the planner takes
several (= 5) seconds to plan the entire trajectory that avoids
joint limits and collisions. The details of each planner are
presented in the following two sections.
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(b) Bounding box around the transformed hand
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HERB'’s hand are not separated.

Fig. 5.

A. Planner

The planner takes the very first reported human hand pose
and plans to get to it. We use a randomized planner that we
have developed that efficiently explores high-dimensional con-
straint manifolds [11]. The planner is tasked with producing
a feasible, collision-free, reasonably smooth path as quickly
as possible. Any updates to the human hand pose are ignored
during planning. As soon as a path is returned, the planner
executes it.

In our case, the planner takes as input a starting arm
configuration and a goal end-effector pose, consisting of the
end-effector position and orientation. With the goal pose, the
planner finds several candidate goal IK solutions. Then, the
planner expands random trees from each of the start and
candidate goal configurations until a path is found from start to
goal that is collision free and within the joint limits. This path
is often very jagged, so the final step is to run the path through
a trajectory smoother to remove backtracking and corners.

Randomized planners are probabilistically complete: guar-
anteed to find a feasible path if one exists. However, more
search time is required in situations with more constrained
configuration spaces. Also, while the output of the planner is
smoothed, there is no guarantee of global or local optimality.

B. Controller

The controller is an implementation of inverse Jacobian
control with constraints [12]. The Jacobian relates angular ve-
locities of the arm joints to hand velocities. For the controller,

(e) Extracting the hand cluster.

(f) Refining the bounding box.

Stages of the bounding box extraction algorithm.

CONTROLLER( )
while CLOSEHAND( ) == False do
6 + GETCURRENTJOINTANGLES()
goal < GETCURRENTGOAL()
df < CALCULATEJOINTINCREMENT(6, goal)
GOTOCONFIG(f + df)

PLANNER( )
6 < GETCURRENTJOINTANGLES()
goal < GETCURRENTGOAL()
path <— CALCULATEPATH(0, goal)
while CLOSEHAND( ) == False do
t = GETCURRENTTIME()
GOTOCONFIG(path(t))

Fig. 6. Controller vs Planner Algorithms.

we use two Jacobian operators, one relating joint angular
velocities to end-effector velocity, Jx, and the second relating
joint angular velocities to end-effector twist via the quaternion
velocities, J,. Combining these two Jacobian into one gives

J as ;
_ X
=[]
The Moore-Penrose pseudo-inverse of J is

J* = Pseudolnverse(.J)

Then, for a given change in the end-effector position § X and
orientation dg, the approximate change in joint angles required



to accomplish this change, 66,05, can be calculated as
0X
6q}

HERB has a redundant DOF meaning that he has more
arm freedom than is required to achieve a 6 DOF pose of
his end-effector. HERB has 7 joints to position the end-
effector in 6 DOF, so in the case where his arm is not
in a singularity, HERB can move about in the null-space
of his Jacobian without changing his end-effector pose. We
can move around in the null space to accomplish several
different goals. For instance, avoiding joint limits, avoiding
singularities, minimizing joint velocity, and minimizing joint
torques. For this controller, the null space has 1 DOF and
is used to avoid joint limits. The change in joint angles to
minimize the difference between the current joint angles 6
and desired joint angles 64, is

0pose = J* [

50limits = N]Nf : (0 - ades)

where N is the null space of the Jacobian.

Finally, the output joint angular velocity 0 is a combination
of the two joint differentials with some scaling values « and
B. .

0=o- 691)088 + B ' §9limits

Up to this point the controller has no concept of collisions
or exceeding joint limits. Therefore, before commanding the
desired joint velocities, collision checks and joint limit checks
must be performed. If there is a collision or joint limit problem,
then the joint velocities are commanded to zero and the
controller is stuck until the desired joint velocities produce
a path that is collision free and within the joint limits. To
force movement in these situations, a planner like that in the
last section can be used to move away from the problem.

C. Completing the handoff

Both strategies use the same method for detecting when to
close the hand to complete the handoff. There are two ways
to initiate a close hand command, force into the robot’s hand
and a timeout. We found that both triggers are required for
a reliable handoff. If only the force trigger is used, then the
robot sometimes hovers around the object and the users do
not intuitively know push the object into the robot’s hand. On
the other hand, if only the timeout is used, then the robot will
not respond to contact with the human which makes the robot
seem very aggressive to the user. The force is calculated using
a 6 axis force-torque sensor located at the wrist of the arm. If
the force into the palm is greater than 5/V, then the arm stops
moving and a close hand command is initiated. The force-
torque sensor can sense forces smaller than 5N, but the mass
of the hand creates a non-zero measurement when the arm
moves. To trigger the close hand command with the timeout,
the robot hand must be stationary at the given human hand
location for at least 0.5 second. If the hand is closed due to
force or the timeout, then success is returned based on whether
or not the fingers close all the way into a fist. If the hand closes

into a fist, then the handoff is reported as failed, otherwise,
the handoff is reported a success.

V. USER STUDY

We wanted to test HERB’s ability to take objects from
a human during a handoff while minimizing the effort con-
tributed by the human. To this end, we created a user study
where the subjects were told to perform two tasks at once, a
computer task and a handoff. The subjects were told to focus
their attention on the computer task, thereby letting HERB
take the object from the human while getting little or no help
from the subject.

The user study consisted of 5 subjects, tested individually.
The subjects were seated at the table with a monitor, mouse,
and 7 objects in front of them. HERB was positioned to the
subject’s left where he could be seen in the subject’s peripheral
vision and visible if the subject looked away from the monitor.
The subjects were instructed to play a computer task and, when
prompted by HERB, to handoff one of the objects to HERB.
The subjects used their right hand to move the mouse and used
their left hand to perform handoffs to HERB (Fig. 7).

Two control algorithms were tested in sequence. The sub-
jects performed 7 handoffs with the controller, had a short
break of 30 seconds, then performed 7 handoffs with the
planner. Failed handoffs were recorded and if the subject still
had the object, the object was taken away by an investigator.

The computer task was a slightly modified version of the
PEBL Continuous Performance Task. The computer task pre-
sented the subject with a small target on the monitor where the
subject was to move the mouse. Once the target was reached,
the subject was presented with another target in another
location. In the original computer task, the subject clicked in
between targets to signal his readiness. In our version there
is no delay between targets. To make the computer task more
challenging, the mouse input was summed with a random error
which made the mouse quiver by a small amount. This addition
of noise required more attention from the subject, leaving less
attention for the handoff.

After completing the handoffs with both control algorithms,
each subject was asked to compare the two controllers as well
as state any comments they had. Subjects were asked to choose
which controller they preferred in 5 areas and state why. The
5 areas were preference, natural-looking, easier, safer, and
human-like.

VI. RESULTS

We had 5 subjects participate in our informal study. Overall,
the combination of perception with the Kinect data and a
controller with a take attribute resulted in a handoff success
rate of 83% for the 70 handoff attempts. The majority of
these attempts were with the users completely distracted, just
holding the object up and waiting for the robot to take it while
they continued with the computer task.

The two control algorithms were compared by number of
successes and total handoff time. The controller was faster than
the planner by a factor of nearly 2, taking an average time of



Fig. 7. Results: Top: Planner success, Middle: Controller success, Bottom: Planner failure

8.46 seconds from detection to the grasp finishing while the
planner took an average time of 14.23 seconds. These handoff
times include the time it takes to close the hand, usually around
2 seconds. The two controllers are similar in timing, except
the planner has an additional 4sec planning phase tacked on
at the beginning. The paths that the two controllers executed
were sometimes quite different. The controller always takes a
predictable curved path to the goal, whereas the planner can
have different unpredictable trajectories even with the same
input, as shown in Figure 8. For the human, working with an
unpredictable robot can be disconcerting.

The planner had more successes (91.43%) than the con-
troller (74.29%) as shown in Fig. 9. Failures with the controller
were caused by three problems: the controller hit the arm joint
limits and became stuck, the object detector failed to detect the
object for the duration of the handoff attempt which caused the
robot hand to retreat unexpectedly, and the object fell during
the transfer. Failures with the planner were only caused by
the object falling during the transfer since the planner avoids
joint limits during its planning phase and only the first handoff
detection is used to trigger the handoff attempt. If we exclude
the handoffs with the controller that failed due to erroneous
SVM object detection or joint limits, then the handoff success
rate for the controller jumps to 90%, similar to the planner.
The object detection algorithm recognized correctly 94% of
the grasped objects.

After the test, subjects were asked about what they liked
or disliked in the two control algorithms. Subjects found
the planner aggressive while they liked that the controller
was more “gentle”. This happened because the velocity of
the controller is directly proportional to the distance from
the object. Moreover sometimes the planner executed strange

trajectories that made users feel less safe since they didn’t
understand what the robot was doing.

The subjects noted in both the algorithms characteristics

like:

o Forcefulness: some of the subjects liked pre-grasp touch-
ing since it provided feedback of what was happening,
others didn’t like that the robot pushed against their hand.

o Aggressiveness: subjects felt the robot was being aggres-
sive when it approached the object quickly.

o Predictability: subjects liked it when they could predict
what the robot was going to do, and, similarly, they
became uncomfortable if the behavior of the robot was
not predictable.

o Timing: subjects pointed out that human-human handoffs
are faster.

These parameters are independent of and tunable for both of
the control algorithms.

The posture of the subjects during the handoffs varied from
relaxed to fully extended arms. The relaxed posture forced
HERB to go and take the object, whereas the fully extended
arms positioned the handoff object as close to the robot’s hand
as possible. Often a subject would start either fully extended
or relaxed and then gradually switch as the handoffs went on.
The subjects rarely moved the object once stopped, meaning
that the controller and planner would go to the same place. If
the subjects had moved after a handoff was detected, only the
controller would have successfully followed the motion.

VII. DISCUSSION

Previously, robots have not actively participated in handoffs.
The robot controls whether or not a handoff occurs merely
by either presenting his hand or not. Once the robot shows
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(b) Good planner trajectory
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Fig. 8. Hand trajectories for three handoffs, one with the controller and
two with the planner. The bad planner trajectory was chosen to illustrate the
random nature of the planned paths.

that he is ready for a handoff, the entire handoff burden is
put on the human, making the human position and orient the
object into the robot’s hand and then signaling the robot that
he should close his hand either by force-feedback or other
means. When the human is focused on performing the handoff,
this handoff method works well because it is very easy for
humans to put the object in the hand of the robot. But if the
human is distracted with something else and cannot focus on
the handoff, he needs the robot to help with the handoff.

In this paper we have presented an approach that allows
HERB to actively participate in human-robot handoffs. This
approach uses human tracking and 3D point data from the
Kinect sensor to determine if a handoff is desired by a human
and to control the arm to take the object from the human.
With a user study we have shown that HERB is able to
complete a handoff with a human even when the human is
distracted by something else forcing HERB to actively take the
object instead of receive it. Also, we have shown that HERB
and a human can effectively and intuitively work together to
complete the handoff without specific instruction to the human.

time (s)

12

1 2 3 4 5
subject

[ Controller Istddev [ Planner

# success
8

7 trials

6

1 2 3 4 5
subject

B Controller [ Planner

Fig. 9. User study results: (Top) Average time to handoff, (Bottom) Number
of successful handoffs

We used a point cloud of the scene to detect the object and
compute the handoff point. Our algorithm extracts from the
scene an image of the object without the background, which
helps the object detection SVM and hand off point calculation.
Using SVM’s to detect objects in the hand gives us information
for the handoff but also allows us to then use this object
information in our behavior engine to decide program flow.

We have tested two different control algorithms. The con-
troller beats the planner in total handoff time by 5sec, but
the planner beats the controller in success rate by 10%. While
the two controllers each have their strong and weak points, we
believe that the controller has the best potential. The controller
is faster and can be made even faster with more aggressive
gains. The controller is predictable in that it always heads
straight for the goal, whereas the planner can be random in
its motion. Predictability makes the human more comfortable
around HERB because they can plan into the future and know
that HERB won’t do anything strange. Also, the controller is
able to monitor the handoff point and update its target position
in real-time. This means that HERB can follow the motion



of the human during a handoff. While we did not see any
motion of the object during the handoffs in the user study, we
believe this capability could be important in other situations.
The downside to the controller is that it can get stuck, but
we believe these situations are rare and can be handled with
a smart controller that can use a planned trajectory to get
unstuck. In addiction, the controller was more subject to SVM
failures because it checked the presence of the object for the
duration of the handoff, so a SVM failure during the handoff
made the robot retreat unexpectedly. We believe this type of
failure can be removed in the future with some filtering of the
SVM output.

In terms of future work, there are many possibilities. It
would be interesting to test different types of triggers for the
grasping, ie. is it better to have force and timeout triggers or
to just immediately grasp the object when we reach the point,
or use another type of sensor? Another interesting future work
would be to use a second RGB-D camera on board HERB to
enrich the point cloud. The camera on board would provide
a more dense point cloud in the proximity of the object to
use techniques like NARF [10] for object recognition. These
kinds of techniques are robust to light variations and allow
direct identification of an object instead of casting the object
into a certain number of trained classes. In this case where
we have two Kinect cameras, the first camera would give us
information about human motion in the scene and the second
on board camera would give us better information around of
the points of interest near HERB.

The availability of reliable human-tracking systems like
the Kinect and smart control algorithms that use the human-
tracking feedback and other sensor data can allow for rich
human-robot interaction where the robot is aware of the human
and can actively collaborate together towards a final goal.
In this paper, the use of rich 3D RGB-D data for human-
tracking and object detection, combined with incremental
control methods, created a handoff system that is reliable
and can take some of the mental and physical burden off of
the human. Continued research in this area will lead to very
intuitive, comfortable and efficient human-robot interaction on
a level not seen before in previous work.
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