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Abstract—Millions of people cannot eat independently due 
to a disability, and caregiver-assisted meals can make them 
feel self-conscious, pressured, or burdensome. Robot-assisted 
feeding promises to empower people with motor impairments 
to feed themselves. However, current research typically examines 
specific robotic system subcomponents and evaluates them in 
controlled lab settings. This leaves a gap in developing and 
evaluating an end-to-end system that can feed entire meals 
in out-of-lab settings. We present one such system, which we 
developed collaboratively with two community researchers (CRs) 
with motor-impairments. The key challenge of developing a 
robot feeding system for out-of-lab use is the varied off-nominal 
scenarios that inevitably arise. Our key insight is that users 
can overcome many off-nominals, provided customizability and 
control over the system. Our system improves upon the state-of-
the-art with: (1) a user interface that provides substantial user 
customizability and control, (2) a bite selection implementation 
that incorporates users-in-the-loop to generalize across food 
items, and (3) portable hardware that facilitates system use 
in diverse environments without inhibiting user mobility. We 
conduct two studies to evaluate the system. In Study 1, five 
users with motor impairments and one CR use the system to 
feed themselves meals of their choice in a cafeteria, office, or 
conference room. In Study 2, one CR uses the system in his 
home for five days, feeding himself 10 meals across diverse 
contexts. We present 3 key lesson learned: (1) spatial contexts 
are numerous, customizability lets users adapt to them; (2) off-
nominals will arise, variable autonomy lets users overcome them; 
and (3) assistive robots’ benefits depend on context. We provide 
video footage and code on our website.1 

Index Terms—robot-assisted feeding; human-robot interaction 

I. INTRODUCTION 

Eating is a basic activity of daily living (ADL), one of the 
“fundamental skills required to independently care for one-
self” [1]. Satisfaction with food-related matters is positively 
correlated with physical and mental health [2, 3, 4]. Unfortu-
nately, for the millions of people who need caregiver assistance 
to eat,2 mealtimes can lead to feelings of self-consciousness, 
pressure, and being burdensome to others. [6, 7]. 

Robot-assisted feeding is emerging as a promising way to 
alleviate these challenges [6, 7, 8]. Research in this area often 

This work was (partially) funded by UW CREATE; UW Allen School 
Postdoc Research Award; NSF GRFP (DGE-1762114) and NRI (#2132848); 
DARPA RACER (#HR0011-21-C-0171); NIBIB (#1R01EB034580-01); and 
ONR (#N00014-24-S-B001, #2022-016-01 UW). We gratefully acknowledge 
gifts from Amazon, Collaborative Robotics, Cruise, and others. 

1https://robotfeeding.io/publications/hri25a/ 
2In 2010, 1.8M Americans needed assistance eating due to a disability [5]. 
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Fig. 1. We evaluate the robot feeding system with: (Bottom) an n = 5 study 
across 3 out-of-lab locations; (Top) a 5-day, n = 1 in-home deployment. 

focuses on specific technical components of eating, including 
bite acquisition [9, 10, 11, 12, 13], transfer [14, 15, 16], 
and timing [17, 18]. These contributions are evaluated via 
targeted studies that control for other aspects of eating, e.g., 
being in a controlled lab environment [14], limiting food 
positions and types [9, 19], and limiting the number of bites 
per user [15]. Such limitations are necessary to isolate the 
component under investigation from other meal-related factors. 
However, this leaves a gap in developing and evaluating an 
end-to-end system for robot-assisted feeding. 

This paper addresses that gap. Our goal is to develop an 

end-to-end robot feeding system that users can independently 

use to feed themselves meals of their choice outside the lab. 
Except for system setup, onboarding, and pre-cut bite-sized 
meal preparation, users should be able to use the system to 
independently feed themselves entire meals. 

The key challenge of developing a system for out-of-lab 
use is the wide variety of off-nominal scenarios that can arise: 
e.g., the user may cough; the robot may not acquire a food 
bite; or the plate may shift. Our key insight is that users can 
overcome many off-nominals, provided acceptable levels of 

https://robotfeeding.io/publications/hri25a/
mailto:v.nguyen.ot@gmail.com
mailto:ethankg@seas.upenn.edu
mailto:siddh}@cs.uw.edu
mailto:v.nguyen.ot@gmail.com
mailto:ethankg@seas.upenn.edu
mailto:siddh}@cs.uw.edu
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Fig. 2. An overview of the robot-assisted feeding system’s software. The user interacts with the system using the web app (top), which invokes ROS2 
interfaces (middle) that move the robot to key configurations (black) and perceive the environment (grey). The default configurations are shown at the bottom. 

customizability and control over the system. 

We worked with two community researchers (CRs) with 
motor impairments to co-design and evaluate the feeding 
system. In Study 1, 5 participants and one CR3 used the robot 
to eat a meal of their choice in a cafeteria, office, or conference 
room. In Study 2, one CR used the robot in his home over 5 
days to feed himself 10 meals in diverse contexts. Both studies 
were approved by our institution’s ethical review board.4 

Our key contribution is a novel, open-source1 robot-assisted 
feeding system (Fig. 2) that has demonstrated success feeding 
real meals to real users in real environments for over 15 
hours. To our best knowledge, this has not been previously 
demonstrated by modern research system [15, 20, 21, 22]. A 
majority of users rated the system as being average-or-above in 
usability and outperforming caregivers in user independence 
and control. We attribute the system’s success to three key 
improvements over the state-of-the-art: 

1) A unique web app that is the seat of system logic and 
provides substantial customizability and control to users. 

2) A novel bite selection implementation, with user-in-the-
loop input, to accommodate diverse foods. 

3) Portable, flexible hardware (Fig. 3), facilitating system use 
in diverse environments without hindering user mobility. 

We also contribute 3 key lessons learned from developing 
and deploying this system: (1) spatial contexts are numerous, 
customizability lets users adapt to them; (2) off-nominals will 
arise, variable autonomy lets users overcome them; and (3) 
assistive robots’ benefits depend on context. 

II. RELATED WORK 

History of Robot-assisted Feeding. Enabling people with 
motor impairments to eat independently has been a long-
standing research goal [27, 28, 29]. Research in the 1970s 
included trained capuchin monkeys [30] and the Morewood 
Spoon Lifter, where a user shovels food into a pedal-controlled 
spoon using a head-mounted rod. This robot was sold as the 

3All CRs and participants need caregiver assistance to eat. 
4UW IRB: STUDY00005607, STUDY00020357 
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Fig. 3. The robot feeding system’s hardware, mounted on a wheelchair (left) 
or hospital table (right). Power and compute is self-contained; no wires leave. 

“Winsford Feeder” [29] and was clinically evaluated in labs 
and homes [27]. In the 1980s, multi-purpose systems emerged 
that allowed feeding, brushing teeth, and more [31, 32]. 

Contemporary Robot-assisted Feeding. The last two 
decades have seen many commercial robotic feeding systems: 
Bestic [33], Obi [23], Neater Eater [24, 25], and more [28, 29, 
34]. These table-mounted robots improved users’ mental and 
physical well-being [33, 35]; however, all but Obi and Neater 
Eater were discontinued. This may be due to an overreliance 
on fixed bite acquisition and transfer motions that led to acqui-
sition failures, dropped food, or neck strain [26, 36, 37, 38]. 

Researchers address these limitations by integrating 
perception—e.g., cameras and force-torque (F/T) sensors— 
onto their robotic feeding systems. These robots can be 
mounted on wheelchairs [17, 19, 39] or tables (fixed [14] or 
portable [20]), or be mobile manipulators [21, 22]. 

Research on these systems often focuses on bite acquisition 
and bite transfer. Bite acquisition involves using a fork [10, 
18, 40, 41], spoon [42, 43, 44], chopsticks [12, 45], or other 
tool [11, 21, 26] to grasp food. Utensils often follow motion 
primitives [10, 18, 39, 46] derivable from human data [9] and 
chained for complex motions [13, 41]. Online learning can 
improve primitive selection over time [40, 47]. Bite transfer 

involves handing off an acquired bite to the user’s mouth, 
using trajectories created with heuristic-based planning [14] 

https://web.archive.org/web/20180605134833/http://www.camanio.com/en/products/bestic/
https://meetobi.com/
https://www.neater.co.uk/neater-eater-robotic


     
     

     
     
     
   
    

     

 

 

 

 

 

     
     

     
     
     
   
    

     

 

 

 

 

 

Approx- Auto- (General) Face Collision Portable User Can Custom- Multiple 
Robot imate Mounting nomous Food De- Detec- Detection / & Self- Stop / Restart izable Robot UI 

Cost Motion tection5 tion Avoidance contained Motion Motion Modalities 

Obi [23] $8,625 Table ✓ (✗) ✗ ✗ ✓/ ✗ ✓ ✓/ ✓ ✓ ✓ 
Neater Eater [24, 25] $6,500 Table ✓ (✗) ✗ ✗ ✗/ ✗ ✓ ✓/ ✓ ✓ ✓ 

Song et al. [20, 26] – Table ✓ (✗) ✗ ✗ ✗/ ✗ ✓ ✓/ ✓ ✗ ✓ 
Park et al. [21] $400,000 Mobile base ✓ (✗) ✓ ✓ ✓/ ✓ ✗ ✓/ ✓ ✓ ✓ 

Nguyen [22] $17,950 Mobile base ✗ (✗) ✗ ✓ ✗/ ✗ ✗ ✓/ ✓ ✗ ✓ 
Bhattacharjee et al. [19] $50,000 Wheelchair ✓ (✗) ✓ ✓ ✓/ ✓ ✗6 ✓/ ✗ ✗ ✓ 
Jenamani et al. [13, 15] $50,000 Wheelchair ✓ (✗) ✓ ✓ ✓/ ✓ ✗6 ✓/ ✗ ✗ ✗ 

Wheelchair 
This paper $50,000 ✓ (✓) ✓ ✓ ✓/ ✓ ✓ ✓/ ✓ ✓ ✓ 

or Table 

TABLE I 
COMPARISON BETWEEN THIS AND OTHER ROBOT-ASSISTED FEEDING SYSTEMS (TOP: COMMERCIAL, BOTTOM: RESEARCH). 

or learned from demonstrations [48]. Recent work studied in-
mouth bite transfer for users without neck mobility [15, 16]. 

Other research includes: studying the coupling of acqui-
sition and transfer [39], predicting food preference [49], 
detecting food [18, 50] or the mouth [51], predicting bite 
timing [17, 18], detecting anomalies [52], and studying natural 
language interfaces [53]. Simulation environments for robotic 
caregiving have also been developed [54, 55]. 

Table I compares technical capabilities across contemporary 
robot feeding systems. Ours differs from others in its general 
food detection capability and from wheelchair-mounted sys-
tems in its portability, customizability, and user control. 

Out-of-lab Deployments. There is growing interest in out-
of-lab deployments of physically assistive robots (PARs) [56]. 
This includes a robotic guide for blind museum visitors [57], a 
teleoperated mobile manipulator deployed over weeks that also 
fed its user [58, 59, 60], and a table-mounted robot-assisted 
feeding system [26]. These deployments, where users freely 
use systems in-the-wild, yield valuable insights about task 
nuances, user preferences, and needed system improvements. 

III. SYSTEM 

A. System Development 

1) Community-based participatory research (CBPR): We 
conducted this research with two community researchers 
(CRs) following CBPR principles [61, 62]. CBPR maintains 
that community members and academic researchers have 
unique expertise and experiences, so addressing a community 
need requires sharing power, resources, and knowledge [63, 
64]. CBPR is used in health sciences [62, 65] and increasingly 
in assistive technology (AT) research [6, 66, 67, 68, 69]. 

We met CR1 in 2018 through our network. He was passion-
ate about assistive robots. “For a long time, I would only let 
my mom feed me. I wondered, why am I so uncomfortable 
with others feeding me that I’ll just not eat? I realized that 
eating is so individualized, with so many intricacies. If I can 
have a robot do it, I can learn to adapt to it, but it would be me 

feeding me, and that would be huge” (CR1). He participated 
in pilot studies and more, and in 2021 we began working with 
him as a CR.7 The first multi-day deployment was planned 

5This refers to detecting food masks, irrespective of semantic labels. 
6These systems have wires connecting the robot’s end-effector to external 

power or compute. This restricts robot motion and poses a trip hazard [15, 19]. 
7Semi-weekly meetings with CRs involved learning about their meal 

experiences, teaching them technical concepts, and iterating upon the system. 

in his home, but he passed away months before. His friend, 
CR2, wanted to honor his legacy by continuing the work. We 
began working with CR2, culminating in a 5-day deployment 
in his home. Both CRs have quadriplegia due to a spinal cord 
injury (SCI) and are paper co-authors. 

2) An Analysis of Off-Nominals: Past work surfaced the 
importance of anomaly monitoring, detection, and correction 
in robot-assisted feeding [7, 52, 70]. We worked with CR1 to 
compile a list of such off-nominal scenarios8 (Table II). 
Despite the diversity of off-nominals, CR1 observed that users 
could resolve many of them if provided control (e.g., to retry 
robot motions, to teleoperate the robot) and customizability 
(e.g., to adapt the robot to their environment). 

3) Guiding Design Principles: Informed by formative re-
search in robot-assisted feeding [6, 7, 8], we worked with 
CR1 to develop the following guiding design principles: 

• Portability. The system must not hinder the user’s or 
others’ mobility. It must be easy to transport and set up. 

• Safety. The system must not harm the user, other people, 
or objects in the environment. 

• Reliability. The system must be able to reliably acquire 
and transfer the food items a user regularly eats. 

• Customizability. The user should be able to customize the 
system to their contexts and preferences. 

• User Control. The user should have fallback control and 
enough transparency into the system to utilize it. 

B. System Overview 

This section provides a system overview, including how we 
implement the “portability” and “safety” design principles. All 
software and custom hardware is available open-source.1 

1) Hardware: Fig. 3 shows system hardware. 

Robot. A 6 degree-of-freedom (DoF) Kinova JACO arm. 

Camera. An eye-in-hand system with an Intel Realsense 
D415 RGBD camera attached to an Nvidia Jetson Nano for 
wireless image transport. It accesses the robot’s internal power 
through a hole drilled above the last joint. Its position was 
designed to maintain continuous wrist rotation. 

Fork. A custom 3D-printed fork assembly, held in the 
robot’s two-finger gripper. The fork has a 6 DoF ATI Nano25 
F/T sensor attached to a battery-powered transmitter that 
charges with a magnetic connection to the eye-in-hand system. 

8In an off-nominal scenario, something involved in system execution—the 
user, robot, or environment—does not proceed “according to plan” [71, 72]. 

https://meetobi.com/
https://www.neater.co.uk/neater-eater-robotic


 

 

 

 

  

 

 

 

 

 

 

  

 

 

User Robot Environment 

User no longer wants the bite 
User gets pulled into a conversation 
User cannot eat (e.g., is coughing) 

User takes a partial bite 
User clicks an unintended button 

Robot collides with object 
Robot fails to perceive bite 
Robot fails to acquire bite 

Robot fails to perceive face 
Robot stops too far from face 

Food falls off of the fork 
Unexpected relative configuration of user/robot/plate 

Local area network fails 
Device running the web app fails 

Voice-based assistive technology fails (e.g., due to noise) 

TABLE II 
OFF-NOMINAL SCENARIOS THAT CAN ARISE DURING ROBOT-ASSISTED FEEDING, CO-CREATED WITH CR1. 

Compute. A Lenovo Legion 5 laptop (RTX 3060 6GB 
GPU) that connects to the robot over USB and to a standard 
accessibility button for emergency stop (e-stop) over 3.5mm 
aux. The e-stop is mounted in user-accessible location. 

Network. A local area network that enables system com-
ponent communication. Users can either use a home router or 
the Cradlepoint IBR900 that travels with the system 

Mount. A portable mount for the system. Components can 
be mounted to a wheelchair or hospital table (Fig. 3), or the 
robot can be on a tripod with other components in a backpack. 

Power. A 24V DC power supply. This can be provided by a 
power wheelchair’s internal battery, a portable power station, 
or a wall outlet. For the former two, no wires leave the mount. 

2) Software: Fig. 2 shows system software. 

Hardware Interface and Controllers. The software stack 
is built on ROS2 and ros2-control. All controllers are “force-
gated,” so execution is aborted if measured force or torque 
exceeds configurable thresholds.9 All Cartesian control uses a 
selectively damped pseudo-inverse Jacobian [74, 75]. 

Planning. We use MoveIt2 for planning, kinematics 
(pick_ik [76]), and collision detection. We use RRT-
Connect [77] with shortcutting and hybridization [78] for plan-
ning due to its successful prior use [14]. The planning scene 
has a hull around the user and wheelchair, tight workspace 
walls, and an Octomap [79] for user-specific obstacles (e.g., 
ATs). We reject plans whose joint rotations exceed a threshold. 

Robot Behaviors. The robot exposes modular behaviors 
through ROS2 actions and services. For example, “Segment-
FromPoint” takes in a user-specified seed pixel in the robot’s 
image and returns contender masks of that food item. “Ac-
quireFood” computes the food reference frame and executes 
an acquisition action. py_trees represents each motion-
related action as a behavior tree (BT) [80], which encapsulates 
complex robot actions while re-using constituent behaviors.10 

User Interface. Users interact with the robot via a React 
web app, accessed from any device with a browser. Thus, 
they can use their own ATs to interact with the system. The 
web app controls system execution, letting users navigate the 
state machine by invoking robot actions (Fig. 2). Unlike prior 
systems that have the robot control system execution [15, 19], 
our architecture increases robustness to off-nominals; users can 
at any time pause, go back, or redirect the system. 

Safety Watchdog. A 60Hz watchdog verifies invariants, 
e.g., the F/T sensor and e-stop are connected and the e-stop 
has not been clicked. Robot motion stops if an “all clear” 

9Thresholds are 1N when approaching the face, �50N when acquiring 
foods, else 4N, far below max force standards for collaborative robots [73]. 

10We chose BTs over other models (e.g., finite state machines) for their 
readability and availability of documented open-source software [80, 81]. 

watchdog message is not received for 0.5 secs, simplifying 
verification of safety-critical code by centralizing it. 

C. Robot-Assisted Feeding Procedure 

This section focuses on the “reliability” design principle. 
Fig. 4 shows key components of the feeding procedure. Fig. 2 
shows quoted robot arm configurations (below). 

1) Bite Selection: Users specify their bite preference 
through a UI that was informed by a pilot study with CR1. At 
the “above plate” configuration, the robot sends the live RGB 
view to the web app via WebRTC. The user then selects a 
pixel on the image. SegmentAnything (Vit-B pre-trained) [82] 
generates 3 candidate masks, which are rendered on the web 
app with a dot showing roughly where the robot will skewer. 
The user can then select a candidate or re-select a pixel. 

While waiting for bite selection, the system runs table 
detection to generalize across table heights. It uses OpenCV’s 
Hough Transform to detect the plate, takes the depth within a 
50px ring around the plate, removes outliers, and fits a plane. 

2) Bite Acquisition: The user-selected mask is sent to a 
policy that selects an acquisition action for the arm to execute. 

Acquisition Action. This action is based on the specifi-
cations and schema defined in [9]. Each action consists of 
3 linear Cartesian motions: approach (pre-contact), grasp (in-
food manipulation), and extraction. The approach is defined by 
the initial fork orientation, the approach vector, and a target 
contact location on the food. The grasp and extraction are 
defined as a Cartesian twist (angular and linear velocity) and 
duration. Each motion has end-effector F/T thresholds that, 
when exceeded, abort the current motion and move to the next. 
All 3 motions are defined with respect to the food center (+x: 
the major axis of the bounding ellipse, -z: gravity). 

We use 7 actions, based on those learned from human data 
in [9].11 We manually adjust the actions to improve stability: 
we scale twists to a constant angular velocity, remove angular 
rotations < 5◦ , and define the food frame to be the top instead 
of bottom of the bite (to align with the perceived depth). 

Action Selection Policy. We implement [40]’s online learn-
ing system. The policy linearly maps the bite’s visual features 
(last layer of a custom-trained RetinaNet [39]) to the 7 prim-
itives. Map parameters are learned online via LinUCB [83]. 

Post-Acquisition. The robot moves to a “resting” configu-
ration. The user can initiate bite transfer when ready or have 
the robot move back “above plate” if acquisition failed. 

3) Bite Transfer: The robot moves to a “staging” configu-
ration with a view of the user’s face, detects it with the Haar 
Cascade classifier [84], uses Cartesian control to move the fork 
to the mouth, and then returns to “staging” and “above plate.” 

11Specifically, from [9], we use the 3 baseline actions, variants of those 
three with tilt-back extraction, and the human-informed action #3. 

https://control.ros.org
https://moveit.picknik.ai
https://github.com/PickNikRobotics/pick_ik?tab=readme-ov-file
https://py-trees.readthedocs.io/
https://react.dev/
https://webrtc.org/
https://docs.opencv.org/4.x/da/d53/tutorial_py_houghcircles.html
https://docs.opencv.org/4.x/da/d53/tutorial_py_houghcircles.html
http://dlib.net/
http://dlib.net/
https://behaviors.10
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Fig. 4. A system diagram of bite selection, acquisition, and transfer, showing how the web app communicates with machine learned models (dark grey) and 
robot motion code (light grey). Components surrounded in a dashed line are represented as a BT. Acquisition schema visualization adapted from [9]. 

While by default the preceding transitions await user input, 
each has an optional auto-continue setting. 

1) Post-Acquisition. The robot uses a food-on-fork detector 
to predict if acquisition succeeded and moves forward to 
“staging” configuration or back to “above plate.” 

2) Moving to Mouth. The robot auto-continues once face 
detection perceives a face within the expected distance. 

3) Moving from Mouth. The robot moves away if the food-
on-fork detector (see Appendix) perceives no food. 

D. Implementing the Remaining Design Principles 

This section focuses on the remaining two design principles. 

1) Customizability: Customizability is useful for ATs [85], 
PARs [56], and robot feeding [19, 86]. We provide it through: 

Arm Configurations. Users have full control of the “above 
plate,” “resting,” and “staging” configurations, which are used 
as waypoints in all robot motions. 

Bite Transfer. Users can customize how far from their 
mouth the robot stops and its speed near their mouth. 

Auto-Continue. Users can customize whether the web app 
waits for their input or uses perception to transition states. 

Planning Scenes. User can choose from pre-defined plan-
ning scenes: (1) the user and robot are on a wheelchair or (2) 
the user is in bed, and the robot is on a hospital table. 

Customization is done via a web app settings menu. Given 
prior findings that users and caregivers tinker with assistive 
robots [38], we design the settings menus using the “Designing 
for Tinkerability” framework [87]. We provide “fluid experi-
mentation” to users through direct access to the parameter 
space and “immediate feedback” by allowing them to try out 
the robot motions that result from their customizations. 

2) User Control: Past work showed the importance of 
variable autonomy for PARs [58, 59, 88, 89]. Thus, we provide 
users multiple levels of control (LoCs), as defined in [90]. 
When the robot is moving, users have “supervisory control” 
to pause it. Doing so drops the LoC to “decision support,” 
where the robot provides multiple options for what to do next. 
At any time, users can drop the LoC to “teleoperation,” where 
the web app gives them direct Cartesian and joint control. 

IV. STUDY 1: MULTI-USER, ON-CAMPUS STUDY 

Study 1 quantitatively investigates: How does the system 

perform across different users in out-of-lab settings? To 
answer, we invited 5 participants and CR2 (Table III) to eat a 
meal of their choice in a campus cafeteria, conference room, 

or office.12 Following the CR insight that users focus on core 
AT features at first, we introduced users to all features but 
customizability and teleoperation. 

After obtaining informed consent, we asked participants pre-
meal questions while cutting the food, mounted the e-stop, 
loaded the web app on their device, and walked them through 
a bite. We explained system features but did not prescribe how 
participants should behave. Participants then began their meal. 
One researcher ate with them as a social partner, another took 
notes, and a third monitored system software to terminate code 
if necessary. After the meal, we asked post-meal questions. We 
conducted system patches between studies (see Appendix). 

We collected data using evaluation indicators from [7], 
including objective metrics (e.g., meal time profile; acquisition 
and transfer success rate; system errors) and subjective metrics 

(pre/post ratings of caregiver and robot feeding, the NASA-
TLX [91] for cognitive workload, and the System Usability 
Scale (SUS) [92]). As widely used metrics, the TLX and SUS 
have baselines from meta-analyses; the TLX’s is 37 ± 11 [91], 
and the SUS’s is a standardized grade where C is average [92]. 

A. Results 

Table IV highlights results from Study 1. 

1) Bite Duration: Bite duration13 ranged from 1:00–2:26 
minutes.14 In contrast, people without disabilities take 18– 
30s [93, 94]. Fig. 5 shows the time profile for P4’s meal. Most 
time was spent in bite acquisition and moving to his mouth, 
which have the most interleaved perception, planning, and 
execution. The largest differences across participants depended 
on whether they used mouth-based (e.g., voice control, mouth 
joystick) or touch-based assistive technologies since users 
could not use the former while talking or chewing. 

2) Bite Acquisition and Transfer: Prior work found that 
1580% acquisition success was sufficient for practical use [19]. 

For all users, the system neared or exceeded that for the most 
successful food items, and for all but two users it did so 
throughout the entire meal. The transfer success rate16 was 

12Though not as controlled as labs, these are semi-controlled settings, 
e.g., with standardized lighting, less clutter, etc. Locations were chosen by 
availability (conference room, office) and user willingness (cafeteria). 

13“Bite duration” excludes time between bites (e.g., conversations). 
14System Patch 1 increased speed by 66%; P1 used the slower robot. 
15A bite acquisition success is recorded if the food is on the fork at the 

end of acquisition; else, failure. 
16A bite transfer success is recorded if the robot stops where the user can 

eat the bite; else, failure. 

https://minutes.14
https://office.12


  

 

  

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

ID Age Gender Impairment 
Eating assistance 

providers 
Feeds 
Self? 

Study 
Device 

Device 
interaction 

Study 
location(s) 

Selected meal(s) 
items17 

P1 
P2 
P3 
P4 
P5 

49 
42 
45 
62 
61 

M 
F 
M 
M 
F 

C3 SCI18 

C5 SCI 
Arthrogryposis 

C3 SCI 
C5-6 SCI 

Parent(s) 
FCs, parent(s) 
FCs, spouse 

FCs 
FCs, spouse 

Never 
Never 

Sometimes 
Never 

Sometimes 

Phone 
Phone 
Phone 
Phone 
Tablet 

Voice control 
Stylus 
Stylus 
Touch 
Touch 

Conference room 
Office 

Conference room 
Office 
Office 

Pizza, broccoli 
Chicken, salad 

Sandwich, brownies 
Chicken, potatoes 
Salmon, brussels 

CR2 43 M C2 SCI FCs Never Phone Mouth joystick Cafeteria Stir-fry beef, tofu 

TABLE III 
PARTICIPANT DEMOGRAPHICS AND DETAILS FOR STUDY 1. FC REFERS TO FORMAL CAREGIVERS, I.E., PAID AND TRAINED PROFESSIONALS. 

P4 Time Profile 
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Bite Selection 
Bite Acquisition 
Waiting for User
(Bite Initiation)
Move to Mouth 

Waiting for User
(Bite Done)

Move from Mouth 

0 5 10 15 20 
Duration (secs) 

Fig. 5. How long each stage of feeding took across P4’s 30 successful bites19. 

94% for P1 and 100% for the others. 
3) Off-nominal Scenarios: Each meal had off-nominal sce-

narios. Many were user recoverable (e.g., 16% for P1, 88% for 
P2) via the web app; these included acquisition and transfer 
failures, robot action errors, mistaken app clicks, and browser 
interruptions. For some off-nominals, researchers intervened 
physically (e.g., moving the plate, re-aligning the fork in the 
gripper) or digitally (e.g., restarting code). 

4) Caregiver Feeding Comparison: Fig. 6 shows user rat-
ings of caregiver vs. robot feeding. Robot feeding outperforms 
in users’ sense of control (Q1-2) and independence (Q3). 4/5 

participants and CR2 agreed that “When I ate with the robot, 
I was confident that I would remain safe” (Q6). 

5) Cognitive Workload: All users but P3 reported experi-
encing a cognitive workload below the baseline. This indicates 
that the cognitive workload required to use the system was 
relatively low despite its many user-in-the-loop components. 

6) System Usability: Three of five participants and 
CR2 rated the system as average-or-above average usability. 
There was wide variability, from P3’s F to P4’s A+. This 
variability is to be expected given the diversity of users. For 
example, P3’s current self-feeding technique provides many 
of the robot’s functionalities, but he imagined it would help 
“others who can’t use a [self-feeding] system like me.” 

V. STUDY 2: SINGLE-USER, IN-HOME DEPLOYMENT 

Study 2 qualitatively investigates: How does the system 

perform across the diverse contexts that arise when eating 

in the home? To answer, we deployed the robot in CR2’s 
home for 5 consecutive days to help him eat 2 meals/day. 
Pre-deployment, we worked with CR2 and an occupational 
therapist (OT) to identify CR2’s meal-related contexts and 
goals. Context is “any information that can...characterize the 
situation of entities...considered relevant to the interaction 
between a user and an application” [96]. These included: 
• Spatial Context. CR2 cannot sit up for consecutive days 

and so alternates between bed and wheelchair days. 

17Meals were bought from restaurants or made by the user’s caregivers. 
18SCI severity is classified by the injured vertebra; C1 is nearest the neck. 
19Box: 25th, 50th, 75th percentile. Whiskers: 1.5·IQR. Outliers excluded. 

P1 P2 P3 P4 P5 CR2 
Q1: I get my next Q2: I decide what food Q3: I feel a sense Q6: I will

bite when I want it I want in my next bite of independence remain safe 
Strongly

Agree 
Agree 

Neutral 

Disagree 
Strongly
Disagree 

Caregiver Robot Caregiver Robot Caregiver Robot Caregiver Robot 

Fig. 6. Users self-reported comparison: eating with caregivers vs. the robot. 

• Social Context. CR2 has three caregivers, C1-C3 (see 
Appendix), who typically feed him. 

• Temporal Context. Mornings are busy with CR2’s care 
routine and daytimes with work, but evenings are relaxed. 

• Activity Context. CR2’s deployment goals were to (1) 
feed himself dinner while watching television, (2) spend 
time with a caregiver while both eat dinner, (3) feed 
himself while a caregiver does other care work, (4) feed 
himself breakfast while working, and (5) feed himself a 
mid-day snack while working. 

• Food Context. CR2 is a flexible eater, enjoying ramen, 
pizza, chicken teriyaki, fruits/vegetables, and more. 

On Mon, Wed, and Fri (wheelchair days), CR2 used the 
robot for breakfast and dinner. On Tues and Thurs (bed days) 
he used it for snack and dinner. CR2 selected meal locations 
and times. Before meals, one researcher set up the robot and 
acquired test bites, while another cut the food. We then brought 
the robot to CR2 and positioned the e-stop near him. He then 
customized the system and began his meal. One researcher 
monitored software; the other 1–2 took notes. After each 
meal, we had a semi-structured interview with CR2 and/or 
his caregivers; all gave informed consent before the study. 

A. Results and Lessons Learned 

CR2 used the robot to fed himself all 10 meals, including 
store-bought foods (e.g., fruits) and caregiver-prepared ones 
(e.g., avocado toast); he ate various cuisines (e.g., pizza, 
chicken teriyaki, charcuterie). Using the Medicare Section GG 
scale [97], the OT assessed that due to system use, CR2’s level 

of independence during meals increased from “dependent” 
(his baseline) to “supervision,” where the caregiver is on 
standby to provide intermittent assistance. We now present 
qualitative findings grouped into key lessons learned. 

1) Spatial Contexts are Numerous, Customizability Lets 

Users Adapt to Them: The home setting’s spatial contexts 
differed from campus settings. There were many environmental 

objects: CR2 had a mouth joystick near his face and a laptop 
or phone in front, often on a face-height hospital table. These 
objects and the e-stop constrained the robot’s motion enough 
that CR2 sometimes said it was “threading a needle.” Spatial 



 

 
 
 
 
 

 

 

 
 
 
 
 

 

  
  

 

  
  

 

Median User- Researcher Acquisition Cognitive Usability
Meal Bites Most Successful 

ID Bite Time resolved Interventions Success Workload Grade (Base-
Time Eaten Food 

(IQR) Off-nominals (Physical, Software) Rate (Baseline: 37 [95]) line: C [92]) 

P1 52:37 15 2:26 (0:54) 8 1, 0 0.79 (15/19) Pizza: 0.78 (14/18) 17.50 D 
P2 54:53 24 1:10 (0:12) 2 5, 5 0.65 (24/37) Chicken: 0.85 (11/13) 29.17 C 
P3 54:06 31 1:00 (0:09) 7 6, 1 0.69 (31/45) Sandwich: 0.94 (16/17) 38.33 F 
P4 56:52 30 1:10 (0:21) 2220 2, 1 0.88 (30/34) Chicken 1.0 (13/13) 20.00 A+ 
P5 51:05 23 1:15 (0:20) 5 0, 1 0.79 (23/29) Brussels: 0.86 (6/7) 19.17 B+ 

CR2 28:44 14 1:41 (0:24) 3 1, 1 0.78 (14/18) Tofu: 1.0 (3/3) 19.17 A 
TABLE IV 

STUDY 1: PER-PARTICIPANT TIME PROFILE (MINS:SECS), NUMBER OF INTERVENTIONS, ACQUISITION RESULTS, AND SUBJECTIVE RESULTS. 

configurations varied between the robot, user, and plate: the 
bed’s tilt, height, and the user’s lateral position varied; on a 
wheelchair, the plate’s position, height, and chair’s tilt varied. 
Lighting conditions varied: sources of light included windows, 
lamps, and ceiling lights, and many surfaces were white or 
reflective, creating backlight, reflections, and shadows. 

To enable the robot to work given these varied spatial 
contexts, CR2 started all meals by checking the previously 
customized configurations relative to the current meal’s con-
text. First, he customized the configurations to account for 
context, e.g., changing the “above plate” configuration to be 
above the plate. Second, he customized for preferences, e.g., 
trying to adjust “staging” to approach him below his eyeline. 

Transparency into the downstream impacts of changes was 
crucial to this process. CR2 iteratively tuned the “resting” 
configuration and tried motions to/from it until finding one 
that gave his computer a wide berth. He iteratively tuned 
“staging” and checked face detection’s precision until he found 
a configuration with reliable face detection in that context. 

This process also involved environmental modifications. 
CR2 sometimes asked a caregiver or us to adjust his laptop or 
mouth joystick to give the robot arm more room. Once, after 
realizing that forehead reflections were causing false positive 
face detections, he had a caregiver place a cap on his head. 

Having access to the right level of customization was vital: 
“This was the sweet spot. I don’t want to have to type in code.” 
As we demonstrated the planning scene for CR2 and discussed 
ways for him to customize it, he said, “Totally automate that. 
Just the thought of it makes my head hurt.” 

These observations led to the following lesson learned. 
Tinkering is vital for assistive robots to work in users’ con-

texts [38]. Systems should be customizable to foster ease of 

tinkering. This requires intuitive control over parameters and 

transparency into the downstream impacts of parameters. 

2) Off-nominals Will Arise, Variable Autonomy Lets Users 

Overcome Them: Although customizability enabled the user 
to adapt the robot to spatial contexts, some contexts remained 
challenging for autonomous behaviors. First, some lighting 
conditions lowered face detection’s precision so much that 
CR2 did not want the robot to autonomously approach him: 
“[I don’t want it] nearing my eyes.” Second, some spatial 
configurations between the robot and plate hindered bite 
acquisition. At times, this was due to planning failures: all 
plans to move above the bite were rejected due to a joint 
rotation that exceeded thresholds. At other times, this was due 

20Full-screen pop-ups appeared often, hindering P4’s web app use. 

to off-centering: a camera enclosure screwhole was damaged 
in transit, changing the camera’s extrinsics.21 In both cases, 
variable autonomy let CR2 overcome these off-nominals. 

To address face detection failures, if customization did not 
work CR2 bypassed face detection altogether by teleoperating 
the robot from “resting” to his mouth. This could be mentally 
taxing due to many Cartesian and joint motions. Thus, CR2 de-
vised a novel way to customize the “resting” configuration 
so a single joint-1 rotation moved the fork directly to his 
mouth, reducing teleoperation to a single button press. Thus, 
variable autonomy helped him overcome the off-nominal, but 

customization let him lower the cognitive workload involved. 

To address bite acquisition failures, CR2 interspersed tele-
operation with autonomous robot behaviors. He occasion-
ally teleoperated before autonomous acquisition, changing the 
robot’s starting configuration to overcome planning failures. At 
other times he used autonomous acquisition to move the fork 
above the food and then paused it, teleoperating the remainder. 
Yet other times he teleoperated the entire acquisition. These 
multiple levels of autonomy helped him avoid frustration: “I 
would [get frustrated] if it wasn’t working, and it just kept on 
doing it and doing it. I’d be like, ‘Oh, stop. Just give me regular 
control.’ But [with this system], it is within my control.” 

All-in-all, for 6/10 meals the robot successfully autonomously 
transferred � 80% of bites; for 5/10 meals it successfully 
autonomously acquired � 80% of bites. Other meals combined 
autonomy with teleoperation. Despite needing to occasionally 
teleoperate, CR2 still found the robot empowering to use. 
“Sometimes people feed me, and I don’t like how they’re doing 
it. It’s weirdly empowering, as someone who’s been paralyzed 
as long as I have, to say, ‘I’m going to eat this. It’ll take me 3 
times as long, but I’m not going to be frustrated while I eat.”’ 

These observations led to the following lesson learned. 
The challenging contexts present in home environments can 

hinder a robot’s autonomous behaviors. Users can help the 

robot navigate through these challenges provided varied ways 

to control it. The robot’s benefit may outweigh the users’ 

cognitive workload required to control it when autonomy fails. 

The above two lessons validate our key insight about the 
importance of customizability and control. During system 
development, we under-appreciated how often customizability 
or control would be needed. However, because they were 
provided, CR2 leveraged them to resolve scenarios we had 
not anticipated and to develop novel strategies for system use. 

21Plate-to-camera distances varied � 10cm across meals. So even a 0.05rad 
extrinsics error could move the fork 5mm off-center, making foods roll away. 



 

   
 

 

   
 

3) Assistive Robots’ Benefits Depend on Context: Contexts 
beyond the spatial affected CR2’s meal experiences. 

Activity Context. CR2 attempted to perform each of his 
5 goals at least once during the deployment. He felt he 
achieved the first 3. “Eating while watching TV; it’s totally 
possible. [Using the robot] is not distracting to the point 
where you can’t do it. I’ve also accomplished eating while 
my caregiver did something else, because C1 did laundry.” 
He also ate dinner alongside his caregiver (Fig. 1). However, 
CR2 could not achieve his latter 2 goals. “[I couldn’t] eat 
while working [because of] my over-expectation to not pay 
attention to the robot. And I had to pay attention to it.” One 
reason is overlapping demands on his faculties: CR2 types 
using dictation and so cannot type while chewing; he reads 
visually and so cannot do it while looking at the robot.22 

CR2’s perspective on these goals shifted over the deployment. 
“I realized, ‘Food is important. You need to eat more than you 
need to finish work. And doing that is worth your attention.”’ 

Social Context. When present, caregivers participated in 
the meals. “I was involved, but he was doing everything by 
himself. I was [checking if] the robot dropped something, 
[giving him] a napkin, refilling the plate. When he chewed, 
I watched the movie.” (C1). Caregivers were also involved in 
food preparation. After seeing the robot acquire her carrots 
but not her zucchini, C3 said, “[Today] it was [too] soft or 
small. That could be improved if I prepared [meals] several 
times with the robot.” Importantly, CR2’s envisioned future 
robot use was conditioned on caregiver effort: “[If it takes too 
long], they will say, ‘Let me just feed you and not set up [and 
tinker with] the robot.’ And that would be reasonable.” 

Researchers were also part of the social context. “If a 
plate were there the whole day—if you guys weren’t here—I 
would’ve gotten the work done. I would’ve taken one bite, 
waited 30 minutes, finished a task, and taken another bite. I 
would do it guilt-free [because no one has to wait for me].” 

Food Context. Caregivers had concerns about the robot’s 
acquisition limits. “We need to choose foods that CR2 likes 
and the robot can pick up.” (C3). “[The robot currently] 
has too many limits with his diet and what he likes” (C1). 
CR2 envisioned food-dependent robot use. “I wouldn’t eat all 
my meals with it. Some foods I like [e.g., ramen] can be 
difficult for it. [But] I like pizza a lot; it did fine with pizza.” 

Temporal Context. CR2 enjoyed the robot more during 
dinner. “[When I’m] eating for enjoyment, during dinner, 
[using the robot] is great. For breakfast and snack, where I feel 
I should be working, things are rushed.” His caregivers agreed: 
“Sometimes, CR2’s in rush. So we don’t have time to set [the 
robot] up. So we have to feed him.” (C2). Despite contextual 
differences, CR2 found the robot rewarding to use. “That 
Wednesday morning, there was a flow state. I was succeeding 
at such a rate that it felt good. I was like, ‘We’re getting into 
it, no matter how long it takes.’ At that point, my satisfaction 
levels are really high.” 

These observations led to the following lesson learned. 
Assistive robots integrate into a user’s life. They provide 

22In contrast, CR2 can look at the robot while listening to a TV show. 

benefits in some contexts but not others. Such contextual 

benefits may still be sufficient to make them a valuable addition 

to the tools users and caregivers adopt for ADLs. 

VI. LIMITATIONS AND FUTURE WORK 

In this work, we collaborated with community researchers 
(CRs) to develop a robot-assisted feeding system that peo-
ple with motor impairments can use to independently feed 
themselves outside of lab settings. We evaluated the system 
quantitatively with 5 users and CR2 in 3 locations (Sec. IV) 
and qualitatively in CR2’s home for 5 days (Sec. V). Although 
this work made progress towards our goal (Sec. I), results 
reveal system limitations to address to fully reach the goal. 

For bite acquisition, a limitation was missed bites. An im-
portant future direction is incorporating closed-loop feedback 
into action primitives, e.g., adjusting the motion if the bite 
starts tilting or the fork fails to pierce it. Another important 
direction is expanding the food types the robot can acquire 
to include e.g., ramen. For bite transfer, a limitation was 
that no matter how much customization CR2 tried, the robot 
approached at his eyeline; future work should orchestrate 
transfer motions to approach from below. For customizability, 
users must be able to customize the planning scene; in our 
system, users had to choose among hard-coded scenes. For 
user control, the system must provide ways for users and 
caregivers to debug system problems, such as transparently 
explaining what error the robot encountered and how they 
could resolve it. For user comfort, approaches like compliant 
control from physical human-robot-interaction could improve 
the system [15, 98, 99]. For commercial viability, future 
work should focus on reducing system cost. Finally, co-
designing setup and maintenance procedures with caregivers 
could improve integration into care routines. 

This in-home deployment is only the beginning. An open-
source, deployable system lays the foundation for: (1) follow-
up deployments with CR2 as the system matures and (2) 
in-home deployments with other users to study additional 
meal contexts and address potential CR biases. Long-term, 
researchers should not be present since our presence influences 
system use (Sec. V-A3). 

VII. SUPPLEMENTARY MATERIALS 

Supplementary materials, hosted on Open Science Founda-
tion at [100], include per-meal event annotations, user quotes, 
and appendices with system and study details. 
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Fig. 7. A close-up view of the system’s end-effector. 

APPENDIX A 
SYSTEM 

This section contains additional details of the system, be-
yond the core details presented in Sec. III. 

A. System Hardware 

Fig. 7 shows a close-up of the elements mounted to the 
robot’s wrist and end-effector: the eye-in-hand system, a fork 
assembly with a force-torque sensor, and a wireless force-
torque transmitter. 

B. Co-Design Sessions with the Community Researcher 

Many components of the app were co-designed with com-
munity researchers. This includes the following. 

We workshopped the app state-machine with a community 
researcher, discussing what the robot and user would do at 
each step. A key insight from this was the value of including 
“auto-continue” options so interested users can reduce the 
number of steps they have to take; this led to the “auto-
continue” button before the robot moves to the user’s mouth. 

We co-designed the pause, back, resume, and retry options 
by having the community researcher verbally describe how 
he would like to control those aspects of robot motion, and 
creating a mock-up of that in real-time using a picture-editing 
application. He then gave us feedback, we discussed the pros 
and cons of the design, and continued until we converged on 
a user interface. 

In a similar fashion, we co-designed the types of trans-
parency the robot should provide the user as it is or is not mov-
ing. This involved teaching the community researcher the high-
level concepts of robot planning versus motion. This co-design 
process led us to converge to the robot displaying elapsed time 
while it is planning but not yet moving, displaying the percent 
of motion it has completed while it is moving, and displaying 
a “lock” icon if it is on a screen where it will not move unless 
the user presses a button. 

Finally, we ran a pilot study with a community researcher to 
investigate how to design the bite selection interface. We first 

introduced the community researcher to the concepts of object 
detection, segmentation, and classification. We then had him 
load a URL on his phone with 3 mock-ups of different bite 
selection interfaces: (a) the one described in Sec. III-C1; (b) 
an interface where the food segmentation algorithm segments 
several possible bites without a seed point, and the app renders 
them all to the user as buttons; and (c) an interface where the 
app renders semantic labels of the food type as buttons. This 
revealed several pros and cons about each. The first provides 
the most user control to select a bite, but some assistive 
technologies make it difficult to select an arbitrary point on 
an image. The second is more accessible since it has buttons, 
but can easily become cluttered. The third can be good for 
users who don’t want to be so involved that they are selecting 
individual bites, but it provides users little recourse if the 
robot regularly misdetects a food. Through the discussion, we 
all converged to starting with the first option, and eventually 
adding the third option as a choice for users who want less 
control over their feeding process. 

C. Planning 

We use MoveIt2 with the Open Motion Planning Library 
(OMPL) [101] for path planning. This section contains addi-
tional details on our use of planning algorithms. 

Across both studies, we use the default path length op-
timization objective, which minimizes the trajectory length 
in configuration space. Every path planning request has a 
corresponding time budget: 0.5 seconds for all motions but 
bite acquisition, which has 2.0 seconds. We generate 5 plans 
in parallel and hybridize between them [78]. Then, any time 
remaining in the budget is spent shortcutting the resulting 
trajectory [78]. 

The two studies differed in which planning algorithm we 
used. For Study 1, we use RRT* [102] as the planning 
algorithm, with all default parameters except range, which 
we set to 3.0 after some informal tuning that sought to balance 
between planning time and path length within a fixed time 
budget. For Study 2, in an attempt to speed up the planning 
times, we switched to RRT-Connect [77] with all default 
parameters (OMPL by default sets range to 20% of the 
maximum extent of the state space). 

Most motions are kinematic plans that use the above 
pipeline. Of those motions, the ones to hard-coded config-
urations have goals specified as 6DoF joint goals. For bite 
acquisition’s motion above the food, the goal is specified as 
a pose goal for the fork tip, and MoveIt2 samples multiple 
6DoF joint goals from the inverse kinematics solver. 

A few motions do not involve kinematic plans. For bite ac-
quisition’s motion into the food (approach), we use MoveIt2’s 
default cartesian planner, which interpolates between the fork 
tip pose at the start and end, divides it into small intervals, 
and uses inverse kinematics to get joint configurations for 
each of those poses. For bite acquisition’s grasp and extract, 
we use cartesian control to directly execute twists (linear and 
angular velocities) on the fork tip, using a selectively damped 
pseudo-inverse Jacobian [74, 75]. For the motions between the 
“staging” configuration and the user’s mouth, we also use the 

https://moveit.picknik.ai
https://ompl.kavrakilab.org/
https://ompl.kavrakilab.org/
https://github.com/ompl/ompl/blob/d3f2cc76de0dfc33d1e6322adb2376b90e1c1241/src/ompl/tools/config/MagicConstants.h#L73
https://github.com/ompl/ompl/blob/d3f2cc76de0dfc33d1e6322adb2376b90e1c1241/src/ompl/tools/config/MagicConstants.h#L73


 
  

  
 

 
  

 

 
 

 

 
  

  
 

 
  

 

 
 

 

aforementioned cartesian control approach to move the fork 
in a straight line to their mouth. 

To avoid collisions, the robot’s static planning scene in-
cludes meshes for the user’s head, their body, the furniture 
they are sitting in (e.g., wheelchair or bed), and the table the 
food is on. The “body” mesh is a large hull intended to cover 
diverse body types. The “head” mesh moves and the “body” 
mesh scales based on the results of face detection. To prevent 
the robot from generating unnecessarily large motions, tight 
workspace walls are computed and statically placed in the 
planning scene to contain the user, the robot (in all of the 
hard-coded configurations), and some or all of their furniture. 
To account for un-modeled obstacles, such as user-specific 
assistive technology (AT) or the user’s laptop, we use the depth 
image to populate an Octomap [79] at a resolution of 2cm. For 
plans involving bite acquisition, the robot is allowed to collide 
with the Octomap and table, because it is intended to come 
into contact with the food and sometimes the bottom of the 
plate. 

Psychological safety and user comfort is crucial when there 
is a robot arm moving in close proximity to the user. We 
promote feelings of user safety with respect to robot motion 
in a few ways: 
1) We reject any plan with joint rotations greater than a 

specified threshold23, to avoid plans with large swivels that 
users might find scary or unpredictable. 

2) For kinematic plans that may move near the face (i.e., the 
motions to the “staging” and “resting” configurations), we 
add a wall to the planning scene roughly 0.3m in front 
of the user’s face. This is intended to keep motions away 
from the user’s face. 

3) As mentioned above, the fork moves in a straight line to 
and from the user’s mouth, to promote interpretability of 
the robot’s trajectory. 

In terms of constraints beyond goal constraints, the system 
allows for orientation path constraints to be placed on the fork 
to ensure it remains face-up after acquiring foods. However, 
since all user-selected foods were skewerable, food falling off 
due to fork rotations was less of an issue. Thus, we did not use 
orientation path constraints during either study. Empirically, 
we found that adding orientation path constraints increased 
planning time roughly fourfold. 

This work optimized planning times to the minimum 
amount necessary for the system to be deployable out-of-lab. 
Thus, we do believe the system’s planning can be sped up 
considerably through, e.g., better tuning of planner parameters, 
faster inverse kinematics computations, sending multiple goals 
to the planner, and using MoveIt’s Python bindings as opposed 
to the ROS2 interface. 

D. Food-on-Fork Detection Algorithm 

Challenges: Detecting whether there is food on the fork 
in an RGB image is difficult due to reflections off of the 
metallic fork and due to the large diversity of food colors. 

23For all motions, the plan was rejected if the sum of joint motion across all 
joints exceeded 10.0 radians. For acquisition, plans were additionally rejected 
if joint 1 exceeded 5π/6 or joint 2 exceeded π/2 radians. 

Detecting whether there is food on the fork in a depth image 
is difficult because the fork is reflective and most of the fork tip 
is empty space; thus, whether or not the fork is even perceived 
in the depth image varies depending on lighting condition and 
objects behind the fork. Both are difficult due to the large 
variety of food shapes. Finally, detecting food on the fork 
with the F/T sensor is difficult due to hysterisis errors; after 
the sensor experiences high force during acquisition, it takes 
time to regain the level of sensitivity required to detect whether 
there is food on the fork. 

Key Insights: Our approach hinges on two key insights: 
1) Although food comes in a variety of shapes, the fork has 

only one shape. 
2) Although the fork may or may not be perceived by the 

depth camera when there is no food on the fork, food is 

always perceived when there is food on the fork. 
Algorithm Overview: Our algorithm uses depth images to 

memorize the shape of the fork without food. It then learns 
to predict the likelihood of food on the fork based on the 
deviation of an input depth image from that memorized shape. 

Algorithm Details: Our algorithm operates on de-noised 
depth images24, converted to pointclouds. During train time, it 
stores a representative set of points from the “no food on fork” 
pointclouds—essentially, it memorizes the shape of the fork25. 
Then, for each pointcloud, it computes the distance between 
each of its points and the closest point in the stored set, and 
then takes the 90th percentile of those distances—essentially, 
this measures how far the farther points in the pointcloud are 
from the memorized fork shape. Finally, it trains a logistic 
regression classifier on those distances (x) and whether there 
is food on the fork (y). During test time, it passes a depth 
image through the same preprocessing steps, computes the 90th 

percentile difference between that pointcloud and the stored 
points, passes that through the logistic regression model, and 
uses the output as its confidence. If there are < 100 points in 
the depth image, it outputs nan as its confidence. 

Usage: After bite acquisition, if the user has enabled “auto-
continue,” the web app toggles on food-on-fork detection 
and subscribes to its output. If, over the last 3 seconds, the 
output of food-on-fork is consistently nan of � 0.25, the 
web app invokes the action to move the robot above the 
plate (i.e., acquisition failed). If it is consistently � 0.75, 
the web app invokes the action to move the robot to the 
staging configuration. Else, the web app waits for user input. 
Similarly, when the robot is at the user’s mouth, if the user 
has enabled “auto-continue,” the web app toggles on food-on-
fork detection and subscribes to its output. If, over the last 3 
seconds, the output is consistency � 0.25, the web app invokes 
the action to move the robot from the user’s mouth and above 
the plate (i.e., the user ate the bite from the fork). Else, the web 
app waits for user input. Note that in the latter case, the web 

24During pre-processing, the algorithm crops the depth images to a rectan-
gle around the fork, passes it through a temporal filter that only keeps depth 
points that are perceived across 5 consecutive images, and passes it through 
the morphological “opening” operation to remove isolated, noisy points. 

25To reduce redundant points, it only stores a point if it is � 1mm away 
from all other stored points 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://docs.opencv.org/3.4/d9/d61/tutorial_py_morphological_ops.html
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Fig. 9. The levels of control users have access to across each bite. 

Fig. 8. (Left) The settings menu. (Right) The screen to customize the staging 
configuration. 

app waits for input on nan predictions, because it is possible 
to get too few points in the pointcloud while the user’s mouth 
is on the fork. 

Limitations: Although this model works, it is susceptible to 
slight changes in the pose and shape of the fork in the camera 
frame, which can occur if the fork bends, the camera moves, 
or the utensil changes. Another approach, which may be more 
robust, involves using a vision-language model (VLM) to 
assess whether there is food on the fork [13]26. 

E. User Interfaces for Customization 

As mentioned in Sec. III-D1, the user is able to customize 
system parameters through a settings menu in the web app. 
Fig. 8 Left shows this settings menu. It allows them to 
customize: properties of the bite transfer motion (distance to 

mouth, speeds when approaching the mouth); key robot arm 
configurations that all motions start or end from; choose which 
planning scene to use; and change at which points the web app 
auto-continues. Fig. 8 Right shows the screen the app goes 
to if the user wants to customize the staging configuration. 
This illustrates several of the principles from “Designing for 
Tinkerability” [87] mentioned in Sec. III-D1. For example, 
the user is given “immediate feedback” by being able to 
transparently see the impacts of their parameter changes. This 
happens in two places: (a) seeing how face detection performs 
in the new configuration, at the top of the screen; and (b) 
allowing them to invoke actions to/from this configuration to 
see how the customization impacted robot motion, via the 
buttons at the bottom of the screen. As another example, the 
user is given “fluid experimentation” by having access to the 

26https://github.com/empriselab/FLAIR/blob/main/bite acquisition/scripts/ 
food on fork.py 

full teleoperation interface, seen in the middle of the screen. 
The user can switch between “move,” “rotate,” and “joints” 
mode. The former two have 6 buttons, to move the robot in the 
positive and negative directions of each of the three cartesian 
motions in that mode. The latter mode has 12 buttons, to move 
each of the 6 joints in the positive and negative directions. 

F. Users’ Multiple Levels of Control 

Fig. 9 graphically shows the multiple levels of control 
users have access to (Sec. III-D2), using the levels of control 
described in Beer et al. [90]’s framework. The solid line shows 
the nominal variation of level of control across a single bite. 
During bite selection, the level of control is “decision support,” 
since the system presents the user with several masks, which 
they choose from. During all robot motion, the nominal level 
of control is “supervisory control,” but the user can drop it 
down into “decision support” by pausing robot motion, and 
then into “teleoperation” if so desired. When waiting for the 
user to initiate bite transfer and to indicate that they are done 
with the bite, if the user toggles auto-continue on the system is 
in “shared control with human initiative,” because the robot is 
automatically deciding whether to continue, but the user can 
override that decision. If the user has auto-continue toggled 
off, those stages are at the “teleoperation” level of control, 
since the user needs to specify when the system should move 
on. Finally, the user can bypass any of the perception stages 
altogether by teleoperating the robot from the previous stage 
onto the next (e.g., fully teleoperating bite acquisition removes 
the need for bite selection). 

APPENDIX B 
HEALTH & SAFETY PROTOCOLS 

Meals can involve health and safety risks. As a result, in 
both studies the research team strictly adhered to following: 

Food Safety: All food was procured from: (a) a restaurant; 
(b) a grocery store; or (c) homemade by one of the user’s 
caregivers. The only food preparation the research team did 
was re-heating, washing, cutting, and/or arranging the afore-
mentioned food, oftentimes with direct input or supervision 
from the user or their caregiver. All utensils that came in 

https://github.com/empriselab/FLAIR/blob/main/bite_acquisition/scripts/food_on_fork.py
https://github.com/empriselab/FLAIR/blob/main/bite_acquisition/scripts/food_on_fork.py


 
 

 
 

contact with the food, including the robot’s fork were washed 
with soap and water before every meal. The robot’s fork was 
additionally washed with an alcohol wipe, in front of the user, 
before they began their meal. The research team washed their 
hands with soap and water before every meal, and used hand 
sanitizer before and after touching any food. At any time, the 
user could request the research team repeat any of the above 
food safety precautions. 

Infection Control: All members of the research team 
followed the government department of health’s COVID-19 
prevention and safety guidelines. In addition, masks and hand 
sanitizers were available during meals, and at any time the 
user was allowed to ask team members to wear masks and/or 
take additional health and safety precautions. 

Researcher Interventions: Any researcher was allowed 
to intervene in the meal on: (a) participant request; (b) 
unexpected or potentially dangerous robot behavior; or (c) 
perceptible participant distress. They were allowed to take 
whatever intervention necessary to rapidly resolve the issue, 
including but not limited to terminating the robot controllers’ 
software or physically powering off the robot. 

APPENDIX C 
COMPARISON TO OTHER ROBOT-ASSISTED FEEDING 

SYSTEMS 

Table I presented a comparison of technical capabilities 
across contemporary robot feeding systems. This section pro-
vides concrete details on the criteria used for each column. 

Approximate Cost. For commercial systems, if the sys-
tem’s website or medical tools catalogs mentioned a cost, we 
used that. If not, we looked through other online sources such 
as news articles about the technology, crowdfunded campaigns 
to raise money for the technology, etc. to determine the cost. 
For research systems, if the paper presented a cost we used 
that. Otherwise, we followed the aforementioned criteria for 
all commercially sold components of the system, and added 
the costs together. 

Mounting. This refers to where the robot arm is placed be-
fore feeding. We determined this through textual descriptions 
and pictures of the system. 

Autonomous Motion. This refers to whether the robot arm 
moves autonomously (✓) or whether users have to teleoperate 
its motions (✗), in nominal scenarios. 

(General) Food Detection. This refers to whether the 
system can detect some (for “Food Detection”) or any (for 
‘General Food Detection‘) bite-sized food items placed in 
front of the user, without requiring researcher intervention 
before or during the meal. Note that this column focuses on 
perception models that can detect masks or bounding boxes 
around food items, irrespective of whether the perception 
modules also add semantic labels to those masks. Different 
robot-assisted feeding works focus on different features for 
their food detection subsystem. For example, Jenamani et al. 
[13]’s food detection subsystem does not provide general food 
detection, because researchers must seed it with a list of food 
items on the plate. However, it does provide additional features 
not encompassed by this paper’s bite selection subsystem. 

Specifically, their system can semantically segment foods and 
can segment non-bite sized food items (e.g., spaghetti or 
mashed potatoes). 

Face Detection. This refers to whether the system can 
autonomously detect the user’s face and mouth. 

Collision Detection / Avoidance. “Collision Detection” 
refers to whether the system can detect a collision once it has 
occurred (and stop/modify its motion accordingly). “Collision 
Avoidance” refers to whether the system can preemptively 
avoid possible collisions, e.g., through its motion planning. 

Portable & Self-contained. This refers to whether the 
system can be moved, with the user and caregiver, to the varied 
locations that users may eat in: e.g., at home, at a restaurant, 
at an outdoor picnic table, etc. Reasons a system may not be 
portable & self-contained include: the system requires wall 
power; the system is too heavy to move; the system has 
too large of a footprint to exist in the diverse environments 
people eat in; the system has wires that stretch across robot 
joints, which can get tangled, restrict robot motion, and be trip 
hazards. 

User Can Stop / Restart Robot Motion. The former refers 
to the user’s ability to stop the robot at any time, for any 
reason. The latter refers to the user’s ability to restart the 
robot once they have stopped it. For example, a system that 
provides only an emergency stop (e-stop) button that requires 
a researcher to restart the system would satisfy the former 
but not the latter criterion. In contrast, a system that allows 
the user to stop robot motion via, for example, an app, and 
subsequently restart robot motion, satisfies both criteria. 

Customizable Robot Motion. This refers to whether users 
can customize the autonomous motions the robot takes, for 
example customizing its speed, how close it gets to their 
mouth, the path it takes to get to their mouth, etc. Note that 
some systems that don’t provide customizable robot motion 
do provide other forms of customizability, e.g., Jenamani et al. 
[13] allow users to customize the sequence the robot provides 
them bites in. 

Multiple UI Modalities. This refers to whether the system 
allows users to use multiple interface types to interact with 
it, depending on their impairments and preferred assistive 
technologies (ATs). A system whose user interface is on a 
general-purpose computing device such as a smartphone or 
laptop implicitly satisfies this, since general-purpose com-
puting devices typically are designed to be compatible with 
diverse ATs. 

Note that Table I refers to the technical capabilities, as 
stated in the papers or websites. Table X, below, presents the 
demonstrated capabilities, i.e., the system’s performance as 
demonstrated in a published user study. 

APPENDIX D 
STUDY 1: MULTI-USER, ON-CAMPUS STUDY 

This section contains additional details of Study 1, beyond 
the core details presented in Sec. IV. 

Each user participated in a 30 minute virtual meeting before 
the study, followed by a 90 minute in-person session, where 
they ate an entire meal of their choice in an out-of-lab location. 
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Fig. 10. An example of our in-person meal setup in a public cafeteria. 

They received $25/hour compensation for their time, as well 
as compensation for travel to and from the study venue. 

A. Virtual Session Details 

We asked each participant to describe any assistive tech-
nologies that they use: 
1) Do you regularly use a smartphone or tablet? 
2) If so, how do you interact with the smartphone or tablet? 
3) If you use an assistive technology (AT) to interact with the 

smartphone or tablet, where is that AT mounted? 
4) If you use an AT to interact with the smartphone or tablet, 

how do you interact with the AT? 
5) For the in-person study, would you be able to bring your 

smartphone or tablet, along with your preferred AT to 
interact with it? 

6) Do you have other ATs mounted around your head or 
chair? 

We also asked participants about their food preferences: 
1) Do you have any allergies or other dietary restrictions we 

should be aware of? 
2) As the in-person portion of the study will involve eating a 

full meal, what would you like to eat? 
If the participant was having trouble identifying desired food 

items, we provided sample food items from the following list: 

• Proteins: sandwich meats, chicken tenders, cheeses, blocks 
of baked or fried tofu, etc. 

• Vegetables / Fruits: salads, roasted vegetables, crudites, 
fruit salad, etc. 

• Starches: Potatoes, Rice, Bread, Noodles, etc. 
Finally, we asked them about transportation logistics: 

1) How do you anticipate coming to [the study venue]? What 
expenses are associated with your transportation? 

2) Will someone be coming with you? 
3) Is there anything else we can do to make the in-person 

study accessible to you? 

B. In-Person Session Details 

Fig. 10 shows a representative in-person study setup, for the 
meal in the cafeteria with CR2. Every in-person session had 
one camera zoomed in on the participant’s phone or tablet, and 
another that captured the participant, robot, and social dining 
partner. 

1) System Introduction: A researcher introduced each par-
ticipant to the system as follows: 
1) Set the system on a tripod next to the participant’s 

wheelchair. 
2) Mounted the emergency stop button in a location the 

participant could reach, and explained how to use it to 
stop the robot in the case of an emergency. 

3) Assisted the participant in connecting their phone/tablet to 
the system’s WiFi network and opening the system web 
app in a browser tab. 

4) If needed, assisted the participant in setting up any assistive 
device to interact with the web application. 

5) Walked the participant through completing one bite using 
the web application. Demonstrated safety features, such as 
the F/T sensor’s ability to stop the robot when unexpected 
forces occur. 

6) If requested by the participant, walked them through cus-
tomizing how close to their mouth the robot gets. 

7) Performed any necessary system adjustments, such as 
moving the tripod or plate, throughout the above process. 

2) Pre-Post-Meal Questions: After the practice bite but 
before the full meal started, we asked the participant the fol-
lowing five-point Likert scale questions, where [AID TYPE] 
is replaced by either “my caregiver,” “my self,” or both, 
depending on how the participant eats on a regular basis. At 
the end of the meal, we asked them these questions again, 
with [AID TYPE] replaced with “the robot” and question 
tense shifted to past. Each answer was on the scale: Strongly 
Disagree, Disagree, Neutral, Agree, Strongly Agree. 
1) When I eat with [AID TYPE], I get my next bite when I 

want it, without waiting or feeling rushed. 
2) When I eat with [AID TYPE], I decide what food I want 

in my next bite. 
3) When I eat with [AID TYPE], I feel a sense of indepen-

dence. 
4) When I eat with [AID TYPE], the meal requires a lot of 

mental energy. 
5) When I eat with [AID TYPE], the meal requires a lot of 

physical energy. 
6) When I eat with [AID TYPE], I am confident that I will 

remain safe during the entire meal. 
7) When I eat with [AID TYPE], I am confident that I will 

remain clean during the entire meal. 
We then asked a final question (both pre- and post-meal): 

“How comfortable are you with the idea of being fed by a 
robot?” on the scale: Very Uncomfortable, Uncomfortable, 
Neutral, Comfortable, Very Comfortable. 

Note that to accommodate their impairments, we asked all 
quantitative questions to participants verbally. Before asking 
any questions after the meal, we reminded participants that 
negative feedback is also very helpful for us to know how to 
improve the system. 

3) Cognitive Workload (NASA-TLX): Because we asked all 
quantitative questions to participants verbally, we modified the 
wording of the NASA-TLX [91] to be: 
1) On a scale of 0-20, how mentally demanding has the task 

been? 0 is very low, 20 is very high. 



 

  

 

 

 

  

 

 

Fig. 11. Images of each user’s plate of food for Study 1, taken at various points in the meal. Several users requested we serve them more food. 

2) On a scale of 0-20, how physically demanding has the task 
been? 0 is very low, 20 is very high. 

3) On a scale of 0-20, how hurried or rushed has the pace of 
the task been? 0 is very low, 20 is very high. 

4) On a scale of 0-20, how successful have you been at 
accomplishing the task? 0 is failure, 20 is perfect27. 

5) On a scale of 0-20, how hard have you had to work to 
accomplish your level of performance? 0 is very low, 20 
is very high. 

6) On a scale of 0-20, how insecure, discouraged, irritated, 
stressed, or annoyed have you been? 0 is very low, 20 is 
very high. 

4) System Usability Scale (SUS): We asked the exact 
questions of the system usability scale [92], on a 5-point Likert 
Scale: Strongly Disagree, Disagree, Neutral, Agree, Strongly 
Agree. 
1) I think that I would like to use this system frequently. 
2) I found the system unnecessarily complex. 
3) I thought the system was easy to use. 
4) I think that I would need the support of a technical person 

to be able to use this system. 
5) I found the various functions in this system were well 

integrated. 
6) I thought there was too much inconsistency in this system. 
7) I would imagine that most people would learn to use this 

system very quickly. 
8) I found the system very cumbersome to use. 
9) I felt very confident using the system. 

10) I needed to learn a lot of things before I could get going 
with this system. 

C. Between-Study System Patches 

The order of participants in the study was: P1, P2, P3, CR2, 
P4, and P5. There were 6 day gaps each between P1 and 
P2 and between CR2 and P428. This gave us the time to 

27When reporting this value (Table VII), we flip it (i.e., 0 is perfect) to 
align with the original NASA-TLX. 

28There was a 0 or 1 day gap between all other participants 

conduct system patches to address bugs revealed in previous 
meals. The applied system patches were: 
1) Between P1 and P2, we: 

a) Sped up all joint velocity limits by 66% on all kine-
matic motions, and sped up the cartesian motion ve-
locity limit when moving to/from the mouth by 20%, 
from 0.1 to 0.12m/s. 

b) Addressed a bug where food detection’s depth readings 
would get skewed if the fork partially overlapped the 
bite. 

c) Addressed a bug where if the user moves the arm from 
their mouth back to the staging configuration while 
“auto-continue” is checked, it will subsequently move 
right back to their mouth. 

d) Modified the “MoveToMouth” action to reset the Oc-
tomap before starting; this is to account for phantom 
obstacles that accrue over time. 

e) Added the ability to zoom into the robot’s camera feed 
during bite selection. 

f) Relaxed the deviation from goal position that is ac-
cepted when the robot is moving to the user’s mouth 
from 0.5cm to 2.5cm. 

g) Addressed a bug where sometimes the joint state 
publisher’s message timestamps are before the cam-
era’s, leading to failures in transforming between those 
frames of reference. 

2) Between CR2 and P4, we: 
a) Added an auto-restart process manager around the 

WebRTC signalling server, to address a known bug in 
a dependency that sometimes causes a segmentation 
fault. 

b) Addressed a bug where food detection would return 
masks that have few valid depth readings (e.g., due to 
being too close to the image edge). 

c) Addressed a bug where sometimes the arm would 
make a large, unnecessary swivel to get from one 
configuration to another, by rejecting plans where joints 
rotated being a certain threshold 



 

 

  

 

 

 

 

 

  

 

 

 

d) Addressed a hardware issue where the bolts in one 
finger had loosened, resulting in the gripper holding 
onto the fork asymmetrically. 

e) Replaced the e-stop button’s adapter due to regular 
wear and tear. 

f) Added a recovery behavior where the robot arm raises 
itself up 1cm if motions fail during bite acquisition (to 
prevent the case where the fork is left in contact with 
the table, causing all future actions to fail due to an 
unexpectedly high force sensor reading). 

g) During bite acquisition, had the robot plan both the mo-
tion above the plate and into the food before executing. 
That way, any planning failures will happen while the 
robot is still above the plate, as opposed to after it starts 
moving. 

Thus, P1 experienced the system with neither System Patch, 
P2, P3, CR2 experienced the system with System Patch 1, and 
P4 and P5 experienced the best version of the system, with 
both System Patches. Importantly, the system P1 experienced 
had the robot arm moving up to 66% slower than the system 
all other participants experienced. 

D. Data Analysis 

For the objective data analysis, one researcher watched 
the videos recorded from every sessions and tagged the 
timestamps of all key events in the video. A key event was 
defined as when the user interacted with the web app, the robot 
started/stopped moving, an off-nominal scenario occurred that 
was resolveable without researcher intervention, and an off-
nominal scenario occurred that required researcher interven-
tion. In addition, every time a bite acquisition or motion to the 
user’s mouth ended, the researcher tagged the food type and 
whether or not it was successful. This resulted in a complete 
time profile of the meal, as well as a complete log of bite 
acquisition and transfer success rates. All the annotated data, 
with key events and timestamps per participant over the entire 
meal, can be found in Supplementary Materials, along with a 
codebook describing each key event. 

For the subjective data analysis, we scaled all 5-point Likert 
scales to integers in the range [−2, 2]. For the NASA-TLX, we 
followed Hertzum [95]’s procedure of scaling each subscale to 
[0, 100] and averaging them. For the SUS, we followed Lewis 
[92]’s procedure of setting missing values to “neutral,” flipping 
negative subscales, transforming every subscale into the range 
[0, 10], and summing them. 

For both objective and subjective data, due to the small 
sample size, we do not analyze for statistical significance. 

E. What Parts of the System Were(n’t) Evaluated 

Most of our system was evaluated in Study 1: the robot, fork 
holder and F/T sensor, e-stop button, all the robot code, and 
the web app. However, a few components were not included in 
Study 1, and later evaluated in Study 2. First, the only aspect 
of customizability included in Study 1 was: (a) customizing 
how close to the user’s mouth the robot stops; and (b) toggling 
auto-continue on/off during face detection. Notably, since the 
other two auto-continues were not included in this evaluation, 
neither was the food-on-fork detection module. Second, we did 

not give users access to a teleoperation interface to control the 
robot. Thus, during robot motion, they had the “supervisory 
control” to drop the robot into “decision support,” but could 
not drop it into the teleoperation level of control (Sec. III-D2). 
Finally, in order to improve reliability in the study, we paused 
online learning for deciding which action the robot should take 
(Sec. III-C2). As a result, the robot only executed one fixed 
motion primitive throughout the entire meal (except with P3, 
who requested we change the primitive so the robot could 
better acquire strawberries). 

F. Results 

1) Plates of Food: All food was acquired from local 
restaurants and grocery stores, based on the foods they had 
requested in the virtual session. We put these foods on a 
variety of plates, as shown in Fig. 11. Notably, the plates were 
of various colors and patterns (red, white, blue, patterned), 
shapes (flat, deep), and materials (paper, ceramic, melamine). 
The plates also did not necessarily have good color constrast 
with the food on it, as evidenced by the pink salmon on the 
red plate. This demonstrates the generalizability of the bite 
selection approach to diverse plate types. 

2) Bite Acquisition: Table V shows the complete bite 
acquisition data, disaggregated by food type. This reveals 
that for diverse food types, from sandwich bites to broccoli 
to pizza to salmon, the system is close to users’ threshold 
acquisition success rate of 80%29. Further, note that because 
the online learning system was paused during this evaluation 
(Appendix D-E), the robot was unable to learn from its failures 
and try different actions. 

3) Time Profile Comparison Across Participants: Fig. 12 
shows a comparison of the time each participant spent in each 
stage of robot-assisted feeding. 

Although one might think that the reason P1 took the longest 
time per bite was that the robot was up to 66% slower for him 
than for other participants (Appendix D-C), Fig. 12 reveals 
that the difference actually has to do with asssitive technology. 
Consider when the robot was “Waiting for User (Bite Done).” 
P1 used voice control to interact with his phone, which meant 
that he: (a) could not interact with his phone while chewing; 
and (b) could not interact with his phone when he or others 
were talking. As a result, after the robot delivered a bite to 
his mouth, he waited until he was done chewing (which a spot 
check revealed took around 30 seconds per bite) and until there 
was a pause in the conversation before sending the robot back. 

The other person who used mouth-based assistive technol-
ogy, CR2, used a mouth joystick to interact with his phone. 
This meant that he could not interact with his phone while 
chewing30, nor while he was talking, but could do so while 

29Although Bhattacharjee et al. [19] mention a 70% threshold bite acqui-
sition success rate in the paper, we re-analyzed the raw data from that work, 
which was shared with us by the authors. The number presented in the paper is 
the arithmetic mean; however geometric mean tends to be more representative 
when the numbers are proportions or rations. The geometric meal of the user 
data is 80%. Thus, we use 80% as the threshold bite acquisition success rate, 
which also aligns with Gordon et al. [9]. 

30CR2’s mouth joystick requires him to suck air out of a straw to “click” 
a button, which can be a choking hazard if done while chewing 



 

 

 

 
  

 

 

 

 
  

Acquisition Success Rate Per Food 

P1 Pizza: 0.78 (14/18) ; Broccoli: 1.0 (1/1) 
P2 Chicken Tenders: 0.85 (11/13) ; Broccoli: 0.75 (9/12); Pasta: 0.33 (4/12) 
P3 Sandwich: 0.94 (16/17) ; Strawberry: 0.24 (4/17); Brownie: 1.0 (7/7); Grape: 1.0 (2/2); Pineapple: 1.0 (1/1); Cantaloupe: 1.0 (1/1) 
P4 Grilled Chicken: 1.0 (13/13) ; Potato: 1.0 (12/12); Cauliflower: 0.56 (5/9) 
P5 Mac and Cheese: 0.7 (7/10); Brussel Sprouts: 0.86 (6/7) ; Salmon: 0.71 (5/7); Mushroom: 1.0 (2/2); Donut: 1.0 (2/2); Chocolate Cake: 1.0 (1/1) 

CR2 Strawberry: 0.75 (3/4); Tofu: 1.0 (3/3) ; Grape: 1.0 (3/3); Cantaloupe: 1.0 (2/2); Broccoli: 0.5 (1/2); Bagel: 0.0 (0/2); Pineapple: 1.0 (1/1); Beef: 1.0 (1/1) 

TABLE V 
BITE ACQUISITION SUCCESS RATES DISAGGREGATED BY FOOD TYPE. MOST SUCCESSFUL FOODS (� 3 BITES) ARE HIGHLIGHTED. 

Fig. 12. A box-and-whisker plot showing the 25th, 50th, and 75th percentiles (vertical lines in box) for each of the 6 stages of robot-assisted feeding, for all 
users’ successful bites. Notches (diagonal lines) show the 95% confidence interval around the median. Outliers excluded. 

others were talking. This added a layer of parallelization to 
the meal, which enabled CR2 to send the robot away from his 
mouth faster than P1 could. 

The remaining users all interacted with their phone by using 
a stylus or touch, so they could interact with it while chewing 
or conversing. This added an additional layer of parallelization 
to the process, as those users could send the robot away from 
their mouth even as they chewed. 

The impact of assistive technology can also be seen during 
“Bite Selection.” Voice control is designed to click buttons. 
Although it is possible to tap arbitrary points, that involves 
a time-consuming process of zooming into a multi-layered 

grid to select the desired point to tap. As a result, it took 
P1 much longer than other participants to select his desired 
bite (median: 22 sec). CR2’s mouth joystick is a pointer-
based interface, but involves moving a cursor along the screen, 
which takes more time than directly tapping a point on the 
screen. Thus, CR2 took the second-most time on bite selection 
(median: 10 sec), followed by the remaining participants who 
used touch to interact with their devices (median: � 6 sec). 

This reveals the importance of not only ensuring the system 
works for diverse assistive technologies, but also considering 
how those assistive technologies impact user experience. 



   

 

 

 
  

 

   

 

 

 
  

 

(a) (b)

Fig. 14. (a) P3’s custom 3D-printed self-feeding tool for grasping onto and 
maneuvering a fork. (b) P5’s self-feeding tool for strapping a fork to her hand. 

Fig. 13. All questions in users’ self-reported comparison of eating with 
caregivers vs. the robot. 

4) Time Profile Comparison to Caregiver Feeding: To 
compare the time profile of robot-assisted feeding to caregiver 
feeding, we analyzed a video of CR1 being fed a lunch of 
mixed berries and a protein bar by their caregiver. The motion 
to acquire a bite and transfer it to the user occurred in one 
smooth swoop, taking 1 − 3 seconds. While the care recipient 
chewed, the caregiver acquired the next bite and was ready as 
soon as the community researcher finished chewing (around 15 
seconds). This reveals a large space to improve our system’s 
bite duration, both in terms of speed and parallelism. However, 
we note that not all people with motor impairments want 
their robot to feed them as fast as their caregivers: some feel 
that their caregiver’s speed puts pressure on them [6]. The 
timestamped annotations from the video ofCR1’s meal can be 
found in Supplementary Materials. 

5) Robot-assisted vs. Caregiver Feeding: Table VI and 
Fig. 13 shows participant responses to all of the pre-post 
questions. Highlighted values refer to the aid type (caregiver, 
robot, or self) that performed highest for that participant on 
that question. As can be seen, the robot consistently performed 
as well or better than caregivers for “I feel a sense of 
independence” and “I decide what food I want in my next 
bite,” and mostly outperformed caregivers on “I get my next 
bite when I want it.” Further, note that for P4 and CR2, the 
robot outperforms the caregiver on nearly every question. 

6) Cognitive Workload (NASA-TLX): Table VII show par-
ticipant responses to all NASA-TLX subscales, as well as 
their overall cognitive workload. We compare our results 

to Hertzum [95]’s’s baseline mean and standard deviation, 
computed from 41 studies that used the NASA-TLX to eval-
uate cognitive workload during studies with “special-needs 
users.” This reveals that for all participants but P3, our system 
involved less cognitive workload than the average study with 
“special-needs users” from Hertzum’s sample. 

Note that the amount of physical demand required depended 
on the assistive device the participant used to interact with their 
phone or tablet. For example, in order to use her stylus to 
reach the top part of her phone (for bite selection), P2 needed 
to leverage the left armrest of her wheelchair to pull herself 
to the left, thereby getting the right angle to click with the 
stylus. Similarly, for CR2 to use his mouth joystick to tell the 
robot to move away from his face after he ate the bite, he 
had to move his head around the fork to the mouth joystick, 
which could be a complicated maneuver. On the other hand, 
P1’s voice control required no additional physical demand for 
him to interact with his phone. 

7) System Usability Scale (SUS): Table VIII shows partic-
ipants’ ratings for the subscales of the System Usability score 
(SUS) and the final score. We compute usability grades using 
the curved grading scale developed from a meta-analysis of 
over 400 studies that used the SUS [92]. As can be seen, 
3 out of the 5 participants—P2, P4, and P5—and CR2 gave 
the system usability’s ratings that corresponded to average or 
above-average usability (C or above). 

8) Ranking Aspects of Feeding Systems: Table IX show 
user’s responses when asked to rank the top three aspects 
of robot-assisted feeding systems to improve. 4/5 participants 
(excluding CR2) put speed as their top choice. Other aspects 
that commonly occurred across users were portability and 
independent use, safety, and customizability. These rankings 
provide pointers towards the most pressing areas of im-
provement necessary for the robot-assisted feeding research 
community. 

9) Self-Feeding Tools: Two participants had custom tools 
to enable them to feed themselves (Fig. 14). P3 had a custom 
3D printed fork holder that enabled him to maneuver the fork 
to the plate and to his mouth, by using the table as a fulcrum, 
all while keeping his hands close to his lap and his face above 
the plate. P5 had a custom-designed strap that attached a fork 
tip to her hand, so she could use her arm to move the fork 
tip into foods and move them to her face. Importantly, all the 
foods P3 ate in the study were also skewerable by his self-
feeding device. For P5, some pieces of brussel sprout were 
skewerable by her self-feeding device—if not too hard—and 
some pieces of fish were skewerable—if not too flaky—but 
overall the robot did feed her bites that she felt she may not 
have been able to skewer with her self-feeding device. 

G. Comparison to Other Robot-Assisted Feeding Systems 

31One user fed himself 130 bites over 6 sessions (Avg: 21.7), while the 
other 8 fed themselves 20 bites over 1 session. 

32This bimanual manipulator holds the bowl in one hand and the utensil in 
the other, reducing the distance to traverse for acquisition and transfer. 

33For these works, the one out-of-lab environment was an in-home envi-
ronment, like that in our Study 2. 



  

  

  

  

  

  

  

   

  

  

  

  

  

  

  

   

P1 P2 P3 P4 P5 CR2 

Care-
giver 

Robot 
Care-
giver 

Robot 
Care-
giver 

Robot Self 
Care-
giver 

Robot 
Care-
giver 

Robot Self 
Care-
giver 

Robot 

I get my next bite when I 
want it (") 

I decide what food I want 
in my next bite (") 

I feel a sense of 
independence (") 

The meal requires a lot 
of mental energy (#) 

The meal requires a lot 
of physical energy (#) 
I am confidence that I 
will remain safe (") 

I am confident that I will 
remain clean (") 

1 

1 

0 

-1 

-1 

2 

0 

0 
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-1 
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-1 
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-1 
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-2 
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-1 

-2 
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2 
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0 

-2 
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-2 

-2 

2 
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1 

1 

-1 

0 

-2 

1 

0 
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2 

2 

-1 

0 

1 

1 

TABLE VI 
USER RESPONSES TO THE PRE-POST QUESTIONS. HIGHLIGHTED VALUES ARE THE BEST PER-QUESTION PER-USER. 

Fig. 15. The full timeline of P1’s meal. 

P1 P2 P3 P4 P5 CR2 First Second Third 

I think that I would 
like to use this 1 1 -2 2 -1 2 

P1 Speed Robustness to errors 
Easy user 
interface 

system frequently. (") P2 Speed Robustness to errors Safety 
I found the system 

unnecessarily 1 0 0 -2 -2 -1 
P3 

Portability & 
independent operation 

Customizability 
Non-intrusive in 

daily routine 
complex. (#) P4 Speed Portability Customizability 

I thought the system 
was easy to use. (") 
I think that I would 

need the support of a 

0 1 1 2 1 2 
P5 

CR2 

Speed 

Safety 

Speed 

Portability & usability 

Customizability 

Robustness to 
errors 

technical person to 
be able to use this 

-1 -1 2 -1 -2 1 TABLE IX 
USERS’ RANKINGS FOR THE MOST IMPORTANT ASPECTS OF 

system. (#) ROBOT-ASSISTED FEEDING SYSTEMS TO WORK ON. 

I found the various 
functions in this 
system were well 

0 1 0 1 2 1 

integrated. (") P1 P2 P3 P4 P5 CR2 Baseline 

I thought there was Mental 
too much 

inconsistency in this 
system. (#) 

I would imagine that 

0 1 -2 -2 -1 Demand 
(#) 

Physical 
Demand 

25 

0 

25 

50 

35 

20 

25 

25 

25 

15 

15 

25 

43 ± 16 

27 ± 12 
most people would 

learn to use this 
system very quickly. 

1 1 -1 2 2 2 
(#) 

Temporal 
Demand 0 25 10 50 0 25 33 ± 17 

(") 
I found the system 

very cumbersome to 
use. (#) 

I felt very confident 
using the system. (") 
I needed to learn a 

lot of things before I 
could get going with 

-1 

1 

-1 

-1 

1 

1 

-1 

0 

-1 

-2 

2 

-1 

1 

1 

-1 

-1 

2 

-2 

(#) 
Perform-
ance (#) 

Effort 
(#) 

Frustra-
tion (#) 

Cognitive 

30 

25 

25 

25 

50 

0 

40 

75 

50 

0 

10 

10 

25 

50 

0 

10 

25 

15 

44 ± 21 

42 ± 17 

31 ± 15 

this system. (#) Work- 17.5 29.2 38.3 20 19.2 19.2 37 ± 11 
load (#)

System Usability 
62.5 65 42.5 92.5 77.5 82.5 TABLE VIIScore (SUS) (") 

PARTICIPANTS’ COGNITIVE WORKLOAD (NASA-TLX) AFTER EATING SUS Grade (") D C F A+ B+ A 
WITH THE ROBOT. BASELINE IS MEAN ± STANDARD DEVIATION [95]. 

TABLE VIII HIGHLIGHTED VALUES ARE LESS THAN BASELINE MEAN. 
PARTICIPANTS’ USABILITY RATINGS FOR THE ROBOT-ASSISTED FEEDING 

SYSTEM. HIGHLIGHTED RATINGS ARE AT-OR-ABOVE AVERAGE. 



  
  

   
   
   
   
  

   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  

   
   
   
   
  

   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Robot 
Num 
Food 
Types 

Num 
End-Users 

Fed 
(Out-of-Lab) 

Num Fed 
Bites Per 
User Per 
Session 

Avg. Bite 
Duration 
Per User 

(sec) 

User-
Decided 
Meal? 

Entire 
Meal? 

Arbitrary 
Plate? 

Num Out-
of-Lab 

Environ-
ments 

Validated 
Metrics? 

Avg. 
TLX 
Score 

Song and Kim [20] / [26] – / – 7 (–) – – – ✓ ✗ – – – 
Song et al. [26] – 14 (–) – – – ✓ ✗ – – – 
Park et al. [21] 8 9 (1) 20–21.731 41–78 32 ✗ ✗ ✗ 133 TLX 18.6 

Nguyen [22] 1 1 (1) 10 330 ✓ ✗ ✓ 133 – – 
Bhattacharjee et al. [19] 3 10 (0) 15 90 ✗ ✗ ✗ 0 – – 

Jenamani et al. [15] 2 13 (1) 7–13 – ✗ ✗ ✗ 133 – – 
Jenamani et al. [13] 5 1 (0) – – ✗ ✓ – 0 – – 

This paper’s Study 1 22 6 ( 6 ) 14–31 62–165 ✓ ✓ ✓ 3 TLX, SUS 23.9 

TABLE X 
COMPARISON BETWEEN THE DEMONSTRATED CAPABILITIES FROM STUDY 1 VERSUS OTHER ROBOT-ASSISTED FEEDING SYSTEMS’ DEMONSTRATED 

CAPABILITIES. 
Table X compares the demonstrated capabilities of our 

system in Study 1 to the demonstrated capabilities of other 
research systems that had an evaluation with people with 
motor impairments. This shows that our system is the first 
to feed users entire meals of their choice in multiple out-of-
lab environments. Additionally, our system fed users over 2× 
more food types than others (full list in Table V). However, 
the upper range of bite duration in our system is slower than 
most others. 

H. Off-Nominal Scenarios Per-Participant 

This section contains a description of every off-nominal 
scenario, researcher intervention, bite acquisition failure, and 
successful bite whose duration was an outlier (� 1.5 · IQR) 
relative to that participant’s other successful bites. 

I. P1 Study Details 

Fig. 15 shows the timeline of P1’s meal. Notable events 
include: 
• Bite 0 (User-resolved Off-nominal): The robot stopped 

too far from P1’s mouth (likely due to a phantom obstacle 
in the Octomap; addressed with System Patch 1d). The 
user was able to get it to move the rest of the way to their 
mouth by clicking “retry” on the app. 

• Bite 1 & 6 (User-resolved Off-nominal): Although the 
robot moved close enough to the user’s mouth for them 
to eat the bite, from the robot’s perspective the action 
failed because it encountered an Octomap collision slightly 
before its goal. This is because the user leaned forward as 
the robot was coming in. The user resolved this by clicking 
“retry,” letting the robot move the remaining short distance 
it wanted to, and then having it go back. (Addressed with 
System Patch 1f) 

• Bite 2 (User-resolved Off-nominal): The robot failed to 
plan to move above the food (addressed with System Patch 
1g); user resolved by going back above the plate and re-
selecting the bite. 

• Bite 5 (User-resolved Off-nominal): As with Bite 1, 
the robot moved close enough to the user’s mouth, but 
thought it encountered an error (addressed with System 
Patch 1f). This time, instead of clicking “retry” the user 
mistakenly clicked “back,” which took the robot back to the 
staging configuration. From there, “auto-continue” caused 
the robot arm to move back to his face (addressed with 
System Patch 1c), and then the user had it move back 
above the plate. 

• Bite 7, 8, & 11 (Bite Acquisition Failures): The robot 
misperceived the depth of pieces of pizza that were par-
tially obscured by the fork, and therefore moved down too 
little towards the food. Addressed with System Patch 1b. 

• Bite 11-12 (Researcher Intervention): With the partici-
pant’s consent, researchers moved the plate so that none of 
the pieces of food were partially obscured by the fork in the 
“above plate” configuration, to avoid the aforementioned 
issue with food depth misperception. 

• Bite 18 (User-resolved Off-nominal): Although bite ac-
quisition visually succeeded, the robot thought it encoun-
tered an error. The user overcame this by having the 
robot move back above the plate, and then clicking “skip 
acquisition” on the bite selection page of the web app. 

• Bite 19 & 19 (User-resolved Off-nominal): First, none 
of the detected masks were the bite P1 wanted, so he 
selected another point on the robot’s camera feed. Second, 
P1’s phone mistakenly interpreted a number he was saying 
as part of the conversation as a button click. Thus, his 
phone opened the live video view of the web app. When 
he realized, P1 closed out of it. 

• Bite 19 (Outlier Bite Duration): The user continued the 
conversation for around 2 minutes with the robot in front 
of his face, before realizing and sending it back above the 
plate. 

The additional system patches after P1 were based on his 
feedback that the robot should be sped up (System Patch 1a) 
and that the plate in the camera view is too small for bite 
selection (System Patch 1e). 

J. P2 Study Details 

Fig. 16 shows the timeline of P2’s meal. Notable events 
include: 

• Bite 0, 12 (Bite Acquisition Failure): The user’s selected 
mask was two bites of food together, leading the fork to 
pierce between the two. 

• Bite 1 (Researcher Intervention): The force-torque sensor 
disconnected from WiFi. To address this, researchers lifted 
the backpack containing the router up off of the floor, 
restarted the force-torque sensor’s code, and restarted the 
physical force-torque sensor. 

• Bite 3-4 (Researcher Intervention): Researchers restarted 
the WebRTC signalling server, which crashed due to a 
segmentation fault (addressed in System Patch 2a). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. The full timeline of P2’s meal. 

Fig. 17. The full timeline of P3’s meal. 

• Bite 2-3, 4, 9, 10 (Bite Acquisition Failure), Researcher 

Intervention: The fork wasn’t centered on the bite, so 
researchers nudged the fork in the gripper to get it to better 
align with the robot’s URDF model (addressed in System 
Patch 2d). 

• Bite 6, 7, 20, 24, 28 (Bite Acquisition Failure): The pasta 
rolled away as the robot was skewering it. 

• Bite 8, 22-23 (Researcher Intervention): Researchers 
restarted the force-torque sensor software due to it ceasing 
to send or receive messages. 

• Bite 19, 27 (Bite Acquisition Failure): The food segmen-
tation algorithm only detected a subset of the pasta helix, 
not the whole piece, leading the robot to approach it not 
perpendicular to the piece. 

• Bite 24 (Researcher Intervention): Researchers reset the 
software because the app and robot stopped communicat-
ing. 

• Bite 25 (Outlier Bite Duration): Due to paying attention 
to the conversation, the participant waited after initiating 
bite selection and after the robot moved to the resting pose, 
thereby extending this bite. 

• Bite 28-29 (User-resolved Off-nominal): Force-torque 
sensor lost WiFi connection, but regained it shortly without 
requiring researcher intervention. The user re-initiated bite 
acquisition after force-torque connection was restored. 

• Bite 32 (Researcher Intervention): Researchers restarted 
the force-torque sensor hardware, due to an issue with 
receiving UDP packets. 

• Bite 32-33 (User-resolved Off-nominal): The robot’s 
camera feed did not render on the app in bite selection. 
The user clicked the “reload video” button and then it did. 

K. P3 Study Details 

Fig. 17 shows the timeline of P3’s meal. Unlike all other par-
ticipants, P3 preferred to sit near the front of their wheelchair; 
this resulted in a much shorter distance to/from his mouth. 
Notable events in this meal include: 

• Bite 3, 13, 23-24, 42 (User-resolved Off-nominal): None 
of the masks returned from food segmentation aligned with 
the user’s desired bite. To address this, they re-invoked 
food segmentation with a new seed point. 

• Bite 6 (Researcher Intervention): During acquisition, the 
fork missed the food and hit the plate. For some reason 
(perhaps being too close to a singularity) the extraction 
motion out of the food failed, leaving the robot in contact 
with the plate. This caused all future actions to fail due to 
the robot experiencing a higher force than the threshold. To 
address this, researchers briefly manually lifted the robot 
arm, getting it out of contact with the table, while the 
participant invoked the “move above plate” action on the 
app. Addressed in System Patch 2f. 

• Bite 7, 8, 9, 24 (Bite Acquisition Failure): Due to the 
strawberry being extremely soft, it slid off the fork as the 
robot was lifting the fork up. 

• Bite 10-11, 11, 23-24 (Researcher Intervention): Re-
searchers nudged the fork in the gripper, so it better aligns 
with the robot’s URDF model (addressed in System Patch 
2d). 

• Bite 12 (User-resolved Off-nominal): Robot was unable 
to find a plan to move into the food. User clicked “back” 
and re-selected their desired food item. Partially addressed 
in System Patch 2g. 

• Bite 12-13 (Researcher Intervention): With participant 
consent, researchers moved the plate to be more centered 
on the robot arm in its “above plate” configuration, to 
increase the likelihood of motion success. 

• Bite 15, 34 (Bite Acquisition Failure): Robot arm pushed 
the strawberry out of the way as it was descending into it, 
because the curve of the strawberry aligned with the curve 
of the fork tines. 

• Bite 16, 33, 45 (Bite Acquisition Failure): Robot skew-
ered the strawberry, but it fell off as the robot was moving 
to the “resting” configuration. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. The full timeline of CR2’s meal. 

• Bite 20 (Researcher Intervention): Robot did an ex-
tremely large, multi-part motion when moving above the 
plate. A researcher attempted to click the emergency stop 
button, which didn’t register, so another resercher termi-
nated the controllers. Swivel issue addressed in System 
Patch 2c, e-stop button issue addressed in System Patch 
2e. Researchers restarted the software afterwards and the 
participant continued. 

• Bite 23 (Bite Acquisition Failure): Robot arm was off-
center and missed the strawberry (addressed in System 
Patch 2d). 

• Bite 33 (User-resolved Off-nominal): User mistakenly 
initiated a bite transfer after a failed bite acquisition. He 
promply paused and had the robot arm go back. 

• Bite 34 (Researcher Intervention): On the participant’s 
request, we re-started the code with the “vertical skewer” 
motion primitive hardcoded, as that acquisition action tends 
to have better success with strawberries. 

• Bite 44 (User-resolved Off-nominal, Outlier Bite Dura-

tion): The motion from the user’s mouth failed soon after 
it started. The user his “retry” and it completed smoothly. 

L. CR2 Study Details 

Fig. 18 shows the timeline of CR2’s meal. Although 
all other participants had their meals around a traditional 
lunchtime, CR2 had his meal between a traditional lunch and 
dinner time, resulting in him eating fewer bites before getting 
full. Notable events in this meal include: 
• Bite 0-1 (User-resolved Off-nominal): The robot’s camera 

feed did not render on the app in bite selection. The user 
clicked the “reload video” button and then it did. 

• Bite 0-1 (User-resolved Off-nominal): None of the masks 
returned from food segmentation aligned with the user’s 
desired bite. To address this, he re-invoked food segmen-
tation with a new seed point. 

• Bite 1 (Bite Acquisition Failure): The robot was off-
center and therefore missed the bite (addressed in System 
Patch 2d). 

• Bite 1 (Researcher Intervention): Researchers nudged 
the fork in the gripper, so it better aligns with the robot’s 
URDF model (addressed in System Patch 2d). 

• Bite 8 (Bite Acquisition Failures): The fork didn’t go all 
the way down to the food, perhaps due to inaccurate depth 
readings near the edge of the camera view. Addressed in 
System Patch 2b. 

• Bite 9 (Bite Acquisition Failures): The fork pushed the 
bagel piece to the side as it descended into the bagel, 

because the curve of the bagel aligned with the curve of 
the fork tines. 

• Bite 14 (Bite Acquisition Failure): The fork was off-
center on the piece of broccoli (addressed in System Patch 
2d). 

• Bite 15 (User-resolved Off-nominal): Robot was unable 
to find a plan to move into the food. User clicked “back” 
and re-selected their desired food item. Partially addressed 
in System Patch 2g. 

• Bite 15-16 (Researcher Intervention): Robot did an 
extremely large, multi-part motion when moving into the 
food. The participant clicked the emergency stop but-
ton, which immediately stopped the robot. Swivel issue 
addressed in System Patch 2c. Researchers restarted the 
software afterwards and the participant continued. 

M. P4 Study Details 

Fig. 19 shows the timeline of P4’s meal. Notable events 
include: 

• Bite 1-2, 2, 7 (User-resolved Off-nominal): The force-
torque sensor disconnected from WiFi (causing all robot 
motion to immediately stop), but reconnected shortly there-
after without researcher intervention. 

• Bite 1-2 (User-resolved Off-nominal): None of the masks 
returned from food segmentation aligned with the user’s 
desired bite. To address this, they re-invoked food seg-
mentation with a new seed point. 

• Bite 1-2 (User-resolved Off-nominal): When the user 
switched between apps on his phone, the robot web app 
rendered smaller than expected. He resolved this by reload-
ing the page. 

• Bite 1-2 (Researcher Intervention): Since the plate loca-
tion in the camera feed was too small for the user to click, 
researchers moved the plate as the participant zoomed into 
the image, ensuring the full plate was visible zoomed in. 

• Bite 1-2, 2, 3, 3-4, 7, 16, 21, 25-26 (User-resolved Off-

nominal): A full-screen “sign in to Google” pop-up opened 
on the participant’s browser. In two of those occasions, 
that caused the robot action to immediately be canceled 
by the web app (since it was no longer foregrounded). In 
all other occasions, the robot arm was already stationary, 
but nevertheless this off-nominal prevented the user from 
interacting with the system (akin to if they receive a phone 
call while eating). In all cases, the user closed the popup, 
clicked “resume” or “back” on the web app if robot action 
had been terminated, and continued his meal. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. The full timeline of P4’s meal. 

Fig. 20. The full timeline of P5’s meal. 

• Bite 4, 13, 14, 26 (Bite Acquisition Failure): The fork 
pushed the cauliflower to the side as it descended into it, 
because the curve of the cauliflower top aligned with the 
curve of the fork tines. 

• Bite 5 (Researcher Intervention): Due to the force-torque 
sensor frequently losing WiFi connection, researchers 
raised the backpack containing the router up off of the 
ground. 

• Bite 13, 24, 28, 34 (User-resolved Off-nominal): The 
broswer’s “History” tab opened full-screen, perhaps trig-
gered by the participant’s voice control due to the conver-
sation. Details and resolution are the same as the “sign in 
to Google” pop-up above. 

• Bite 16 (User-resolved Off-nominal): The robot’s code 
was hanging temporarily. The user used the app to pause, 
press back, and retry the action, which then succeeded. 

• Bite 20 (User-resolved Off-nominal): The broswer’s “Op-
tion” tab opened full-screen, perhaps triggered by the 
participant’s voice control due to the conversation. Details 
and resolution are the same as the “sign in to Google” 
pop-up above. 

• Bite 21 (User-resolved Off-nominal, Outlier Bite Du-

ration): The robot encountered an error moving from the 
user’s mouth (perhaps due to a phantom obstacle in the 
Octomap). The user left the robot there for a while as we 
were conversing and a researcher was serving him more 
food. Eventually the user hit “retry” and it resumed as 
expected. 

• Bite 22 (Researcher Intervention): The bite acquisition 
ended in such a position where the only plan that could be 
found in the allotted time limit to move to the “resting” 
configuration involved a big swivel, which the threshold 
implemented in System Patch 2c was rejecting. Thus, a 
researcher terminated the code, increased the threshold, and 
restarted it. 

• Bite 29-30, 30 (User-resolved Off-nominal): The “live 
video” view of the app automatically popped up (perhaps 

the voice control running on the user’s phone mistakenly 
heard a command and opened it). Both times, the user 
closed it so they could return to the main app screen and 
continue. 

N. P5 Study Details 

Fig. 20 shows the timeline of P5’s meal. Notable events 
include: 
• Bite 3 (Outlier Bite Duration): The user forgot they have 

to tap a button to get the robot to move back from their 
mouth, and therefore left it at their mouth for around a 
minute as we were conversing, before remembering to click 
the button. 

• Bite 8, 10, 17 (Bite Acquisition Failures): The robot arm 
went between pieces of mac, acquiring nothing. This is also 
partly because those pieces of mac were oriented with the 
”hole side up,” making it harder to skewer. 

• Bite 11 (Researcher Intervention): Participant mistak-
enly pushed the emergency stop button. To address this, 
researchers manually restarted the code. 

• Bite 13 (User-resolved Off-nominal): None of the masks 
returned from food segmentation aligned with the user’s 
desired bite. To address this, the user re-invoked food 
segmentation with a new seed point. 

• Bite 15, 24 (Bite Acquisition Failure): The robot tilted 
the piece of food as it descended into it; thus, the fork 
tines did not skewer the food. 

• Bite 17 (User-resolved Off-nominal): User mistakenly 
initiated bite transfer when the robot hadn’t acquired any-
thing. On the “detecting face” screen, they clicked “move 
above plate” to have the robot return. 

• Bite 18, 28 (User-resolved Off-nominal): Robot action 
encounted an error. The user clicked “retry,” and it pro-
ceeded smoothly. 

• Bite 22 (Bite Acquisition Failure): The robot was off-
center and only acquired a tiny piece of fish. After this 



 

 
  

  

 

 

 

 

 

 

 

 

 

 

 

 
  

  

 

 

 

 

 

 

 

 

 

 

failure, the participant decided to acquire another piece of 
fish while that small piece was still on, which succeeded. 

• Bite 28 (User-resolved Off-nominal): The robot action 
was stalling and/or hanging. The user clicked “pause” and 
“back,” which addressed it. 

APPENDIX E 
STUDY 2: SINGLE-USER, IN-HOME DEPLOYMENT 

This section contains additional details of Study 2, beyond 
the core details presented in Sec. V. 

A. Caregiver Demographics 

Table XI shows the demographics of the three caregivers 
who were present during the deployment. Although all worked 
with multiple care recipients, their familiarity with assis-
tive technology came from the assistive technologies that 
CR2 used. Thus, they were all familiar with Alexa, voice 
control, mouth joystick, power wheelchairs, a hospital bed, 
ceiling lift, accessible van, and more. The questions “How fa-
miliar are you with assistive technology for people with motor 
impairments” and “How familiar are you with robots” were 
each on 5-point Likert scales: “Not at all familiar,” “Slightly 
familiar,” “Somewhat familiar,” “Moderately familiar,” and 
“Extremely familiar.” 

B. Study 2 Schedule & Overview 

Fig. 21 shows the meal schedule for Study 2. Of the 5 
consecutive days, 3 were wheelchair days and 2 were bed 
days. On wheelchair days, CR2 used the robot to feed himself 
breakfast and dinner. On bed days, he used the robot to feed 
himself snack and dinner34 

We co-decided the meals with CR2, informed by his pref-
erences and the robot’s capabilities. We decided on the first 
5 meals before the deployment began and on the latter 5 
meals during the deployment week. The Wednesday breakfast 
(avocado toast) and part of the Friday dinner (roasted carrots 
and zucchini) were made by C2 and C3, respectively; all other 
meals were purchased from local stores and restaurants. 

All meals but the Tuesday snack had a caregiver who was 
scheduled to be there for the entire meal. As a live-in caregiver, 
C2 popped into several of the meals for part of the time 
(typically the latter half): this occurred on the Mon dinner, 
Tues snack and dinner, and Thurs snack and dinner. 

Over the course of the deployment, CR2 had the robot on 
his right, left, and front side. Across wheelchair days, he tried 
all three of the robot’s mounts: wheelchair, hospital table, and 
tripod. 

Over the course of the deployment, CR2 accessed the web 
app using his laptop and his phone. Regardless of the device, 
he used the mouth joystick to control the device. 

34Bed-days have more required activities of care in the morning. Since they 
are more rushed, CR2 opted to not use the robot to feed himself breakfast on 
those days. 

C. Semi-Structured Interview Questions 

The exact questions we asked CR2 during the semi-
structured interviews varied based on the flow of the conver-
sation. Below are a superset of questions we asked to start 
conversations (conversation-specific follow-up questions not 
included): 

1) Questions for the Care Recipient: 

a) After Every Meal: 

• What was the experience like of using the robot to eat this 
meal [while doing the co-occuring activity]? 

• What challenges did the [co-occurring activity] introduce? 
How did you overcome those challenges using the robot? 
How could the robot be improved to better address these 
challenges? 

• What surprised you about using the robot to eat this meal 
[while doing the co-occuring activity]? What would you 
do differently if you were to use the robot to eat this meal 
[while doing the co-occuring activity] in the future? 

• As it stands right now, can you envision using the robot 
regularly to eat this meal [while doing the co-occuring 
activity]? If not, what would need to changed for you to 
envision yourself using it regularly? 

• What changes in your environment or norms, if any, would 
you be willing to do for this robot to work? 

b) After The Deployment: 

• Reflecting on this week, what went well? What went 
poorly? What surprised you? 

• Think about your meal routine this week compared to 
your meal routine in past weeks. What aspects of the meal 
routine this week did you prefer compared to your meal 
routine in past weeks? What aspects of the meal routine in 
past weeks did you prefer compared to your meal routine 
this week? 

• For each of the following contexts, what went well and 
what went poorly about eating a meal with the robot? 
– Location: In-bed vs. wheelchair 
– Time: Breakfast, Snack, Dinner 
– Co-occurring activity: working, watching a movie, 

conversing, while a caregiver does another activity of 
care 

– In which of these contexts would you like to con-
tinue using the robot-assisted feeding system? In which 
would you prefer being fed by a caregiver? 

– Do more contexts come to mind in which you’d like to 
try using the robot-assisted feeding system? 

• Let’s walk step-by-step through each part of the robot-
assisted feeding system. Please share any reflections or 
feedback you have on those components, both for the web 
app and the robot. 
– Customization 
– Bite selection 
– Bite acquisition 
– Bite transfer 
– Auto-Continue 

• Is there anything else you would like to share with us? 



     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID 
Age 

Group 
Gender 

Years as 
Caregiver 

Years 
Worked 

with CR2 
Live-in? 

Impairments of Care 
Recipients 

Num 
Deployment 

Meals 

Familiarity with 
Assistive 

Technology 

Familiarity with 
Robots 

C1 25–34 F 0.5 0.5 ✗ SCI, muscular dystrophy 3 “Somewhat 
familiar” 

“Slightly 
familiar” 

C2 

C3 

55–64 

35–44 

M 

F 

25 

7 

25 

7 

✓ 

✗ 

people with motor 
impairments 

people with motor 
impairments 

8 

4 

“Extremely 
familiar” 

“Extremely 
familiar” 

“Somewhat 
familiar” 

“Not at all 
familiar” 

TABLE XI 
CAREGIVER DEMOGRAPHICS FOR STUDY 2. 

Fig. 21. An overview of the deployment schedule. Caregivers with names in parentheses were there for part, not all, of the meal. 

2) Questions for Caregivers: 

• Based on what you’ve seen of the robot arm, what do you 
think are the benefits of a robot-assisted feeding system? 
What are the drawbacks? 

• What might change in your caregiving routine if CR2 had 
access to a robot-assisted feeding system? 

• Would you feel comfortable working in a house where the 
person feeds himself with a robot-assisted feeding system? 
Why or why not? 

• What do you think of the setup procedure for the robot 
(explain it if need be). Would you be willing to set up the 
robot for CR2? What type of setup procedure would you 
like? How can we make the setup procedure simpler for 
you? 

• How do you think such a system would impact CR2’s 
health and well-being? 

• Is there anything else that you would like to share with 
us? 

D. Data Analysis 

Initial transcription of all quotes was done by OpenAI’s 
Whisper speech recognition model35. Subsequently, one re-
searcher listened to all the video recordings and corrected mis-
transcribed participant quotes, both during the meal and after 
the meal. That researcher then used thematic analysis [103] to 
tag quotes with their key themes. 

35https://apps.apple.com/us/app/whisper-transcription/id1668083311?mt=12 

https://apps.apple.com/us/app/whisper-transcription/id1668083311?mt=12
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