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Abstract

We present HARMONIC, a large multi-modal dataset of human interactions in a shared autonomy setting. The dataset
provides human, robot, and environment data streams from twenty-four people engaged in an assistive eating task
with a 6 degree-of-freedom (DOF) robot arm. From each participant, we recorded video of both eyes, egocentric video
from a head-mounted camera, joystick commands, electromyography from the participant’s forearm used to operate
the joystick, third person stereo video, and the joint positions of the 6 DOF robot arm. Also included are several data
streams that come as a direct result of these recordings, namely eye gaze fixations in the egocentric camera frame
and body position skeletons. This dataset could be of interest to researchers studying intention prediction, human
mental state modeling, and shared autonomy. Data streams are provided in a variety of formats such as video and

human-readable csv or yaml files.
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Introduction

In human-robot collaborations, robots need to perceive,
understand, and predict the effects of their own actions as
well as the actions of their human partners. This is especially
important for assistive robots, which perform actions toward
a (sometimes implicit) human goal. To successfully produce
these assistive actions, the robot system must understand and
predict human mental states—the human’s goals, intentions,
and future actions—that determine what assistance the robot
should provide. Understanding these mental states requires
perceiving and interpreting human behavior during human-
robot collaborations.

When people complete physical tasks, their external
behaviors—Iike their eye gaze—can reveal a lot about
their internal mental states. For example, people almost
exclusively fixate their gaze on objects or locations involved
in their current task’ . People fixate an object with their gaze
before they even begin moving their hand toward it’ . Gaze
lingers on key points in the task, such as obstacles, revealing
certain landmarks of manipulation®. Additionally, people
gaze at objects before uttering verbal references, which
others can use for disambiguating and predicting speech?®? .

Other human behaviors can also reveal current mental
states. Electromyography (EMG) signals, which record the
electrical stimulation of muscle fibers, can indicate what
action people are attempting to complete with their hands.
Pupil size has been correlated with cognitive load”. And
understanding current human body posture can both reveal
desired tasks and help to avoid potentially dangerous
collisions” .

In this paper, we present the Human And Robot Mul-
timodal Observations of Natural Interactive Collaboration
(HARMONIC) dataset. The HARMONIC dataset contains
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Figure 1. The HARMONIC dataset provides multimodal
human, robot, and environmental data collected during an
assistive human-robot collaboration.

human, robot, and environment data collected during the
human-robot collaborative task (Figure 1). In this task, peo-
ple control an assistive robot arm to pick up bites of food
in a simple eating scenario. The robot is controlled through
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a 2 axis joystick, and in some cases it provides additional
assistance through shared autonomy” .

Human behavioral data in this dataset include an
egocentric RGB video with eye gaze fixation position, IR
videos of both eyes, an external view of the participant
through stereo video, and EMG recordings on the joystick-
controlling arm. Additional data includes continuous robot
position, joystick control inputs from the user, and 3D
locations of the food morsels. These data streams are detailed
in the sections below.

We expect this dataset to be useful for robotics researchers
investigating human-robot interaction and collaboration,
as well as computer perception researchers studying
multimodal human behavior. For example, researchers could
use this dataset to learn correlations between eye gaze and
joystick control, in order to improve the predictions of shared
autonomy algorithms. Others might be interested in the
dynamics of joystick inputs during different amounts of robot
assistance. This dataset is currently being used to identify
human errors by learning a normative gaze behavior model
and identifying anomalies” .

Prior Work

Multimodal datasets have garnered much interest in many
different communities, such as psychology, computer vision,
human-robot interaction, and natural language processing.
These datasets, though, can be difficult to collect on a large
scale due to the increasing engineering demand required with
each additionally desired signal. As such, many multimodal
datasets have either few participants or instances, or few
signals. This dataset attempts to give researchers access to a
dataset that has a substantial number of individual instances
and datastreams. Due to the high number of data streams, this
dataset has the potential to impact research in many different
fields by utilizing any subset of the offered modalities. This
impact, and the work to which is relates, is described in the
following section.

Robotic Control

Eyegaze, EMG, and body pose have all been useful
signals for robotic control. Since eyegaze is a rich signifier
of intention during manipulation, both by hand’*? and
by robot?, its use has been explored through numerous
robotic collaboration settings, including anticipating which
object a user will request’ , triggering assistive aid during
autonomous driving’ . Electromyography signals have been
used for robot control® and task monitoring” . By making
this dataset available, we intend to enable further research
into these control methods.

Social Gaze

The field of social gaze studies both the understanding and
synthesis of gaze patterns during social interactions. Much
of this work is done in settings when multiple humans are
interacting with each other or a number of robots. From these
studies we can begin to understand what role gaze plays
in conversation. Gaze, though, is an extremely informative
signal in many contexts.
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Theory of Mind

Also critical to successful human-robot interaction is the
ability of the robot to understand what the human desires in
a given task. Recently, the Charades-Ego datasets introduced
the problem of perspective taking, or discovering links
between first and third person videos. HARMONIC builds
on this idea by allowing researchers to discover correlations
between any number of the offered streams, potentially
giving an agent a more complete view of the humans
intentions.

Eye Gaze Mechanics

In addition to developing systems that improve specific
subsets of HRI, we believe that this dataset could also
provide an opportunity for researchers to develop, test,
and improve eye gaze perception algorithms. While there
exist natural, egocentric, eye gaze datasets many of these
include the participants hands in the majority of frames.
HARMONIC gives researchers an opportunity to develop
eye gaze prediction algorithms in scenarios where the
participants eyes and hands have differing foci of attention.

Data Collection Procedure

This section presents a brief overview of the user study and
robot system in order to explain the conditions under which
the data streams were recorded.

Participants

Twenty-four participants were recruited from the Pittsburgh
area. Of these, 13 were women and 11 were men. 17 were
18-24 years old, 4 were 25-30 years old, 1 was 31-35 years
old, and 2 were 41-45 years old. Participants were screened
so that those who had prior experience using this robot
arm in this type of eating study were not included in this
dataset. Thus, the participants were novices at the task. The
experiment took place in the Human And Robot Partners Lab
(HARP Lab) on the Carnegie Mellon University campus, and
participants were compensated $15 for their time.

Protocol

Participants performed a task which consisted of controlling
a robot arm to position a fork above one of three
marshmallows on a plate (see Fig. 1). They controlled a robot
with a joystick using modal control: the joystick dimensions
moved the end-effector of the robot in z and y, z and yaw,
or pitch and roll, and a button on the joystick allowed the
participant to cycle between those control configurations.
When the participant had placed the fork above their desired
marshmallow, or otherwise determined that the task was
complete, they held down another button on the joystick.
The robot would autonomously move down to the height of
the plate and spear the marshmallow if it was in the right
place, and then move the arm in a serving motion towards
the participant’s mouth. The button press concluded the trial,
and the robot was reset to the starting configuration.
Participants were given a brief introduction as to the
purpose of the study and then began a five-minute
familiarization period, in which the participant controlled
the robot in the teleoperation mode and data was not
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recorded. Next, participants were fitted with eye gaze and
EMG sensors (described below). They performed the task
five times in sequence for each of four assistance modes
(described in the next section). Assistance mode order was
fully counterbalanced among participants. After each block
of five trials for an assistance mode, participants were given
a brief survey to record their subjective perceptions about the
algorithm.

Assistance Conditions

Participants operated the robot in each of four different
assistance conditions: fully teleoperated, two different levels
of assistance according to the shared autonomy framework* ,
and a version of assistance in which the robot is fully
controlled autonomously and user input is used only for goal
inference.

The following is a brief description of how assistance
is calculated; see the journal paper® for a full description.
The combined human-robot system is modeled as a partially
observable Markov decision process (POMDP), where the
participant’s goal is represented as one unknown member
of a small set of possible goal objects. Participant inputs
via joystick are treated as observations, and the algorithm
assumes that the user is noisily optimizing a cost function
parameterized by their unknown goal. Therefore, the
MaxEntIOC framework can be used to evaluate a belief
distribution over the known goal set. From this belief state,
the overall POMDP is solved by applying the QMDP
approximation, which has proved reliable for similar shared
control scenarios. The resulting robot action consists of a
computed assistive action based on the inferred user goal
distribution combined with the original applied user action.

To provide different assistance levels, the shared
autonomy transition function was modified slightly. In
Javdani et al.?, the given transition function applies both
user and robot control as determined by:

Qapplied = U + a.

In order to adapt the amount of user control, the applied
action was parameterized by a value 7,

Aapplied = (1 —7)u + 7a,

which trades off between the relative strengths of the user
command and the robot assistance. Note that the original
shared autonomy procedure would correspond to the case
v =0.5.

The four conditions corresponded to four different levels
of ~:

Direct teleoperation, v = 0. The assistance signal a was
computed but completely discarded, so the user had full
manual control over the robot.

Low assistance, v = 0.33. The assistance signal was
combined with the direct user control, with the user signal
weighted double.

High assistance, v = 0.67. The assistance signal was
combined with direct user control, but the assistance signal
was more highly weighted.
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Robot control, v = 1. The user control signal was not
passed through to the robot control. It was used for goal
inference only, and the robot was autonomously controlled
based on its goal inference results.

Sensors

Participant behavior was captured using a variety of sensors.

Eye gaze Participant eyegaze direction was captured by a
Pupil Labs Pupil” ? sensor. This sensor consists of a glasses-
like frame with an infrared camera with infrared illumination
mounted below each eye for dark pupil tracking, plus a
third RGB camera oriented outward to capture egocentric
video. The eye cameras capture video at 120 Hz, and pupil
labs software detects the pupil pixel center. Before data is
captured, the pupil locations and world camera videos are
calibrated by placing a marker in the field of view of the
participant at several points and asking the participant to look
at the center of the marker (“manual marker calibration’).
For most of the participants, this calibration routine was
recorded; it is available in the calib folder for each
participant. In addition, the calibration is checked by asking
the participants to look at particular places in the scene
periodically (between each condition); recordings of these
procedures are found in the check folders.

EMG Participant muscle activation while controlling the
joystick was controlled using a Myo sensor’. Due to
initialization failures, this data is only available for about
20% of the runs (see Table 1 for full details). It consists of
the following signals:

e EMG message, denoting the activation of eight
individual EMG sensors

e ORI message, denoting the orientation of the arm in
roll/pitch/yaw

e IMU message, denoting the readings of the IMU
attached to the armband

External video Participant behavior was captured using a
Stereolabs’ ZED camera. Left and right videos are stored
as separate AVI files. The ZED camera was placed on a
tripod at approximately the same (marked) location for each
trial in order to capture a full-on view of the participant
and occasional views of the scene. ZED videos are available
for the 10 participants who consented to their images being
released; in other cases, data is not provided, but offline
skeleton tracking information run on that data is available.

Descriptive Statistics

This dataset consists of a total of 480 trials, comprising
20 trials for 24 participants. Altogether, the data represents
about five hours of continuous instrumented robot control.
A summary of the data available divided by type appears in
Table 1.

Data Streams

The data is organized first by participant, with folders p100-
p123 corresponding to the twenty-four participants. Within
each participant folder, there are folders for the three types
of recordings: the calib folder contains recordings of



4 Journal Title XX(X)
Left Eye Right Eye Egocentric Video ZED Camera
Total duration (h:m:s) 5:19:26 5:10:45 5:33:44 2:21:4
Total frames 2299877 2237380 600728 253921
Nominal frequency (Hz) 120 120 30 30
Frames dropped 133301 195860 7459 339155
Coverage (%) 94.52 91.95 98.77 42.81
Present (%) 100.00 100.00 100.00 40.04
Coverage if present (%) 94.52 91.95 98.77 100.00
Joystick  Robot position Myo EMG MyoIMU Myo ORI
Total duration (h:m:s) 4:56:00 5:48:05 1:10:49 1:10:53 1:10:53
Total frames 2131160 1670798 212465 212664 212659
Nominal frequency (Hz) 120 80 50 50 50
Frames dropped 114250 1680 802368 802204 802206
Coverage (%) 94.91 99.90 20.94 20.95 20.95
Present (%) 100.00 100.00 21.48 21.48 21.48
Coverage if present (%) 9491 99.90 99.75 99.83 99.83

Table 1. Descriptive statistics of each data stream in the data set. Total duration and Total frames refer to the collective amount of
data of that signal over all trials and participants. Total duration is extracted by dividing the total frames by the nominal frequency.
Frames dropped are based on interpolating from the nominal frame rate and detecting missing data. Coverage is computed by
dividing the number of data frames by the expected number of data frames from the nominal frequency over the whole dataset,
Present indicates the fraction of trials that have at least one data point of that type, and Coverage if present is the total number of
data frames divided by the expected number evaluated only if at least one data point is present in the trial.

calibration passes, the check folder contains intermediate
gaze accuracy checks, and the run folder contains standard
data collection runs. Each of these recording types contain
numbered subfolders indicating the run sequence.

A single trial capture (a numbered folder) has the
following subfolders:

raw_data contains binary capture information as
recorded, in bagfiles or pickle files.

text_data contains exported CSV files containing
the raw data. The particular data streams available
there are detailed below.

videos contains video files exported as AVI, in
addition to the timestamps of each frame as either
numpy (* .npy) or raw text files.

stats contains a number of YAML files detailing
statistical information about the trial and overall data
stream, including the number of records, approximate
time distances between individual records, and
estimates of the times when data points may have been
dropped based on the nominal data collection frame
rate.

gaze contains the collected gaze data in a format
suitable for import, analysis, and replay through the
Pupil Labs software.

processed contains a number of new formats of
data extrapolated from the underlying data, including
a video of the egocentric recording with a dot overlaid
at the gaze point, a bag file for visualization through
an external package, skeleton tracking of ZED video
information, etc. More processed results may become
available as we continue to work with the data.
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Timing and synchronization

All data points were timestamped on collection and are
stored as either 32-bit or 64-bit floating point values in
number of nanoseconds from the Unix epoch. The CSV
files available in text_data provides this data in several
columns for convenience. Certain data streams provide an
orig_timestamp field; this field is a relic of the data
processing step to adjust all time to a common epoch and
may be ignored.

To ease the process of rectifying all of these data streams,
two common indices are provided for all data streams.
The world_index field gives the corresponding frame
number of the egocentric video for each data point (i.e.,
the index of the frame whose timestamp is the first value
that occurs after the timestamp of the data point). A second
common index, world_index_corrected, provides a
second index into the egocentric video, except with a
correction for frames that were dropped in that video.
Thus, the world_-index_corrected value represents
roughly a common 30Hz clock throughout the trial. For
more sophisticated data alignment, please use the provided
timestamps or see the data loading tool provided separately
from the dataset.

Eye Gaze

Eye gaze videos are recorded at 120 Hz and
located in the videos folder as eyeO.mp4 and
eyel.mpd4. The timestamp of the data collection

of each frame is available in the corresponding
NumPy binary file, eyeO_timestamps.npy and
eyel_timestamps.npy. The automated pupil detection
results for each eye are in the text_data folder, under
pupil_eyeO.csv and pupil_eyel.csv. Field names
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correspond to the output of the 3D pupil detection process
in Pupil Labs; see their documentation for an explanation of
the fields.

The egocentric video is available in the videos folder as
world.mp4, with timestamps corresponding to individual
frames in world timestamps.npy. The calculated gaze
position within the corresponding video frame is given in
text_data/gaze_positions.csv. See the pupil labs
documentation for a full description of the fields. We note
here that the fields norm pos_x and norm_pos_y in that
file correspond to the (x,y) pixel in coordinates normalized
to the egocentric video frame size, with the bottom left as
(0,0) and the top right (1, 1).

The data used to calibrate between pupil data and
gaze point is stored for each run in the text files
pupil_cal_eyeO.csv, pupil_cal_eyel.csv, and
world_cal_positions.csv. This data is the same
between runs of the same participant and is provided as
a convenience to recalculate a calibration if desired. The
details of how the current calibration is derived from this data
can be found in the Pupil Labs software documentation.

Third Person Video

ZED videos were recorded using the Stereolabs ZED
software, version 1.1.0. Data was stored as an internal
Stereolabs SVO file, which includes separate left and right
videos, as well as a common timestamp. The videos were
extracted to the videos directory as zed_left.avi
and zed_right.avi, and the timestamps were rescaled
to the Unix epoch and stored as an integer number of
nanoseconds from the epoch in zed_ts.txt, as well as in
the same floating-point NumPy format as the other videos
in zed_timestamps.npy. The zed_corrs.csv stores
the correlations to a common index, as explained above.

Additional sensor data

The following data streams are also available, all in
the text_data directory. They have been extracted or
calculated from the binary storage in the raw_data
directory.

e control mode.txt contains a single character
referring to the assistance condition of that trial, where
0 represents direct teleoperation and 3 represents robot
control.

e morsel.yaml is a YAML file with the transforms
for each detected morsel positions in the robot base
frame.

e ada_joy.csv stores the raw joystick input provided
by the user. Note that the joystick input is only
provided when it is unchanged from the previous
message, so the raw data has inconsistent timing. For
ease of use, the joystick data has been resampled to a
common 120 Hz frequency, with missing data filled in
by holding the previous value. Duplicate data can be
noted by seeing that the header fields are unchanged
when the data is held.

e input_info.csv contains information about the
user input to the robot. The robot_mode field
denotes which control mode the robot is in (x/y,
z/yaw, or pitch/roll), and the rest of the fields denote
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the applied twist corresponding to the user’s joystick
input.

e assistance_info.csv contains the outcome of
the shared autonomy algorithm. It stores the current
probability inferred for each goal and the resultant
twist applied to the robot at that timestep.

e joint_states.csv contains the information for
each joint of the robot.

e robot_position.csv contains the cartesian posi-
tion of each of the robot links, as calculated
from the forward kinematics using the data from
joint_states.csv.

e myo_emg.csv contains the raw EMG output of the
Myo sensor.

e myo_imu.csv contains the data from the IMU on the
Myo sensor.

e myo_ori.csv contains the orientation data received
from the Myo sensor.

Known Issues
Missing Data

Due to computational load, certain data streams may have
periodic dropouts. The stats directory contains some info
on when and how often these occur, and overall statistics are
given in Table 1. The missing data is particularly exacerbated
for the Myo signal. Due to an initialization failure, the Myo
data is unavailable for certain participants. In these cases,
the text files are present for ease of access but contain no
data. Finally, due to permissions restrictions, the ZED video
capture is only available for certain participants. Within those
participants, some initialization failure means that videos of
certain trials are occasionally missing.

Accessing the Data

The data will be hosted on the HARP Lab website:
http://harp.ri.cmu.edu/harmonic. Several files
are provided for download:

e harmonic_all.tar.gz, a compilation of all of
the data, roughly 430 Gb.

e harmonic_data.tar.gz, consisting of the
text_data, videos, and stats directories,
approximately 230 Gb.

e harmonic_sample.tar.gz, consisting of all of
the data for a single participant, roughly 30 Gb.

The data sets will be versioned using semantic versioning,
and that page will maintain a log of all changes that may be
made to the dataset after release.

Conclusion

In this paper, we present a dataset of humans performing
a food acquisition task by controlling a robot manipulator.
During this task, a variety of types of participant data were
collected, including eyegaze information, electrymyography
of the controlling arm, stereo video, and robot controller
information. This dataset can enable research into human-
robot collaboration and multimodal human behavior analy-
sis.
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