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Abstract

Adaptation is critical for effective team collaboration. This paper introduces a computational formalism for mutual adap-
tation between a robot and a human in collaborative tasks. We propose the Bounded-Memory Adaptation Model, which

is a probabilistic finite-state controller that captures human adaptive behaviors under a bounded-memory assumption.

We integrate the Bounded-Memory Adaptation Model into a probabilistic decision process, enabling the robot to guide

adaptable participants towards a better way of completing the task. Human subject experiments suggest that the pro-

posed formalism improves the effectiveness of human-robot teams in collaborative tasks, when compared with one-way

adaptations of the robot to the human, while maintaining the human’s trust in the robot.
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1. Introduction

Robots are entering our homes and workplaces, comple-
menting human abilities and skills in many application
domains, including manufacturing, health-care, etc. They
co-exist in the same physical space with humans and aim to
become trustworthy partners in a team. Research on human
teams shows that mutual adaptation, which requires all
team-members involved to adapt their behaviors to fulfill
common team goals, significantly improves team perfor-
mance (Mathieu et al., 2000). We believe that the same
holds for human-robot teams. Our main goal in this work
is to develop a computational framework for human-robot
mutual adaptation.

Consider, for example, the table-carrying task in
Figure 1. A human and HERB (Srinivasa et al., 2010), an
autonomous mobile manipulator, work together to carry
a table out of a room. There are two strategies: the robot
facing the door (Goal A) or the robot facing away from
the door (Goal B). Assume that the robot prefers Goal A,
as the robot’s forward-facing sensor has a clear view of
the door, leading to better task performance. Not aware of
this, an inexperienced human partner may prefer Goal B.
Intuitively, if the human is adaptable and willing to accom-
modate the robot, the robot guides the human towards
Goal A, which provides a better task performance overall.
If the human is not adaptable and insists on his own prefer-
ence, the robot then complies in order to complete the task,

though sub-optimally. If the robot insists on its own pref-
erence, Goal A, it may lose the human’s trust, leading to a
deteriorating team performance or even disuse of the robot
(Hancock et al., 2011; Lee et al., 2013; Salem et al., 2015).
The challenge is that when encountering a new human
partner, the robot may not know his or her adaptability and
must learn it on the fly through interaction.

In this work, we propose a computational model for
human-robot mutual adaptation in collaborative tasks. We
build a model of human adaptive behaviors and integrate the
model into a probabilistic decision process. One key idea
here is the Bounded-Memory Adaptation Model (BAM),
which is a probabilistic finite-state controller that captures
human adaptive behaviors. The BAM assumes that the
human operates in one of several collaboration “modes”
and adapts the behavior by switching among the modes. To
choose a new mode, the human maintains a finite history of
past interactions and switches to the new mode probabilisti-
cally according to the adaptability level. The human’s adapt-
ability level is a BAM model parameter unknown to the
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Fig. 1. A human and a robot collaborate to carry a table through a door. (a) The robot prefers facing the door (Goal A), as it has a full

view of the door. (b) The robot faces away from the door (Goal B).

robot a priori. To work with such an adaptable human effec-
tively, the robot must consider two sometimes conflicting
objectives:

• gather information on the unknown parameter through
interaction, in order to decide between complying with
the human’s preference and guiding the human towards
a better cooperation mode for task completion;

• choose actions towards the goal, e.g. moving the table
out of the room.

We treat the unknown model parameter as a latent variable
and embed the BAM in a probabilistic decision process,
called the Mixed Observability Markov Decision Process

(MOMDP) (Ong et al., 2010), for choosing robot actions.
The computed MOMDP policy optimally balances the
tradeoff between gathering information on human adapt-
ability and moving towards the goal. Since the MOMDP
model has the BAM embedded within, the chosen actions
enable the robot to adapt to an adaptive human, thus
achieving mutual adaptation as a result.

Our work contrasts with earlier approaches that rely on
one-way adaptation of the robot to the human, such as cross-
training (Nikolaidis and Shah, 2013), a state-of-the-art
method for human-robot team training. One-way adaptation
focuses on computing a robot policy aligned with human
preference. It ignores that the human preference may result
in suboptimal task performance, as our example shows. Fur-
ther, we cannot resolve this issue by having the robot insist
on executing an optimal policy against the human’s pref-
erence. This may erode the human’s trust in the robot and
lead to deteriorating team performance over time (Hancock
et al., 2011; Lee et al., 2013; Salem et al., 2015).

Figure 2 shows examples of human and robot behav-
iors for three simulated humans in the table-carrying task
(Figure 1). The robot estimates the unknown human adapt-
ability through interaction. User 1 is fully non-adaptable
with α = 0. The robot infers this after two steps of interac-
tion and switches its action to comply with the human pref-
erence. User 3 is fully adaptable with α = 1 and switches to
accommodate the robot preference after one step of interac-
tion. User 2 is adaptable with α = 0.75. After several steps,
the robot gets a good estimate on the human adaptability
level and guides the human to the preferred strategy. We

want to emphasize here that the robot executes a single pol-
icy that adapts to different human behaviors. If the human is
non-adaptable, the robot complies to the human’s preferred
strategy. Otherwise, the robot guides the human towards a
better strategy.

We are interested in studying whether a robot, under
our proposed approach, is able to guide human partners
towards a better collaboration strategy, sometimes against
their initial preference, while still retaining their trust. We
conducted a human subject experiment online via video
playback (n = 69) on the simulated table carrying task
(Figure 1). In the experiment, participants were significantly
more likely to adapt, when working with the robot utilizing
our mutually adaptive approach, when compared with the
robot that cross-trained with the participants. Additionally,
the participants found that the mutually adaptive robot has
performance not worse than the cross-trained robot. Finally,
the participants found that the mutually adaptive robot was
more trustworthy than the robot in executing a fixed strat-
egy optimal in task performance, but ignoring the human
preference.

We are also interested in how adaptability and trust
change over time. We hypothesized that trust in the mutu-
ally adaptive robot increases over time for non-adaptable
participants, as previous work suggests that robot adap-
tation significantly improves perceived robot trustworthi-
ness (Shah et al., 2011), and that the increase in trust results
in a subsequent increased likelihood of human adaptation to
the robot. A human subject experiment on repeated table-
carrying tasks (n = 43) did not support this hypothesis.

To study the generality of our model, we hypothesized
that non-adaptable participants in the table-carrying task
would be less likely to adapt in a different collabora-
tive task. A follow-up human subject experiment with a
hallway-crossing task (n = 58) confirmed the hypothesis.

In the following, Section 2 reviews related work. Section
3 formally describes the problem setting. Section 4 and 5
presents BAM, the proposed model of human adaptation,
and the integration of BAM in the robot decision making
process using an MOMDP formulation. Section 6 and 7
describes our human subject experiments and presents
the main findings that suggest significant improvement
in human-robot team effectiveness, while human subject



620 The International Journal of Robotics Research 36(5–7)

Fig. 2. Sample runs on the human-robot table-carrying task, with three simulated humans of adaptability level α = 0, 0.75, and 1. A

fully adaptable human has α = 1, while a fully non-adaptable human has α = 0. In each case, the upper row shows the probabilistic

estimate on α over time. The lower row shows the robot and human actions over time. Red color indicates human (white dot) and robot

(black dot) disagreement in their actions, in which case the table does not move. The columns indicate successive time steps. User 1 is

non-adaptable, and the robot complies with his preference. Users 2 and 3 are adaptable to different extent. The robot successfully guides

them towards a better strategy.

ratings on the robot performance and trust are compara-
ble to those achieved by cross-training, a state-of-the-art
human-robot team training practice. Finally, we discuss the
effects of repeated trials on participants’ adaptability over
time in Section 8 and the transfer of adaptability across
tasks in Section 9.

2. Relevant work

There has been extensive work on one-way robot adaptation
to humans. Approaches involve a human expert providing
demonstrations to teach the robot a skill or a specific task
(Argall et al., 2009; Atkeson and Schaal, 1997; Abbeel and
Ng, 2004; Akgun et al., 2012; Chernova and Veloso, 2008;
Nicolescu and Mataric, 2003). Robots have also been able
to infer the human preference online through interaction.
In particular, partially observable Markov decision process
(POMDP) models have allowed reasoning over the uncer-
tainty on the human intention (Broz et al., 2011; Doshi
and Roy, 2007; Lemon and Pietquin, 2012). The MOMDP
formulation (Ong et al., 2010) has been shown to achieve
significant computational efficiency and has been used in
motion planning applications (Bandyopadhyay et al., 2013).
Recent work has also inferred human intention through
decomposition of a game task into subtasks for game AI

applications. One such study (Nguyen et al., 2011) focused
on inferring the intentions of a human player, allowing a
non-player character (NPC) to assist the human. Alterna-
tively, Macindoe et al. (2012) proposed the partially observ-
able Monte-Carlo cooperative planning system, in which
human intention is inferred for a turn-based game. Niko-
laidis et al. (2015) proposed a formalism to learn human
types from joint-action demonstrations, infer online the
type of a new user and compute a robot policy aligned
to their preferences. Simultaneous intent inference and
robot adaptation has also been achieved through propaga-
tion of state and temporal constraints (Karpas et al., 2015).
Another approach has been the human-robot cross-training
algorithm, where the human demonstrates their preference
by switching roles with the robot, shaping the robot reward
function (Nikolaidis and Shah, 2013). Although it is pos-
sible that the human changes strategies during the training,
the algorithm does not use a model of human adaptation
that can enable the robot to actively influence the actions of
its human partner.

There have also been studies in human adaptation to
the robot. Previous work has focused on operator train-
ing for military, space, and search-and-rescue applications,
with the goal of reducing the operator workload and oper-
ational risk (Goodrich and Schultz, 2007). Additionally,
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researchers have studied the effects of repeated interac-
tions with a humanoid robot on the interaction skills of
children with autism (Robins et al., 2004), on language
skills of elementary school students (Kanda et al., 2004),
as well as on users’ spatial behavior (Green and HÃ¼tten-
rauch, 2006). Human adaptation has also been observed in
an assistive walking task, where the robot uses human feed-
back to improve its behavior, which in turn influences the
physical support provided by the human (Ikemoto et al.,
2012). While the changes in the human behavior are an
essential part of the learning process, the system does not
explicitly reason over the human adaptation throughout the
interaction. On the other hand, Dragan and Srinivasa (2013)
proposed a probabilistic model of the inference made by
a human observer over the robot goals, and introduced a
motion generating algorithm to maximize this inference
towards a predefined goal.

The proposed formalism of human-robot mutual adapta-
tion is an attempt to close the loop between the two lines
of research. The robot leverages a human adaptation model
parameterized by human adaptability. It reasons probabilis-
tically over the different ways that the human may change
the strategy and adapts its own actions to guide the human
towards a more effective strategy when possible.

Mutual adaptation between agents has been studied
extensively in game theory (Fudenberg and Tirole, 1991).
Game theory often relies on strong assumptions on the
rationality of agents and the knowledge of payoff functions.
These assumptions may not be suitable when agents are
unable or unwilling to reason about optimal strategies for
themselves or others (Fudenberg and Levine, 1998). This is
particularly true in the human-robot team setting, when the
human is unsure about how the robot will act and has lit-
tle time to respond. We propose a model of human adaptive
behaviors based on a bounded memory assumption (Powers
and Shoham, 2005; Monte, 2014; Aumann and Sorin, 1989)
and integrate it into robot decision making.

This paper is an extension of our earlier work (Nikolaidis
et al., 2016), with a new collaborative task where a human
and a robot cross a corridor and with additional human
subject experiments on human adaptability.

3. Problem setting

A human-robot team can be treated as a multi-agent system,
with world state xworld ∈ X world, robot action aR ∈ AR, and
human action aH ∈ AH. The system evolves according to a
stochastic state transition function T : X world × AR × AH →

5( X world). At each time step, the human-robot team receives
a real-valued reward R( xworld, aR, aH). Its goal is to maximize
the expected total reward over time:

∑∞
t=0 γ tR( t), where the

discount factor γ ∈ [ 0, 1) gives higher weight to immediate
rewards than to future ones.

The robot and the human choose their actions inde-
pendently. To compute the robot actions that maximize
the total reward, we first model the human behavior. We

Fig. 3. Integration of BAM (Bounded-Memory Adaptation

Model) into MOMDP (Mixed Observability Markov Decision

Process) formulation.

assume that the human acts according to an adaptive
stochastic policy πH : X world × Ht → 5( AH), which
chooses the next action stochastically based on the cur-
rent world state xworld and the history of interactions ht =
(

xworld( 0) , aR( 0) , aH( 0) , . . . , xworld( t−1) , aR( t−1) , aH( t−

1)
)

. Specifically, BAM, our proposed model of human
adaptation, defines a set M of modal policies or modes and
assumes that the human switches among the modes stochas-
tically. A mode µ : X world × Ht × AR × AH → {0, 1} is a
deterministic policy that maps the current world state and
history to joint human-robot actions. At each time step, the
human follows a mode µH ∈ M and observes that the robot
follows a mode µR ∈ M . To collaborate with the robot, the
human may switch to µR at the next time step, with proba-
bility α. If α = 1, the human switches to µR almost surely.
If α = 0, the human insists on the original mode µH and
does not adapt at all. Intuitively, α captures the human’s
inclination to adapt.

If the human is not adaptable, the robot must switch to
µH eventually in order to complete the task. If the human
is adaptable and µR provides higher total reward than µH,
the robot then stays with µR, expecting the human to fol-
low. The robot may interact with different humans, and the
adaptability level α of a new human teammate is unknown
in advance. What shall the robot do? To compute a policy
for the robot, we treat α as a latent variable and embed the
BAM for the human in an MOMDP (Figure 3), which is a
structured version of the more common Partially Observ-
able Markov Decision Process (POMDP) (Kaelbling et al.,
1998). The solution to the MOMDP is a robot policy πR that
estimates the value of α through the history of interactions,
and uses the estimate to predict future human actions and
choose the best robot actions towards task completion. The
policy is optimal in the sense that it achieves the maximum
expected total reward among all policies for the human-
robot team, under the assumed human adaptive behavior
model.

More details are given in the next two sections.

4. The bounded memory adaptation model

We model the human policy πH as a probabilistic finite-state
automaton (PFA), with a set of states Q : X world ×Ht. A joint
human-robot action aH, aR triggers an emission of a human
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and robot modal policy f : Q × M × M → {0, 1}, as well as
a transition to a new state P : Q → 5( Q).

4.1. Bounded memory assumption

Herbert Simon proposed that people often do not have the
time and cognitive capabilities to make perfectly rational
decisions, in what he described as “bounded rationality”
(Simon, 1979). This idea has been supported by studies
in psychology and economics (Kahneman, 2003). In game
theory, bounded rationality has been modeled by assuming
that players have a “bounded memory” or “bounded recall”
and base their decisions on recent observations (Powers and
Shoham, 2005; Monte, 2014; Aumann and Sorin, 1989). In
this work, we introduce the bounded memory assumption
in a human-robot collaboration setting. Under this assump-
tion, humans will choose their action based on a history of
k-steps in the past, so that Q : X world × Hk .

4.2. Feature selection

The size of the state-space in the PFA can be
quite large (|X world|k+1|AR|k|AH|k|). Therefore, we approx-
imate it using a set of features, so that φ( q) =

{φ1( q) , φ2( q) , . . . , φN ( q) }. We can choose as features the
frequency counts φH

µ, φR
µ of the modal policies followed in

the interaction history, so that

φH
µ =

k
∑

i=1

[µH
i = µ] φR

µ =

k
∑

i=1

[µR
i = µ] ∀µ ∈ M (1)

µH
i and µR

i is the modal policy of the human and the robot
i time-steps in the past. We note that k defines the history
length, with k = 1 implying that the human will act based
only on the previous interaction. Drawing upon insights
from previous work which assumes maximum likelihood
observations for policy computation in belief-space (Platt
et al., 2010), we used as features the modal policies with
the maximum frequency count

µH = arg max
µ

φH
µ µR = arg max

µ

φR
µ (2)

The proposed model does not require a specific feature
representation. For instance, we could construct features
by combining modal policies µH

i , µR
i using an arbitration

function (Dragan and Srinivasa, 2012).
For the case of fully observable modes, it is sufficient

to retain only the k-length mode history, rather than Hk ,
simplifying the problem. In the general case of partially
observable modes, though, the human would need to main-
tain a probability distribution over robot modes, and Hk may
be required to model the human inference. We leave this
case for future work.

Fig. 4. The BAM human adaptation model.

4.3. Human adaptability

We define the adaptability as the probability of the human
switching from their mode to the robot mode. It would be
unrealistic to assume that all users are equally likely to
adapt to the robot. Instead, we account for individual dif-
ferences by parameterizing the transition function P by the
adaptability α of an individual. Then, at state q the human
will transition to a new state by choosing an action specified
by µR with probability α, or an action specified by µH with
probability 1 − α (Figure 4).

In order to account for unexpected human behavior, we
assign uniformly a small, non-zero probability ε for the
human taking a random action of some mode other than µR,
µH. The parameter ε plays the role of probability smooth-
ing. In the time-step that this occurs, the robot’s belief on α

will not change. In the next time-step, the robot will include
the previous human action in its inference of the human
mode µH.

We note that the Finite State Machine in Figure 4 shows
the human mode transition in one time-step only. For
instance, if the human switches from µH to µR and k = 1,
in the next time-step the new human mode µH will be what
was previously µR. In that case, oscillation between µR and
µH can occur. We discuss this in Section 7.3.

4.4. Characterizing modal policies

At each time-step, the human and robot modes are not
directly observed, but must be inferred from the human and
robot actions. This can be achieved by characterizing a set
of modal policies through one of the following ways:

Manual specification. In some cases the modal policies can
be easily specified. For instance, if two agents are crossing
a corridor (Section 9), there are two deterministic policies
leading to task completion, one for each side. Therefore, we
can infer a mode directly from the action taken.
Learning from demonstration. In previous work, joint-
action demonstrations on a human-robot collaborative task
were clustered into groups and a reward function was
learned for each cluster (Nikolaidis et al., 2015), which we
can then associate with a mode.
Planning-based prediction. Previous work assumes that
people move efficiently to reach destinations by optimizing
a cost-function, similarly to a goal-based planner (Ziebart
et al., 2009). Given a set of goal-states and a partial tra-
jectory, we can associate modes with predictive models of
future actions towards the most likely goal.
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Fig. 5. Different paths on MOMDP policy tree for human-robot

(white/black dot) table-carrying task. The circle color represents

the belief on α, with darker shades indicating higher probability

for smaller values (less adaptability). The white circles denote a

uniform distribution over α. User 1 is inferred as non-adaptable,

whereas Users 2 and 3 are adaptable.

Computation of nash equilibria. Following a game-
theoretic approach, we can view the interaction as a stochas-
tic game and restrict the set of modal policies to the equilib-
rium strategies. For instance, we can formulate the example
of human and robot crossing a corridor as a coordination
game, where strategies of both agents moving on opposite
sides strictly dominate strategies where they collide.

5. Robot planning

In this section we describe the integration of BAM in the
robot decision making process using an MOMDP formula-
tion. An MOMDP uses proper factorization of the observ-
able and unobservable state variables S : X × Y with tran-
sition functions Tx and Ty, reducing the computational load
(Ong et al., 2010). The set of observable state variables is
X : X world × Mk × Mk , where X world is the finite set of task-
steps that signify the progress towards task completion and
M is the set of modal policies followed by the human and
the robot in a history length k. The partially observable vari-
able y is identical to the human adaptability α. We assume
finite sets of human and robot actions AH and AR, and we
denote as πH the stochastic human policy. The latter gives
the probability of a human action aH at state s, based on the
BAM human adaptation model.

Given aR ∈ AR and aH ∈ AH, the belief update becomes

b′( y′) =ηO( s′, aR, o)
∑

y∈Y

Tx( s, aR, aH, x′)

Ty( s, aR, aH, s′) πH( s, aH) b( y)

(3)

We use a point-based approximation algorithm to solve
the MOMDP for a robot policy πR that takes into account
the robot belief on the human adaptability, while maximiz-
ing the agent’s expected total reward.

The policy execution is performed online in real time and
consists of two steps (Figure 3). First, the robot uses the
current belief to select the action aR specified by the policy.
Second, it uses the human action aH to update the belief on α

(equation (3)). Figure 5 presents the paths on the MOMDP
policy tree that correspond to the simulated user behaviors
presented in Figure 2. Figure 6 shows instances of actual
user behaviors in the human subject experiment described
in Section 6.

6. Human subject experiment

We conducted a human subject experiment on a simulated
table-carrying task (Figure 1) to evaluate the proposed for-
malism. We were interested in showing that integrating
BAM into the robot decision making can lead to more effi-
cient policies than the state-of-the-art human-robot team
training practices, while maintaining human satisfaction
and trust.

On one extreme, we can “fix” the robot policy so that the
robot always moves towards the optimal —with respect to
some objective performance metric —goal, ignoring human
adaptability. This will force all users to adapt, since this is
the only way to complete the task. However, we hypothe-
size that this will significantly impact human satisfaction
and trust in the robot. On the other extreme, we can effi-
ciently learn the human preference (Nikolaidis and Shah,
2013). This can lead to the human-robot team following a
sub-optimal policy, if the human has an inaccurate model
of the robot capabilities. We have, therefore, two control
conditions: one where participants interact with the robot
executing a fixed policy, always acting towards the optimal
goal, and one where the robot learns the human preference.
We show that the proposed formalism achieves a trade-
off between the two: When the human is non-adaptable,
the robot follows the human strategy. Otherwise, the robot
insists on the optimal way of completing the task, leading to
significantly better policies compared to learning the human
preference.

6.1. Independent variables

We had three experimental conditions, which we refer to as
“Fixed,” “Mutual-adaptation”, and “Cross-training.”
Fixed session. The robot executes a fixed policy, always act-
ing towards the optimal goal. In the table-carrying scenario,
the robot keeps rotating the table in the clockwise direction
towards Goal A, which we assume to be optimal (Figure 1).
The only way to finish the task is for the human to rotate the
table in the same direction as the robot, until it is brought to
the horizontal configuration of Figure 1a.
Mutual-adaptation session. The robot executes the
MOMDP policy computed using the proposed formalism.
The robot starts by rotating the table towards the optimal
goal (Goal A). Therefore, adapting to the robot strategy cor-
responds to rotating the table to the optimal configuration.
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Fig. 6. Instances of different user behaviors in the first trial of

the Mutual-adaptation session of the human-subject experiment

described in Section 6. A horizontal/vertical line segment indi-

cates human and robot disagreement/agreement on their actions.

A solid/dashed line indicates a human rotation towards the sub-

optimal/optimal goal. The numbers denote the most likely esti-

mated value of α.

Cross-training session. Human and robot train together
using the human-robot cross-training algorithm (Nikolaidis
and Shah, 2013). The algorithm consists of a forward phase
and a rotation phase. In the forward phase, the robot exe-
cutes an initial policy, which we choose to be the one that
leads to the optimal goal. Therefore, in the table-carrying
scenario, the robot rotates the table in the clockwise direc-
tion towards Goal A. In the rotation phase, human and
robot switch roles, and the human inputs are used to update
the robot reward function. After the two phases, the robot
policy is recomputed.

6.2. Hypotheses

H1 Participants will agree more strongly that HERB is

trustworthy, and will be more satisfied with the team per-

formance in the Mutual-adaptation condition, when com-

pared to working with the robot in the Fixed condition.

We expected users to trust more the robot with the learned
MOMDP policy, when compared with the robot that exe-
cutes a fixed strategy ignoring the user’s willingness to
adapt. In prior work, a task-level executive that adapted to
the human partner significantly improved perceived robot
trustworthiness (Shah et al., 2011). Additionally, working
with a human-aware robot that adapted its motions had a
significant impact on human satisfaction (Lasota and Shah,
2015).
H2 Participants are more likely to adapt to the robot strat-

egy towards the optimal goal in the Mutual-adaptation con-

dition, when compared to working with the robot in the

Cross-training condition. The computed MOMDP policy
enables the robot to infer online the adaptability of the
human and guides adaptable users towards more effective
strategies. Therefore, we posited that more subjects would
change their strategy when working with the robot in the
Mutual-adaptation condition, compared with cross-training

with the robot. We note that in the Fixed condition all par-
ticipants ended up changing to the robot strategy, as this was
the only way to complete the task.
H3 The robot’s performance as a teammate, as perceived

by the participants in the Mutual-adaptation condition, will

not be worse than in the Cross-training condition. The
learned MOMDP policy enables the robot to follow the
preference of participants that are less adaptable, while
guiding towards the optimal goal participants that are will-
ing to change their strategy. Therefore, we posited that this
behavior would result in a perceived robot performance not
inferior to that achieved in the Cross-training condition.

6.3. Experiment setting: A table-carrying task

We first instructed participants in the task and asked them
to choose one of the two goal configurations (Figure 1), as
their preferred way of accomplishing the task. To prompt
users to prefer the sub-optimal goal, we informed them
about the starting state of the task, where the table was
slightly rotated in the counter-clockwise direction, making
the sub-optimal Goal B appear closer. Once the task started,
the user chose the rotation actions by clicking on buttons on
a user interface (Figure 7). If the robot executed the same
action, a video played showing the table rotation. Other-
wise, the table did not move and a message appeared on
the screen notifying the user that they tried to rotate the
table in a different direction than the robot. In the Mutual-
adaptation and Fixed conditions participants executed the
task twice. Each trial ended when the team reached one of
the two goal configurations. In the Cross-training condition,
participants executed the forward phase of the algorithm in
the first trial and the rotation phase, where human and robot
switched roles, in the second trial. We found that in this
task one rotation phase was enough for users to success-
fully demonstrate their preference to the robot. Following
Nikolaidis and Shah (2013), the robot executed the updated
policy with the participant in a task-execution phase that
succeeded the rotation phase.

We asked all participants to answer a post-experimental
questionnaire that used a five-point Likert scale to assess
their responses to working with the robot (Table 2). We
used the composite measures proposed by Hoffman (2013).
Questions 1 and 3 are from Hoffman’s measure of
“Robot Teammate Traits”, while questions 4-6 are
from Hoffman’s adaptation of the “Working Alliance
Index” for human-robot teams. Items 7-8 were proposed
by Gombolay et al. (2014) as additional metrics of team-
fluency. We added questions 9-10 were based on our intu-
ition. Participants also responded to open-ended questions
about their experience.

6.4. Subject allocation

We chose a between-subjects design in order to not bias the
users with policies from previous conditions. We recruited
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Table 1. Participants’ response to question “Did you complete

the hallway task following your initial preference? Justify your

answer”.

Justification Example quote

J1 Expectation on robot
behavior

“I knew that the robot
would change if I stood my
ground.”

J2 Simplicity “I thought it would be easier
that I switched.”

J3 Task-specific factors “I was on the correct side
(you should walk on the
right hand side).”

J4 Robot behavior “HERB decided to go the
same way as I did.”

J5 Task completion “To finish the task in the
other end of the hall.”

J6 Other “I tend to stick with my ini-
tial choices.”

Fig. 7. UI with instructions. UI: User Interface.

participants through Amazon’s Mechanical Turk service,
all from the United States, aged 18–65 and with approval
rates higher than 95%. Each participant was compensated
$0.50. Since we are interested in exploring human-robot
mutual adaptation, we disregarded participants that had as
initial preference the robot goal. To ensure reliability of
the results, we asked all participants a control question that
tested their attention to the task and eliminated data associ-
ated with wrong answers to this question, as well as incom-
plete data. To test their attention to the Likert questionnaire,
we included a negative statement with the opposite mean-
ing to its positive counterpart and eliminated data associ-
ated with positive or negative ratings to both statements,
resulting in a total of 69 samples.

6.5. MOMDP model

The observable state variables x of the MOMDP formula-
tion were the discretized table orientation and the human
and robot modes for each of the three previous time-steps.
We specified two modal policies, each deterministically
selecting rotation actions towards each goal. The size of the
observable state-space X was 734 states. We set a history
length k = 3 in BAM. We additionally assumed a discrete
set of values of the adaptability α : {0.0, 0.25, 0.5, 0.75, 1.0}.
Although a higher resolution in the discretization of α

is possible, we empirically verified that five values were
enough to capture the different adaptive behaviors observed
in this task. The total size of the MOMDP state-space was
5 × 734 = 3670 states. The human and robot actions
aH, aR were deterministic discrete table rotations. We set
the reward function R to be positive at the two goal con-
figurations based on their relative cost, and 0 elsewhere.
We computed the robot policy using the SARSOP solver
(Kurniawati et al., 2008), a point-based approximation algo-
rithm which, combined with the MOMDP formulation, can
scale up to hundreds of thousands of states (Bandyopadhyay
et al., 2013).

7. Results and discussion

7.1. Subjective measures

We consider hypothesis H1, that participants will agree
more strongly that HERB is trustworthy, and will be
more satisfied with the team performance in the Mutual-
adaptation condition, compared to working with the robot
in the Fixed condition. A two-tailed Mann–Whitney–
Wilcoxon test showed that participants indeed agreed more
strongly that the robot utilizing the proposed formalism
is trustworthy (U = 180, p = 0.048). No statistically
significant differences were found for responses to state-
ments eliciting human satisfaction: “I was satisfied with the
robot and my performance” and “HERB and I collaborated
well together”. One possible explanation is that participants
interacted with the robot through a user interface for a short
period of time, therefore the impact of the interaction on
user satisfaction was limited.

We were also interested in observing how the ratings
in the first two conditions varied, depending on the par-
ticipants’ willingness to change their strategy. Therefore,
we conducted a post-hoc experimental analysis of the data,
grouping the participants based on their adaptability. Since
the true adaptability of each participant is unknown, we esti-
mated it by the mode of the belief formed by the robot at the
end of the task on the adaptability α

α̂ = arg max
α

b( α) (4)

We considered only users whose mode was larger than a
confidence threshold and grouped them as very adaptable

if α̂ > 0.75, moderately adaptable if 0.5 < α̂ ≤ 0.75,
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Fig. 8. Belief update and table configurations for the 1-step (top) and 3-step (bottom) bounded memory models at successive time-steps.

(T = 1) After the first disagreement and in the absence of any previous history, the belief remains uniform over α. The human (white

dot) follows their modal policy from the previous time-step, therefore at T = 2 the belief becomes higher for smaller values of α in

both models (lower adaptability). (T = 2) The robot (black dot) adapts to the human and executes the human modal policy. At the same

time, the human switches to the robot mode, therefore at T = 3 the probability mass moves to the right. (T = 3) The human switches

back to their initial mode. In the 3-step model the resulting distribution at T = 4 has a positive skewness: the robot estimates the human

to be non-adaptable. In the 1-step model the robot incorrectly infers that the human adapted to the robot mode of the previous time-step,

and the probability distribution has a negative skewness. (T = 4, 5) The robot in the 3-step trial switches to the human modal policy,

whereas in the 1-step trial it does not adapt to the human, who insists on their mode.

and non-adaptable if α̂ ≤ 0.5. Figure 10b shows the par-
ticipants’ rating of their agreement on the robot trustwor-
thiness, as a function of the participants’ group for the two
conditions. In the Fixed condition there was a trend towards
positive correlation between the annotated robot trustwor-
thiness and participants’ inferred adaptability (Pearson’s
r = 0.452, p = 0.091), whereas there was no correlation
between the two for participants in the Mutual-adaptation
condition (r = −0.066). We attribute this to the MOMDP
formulation allowing the robot to reason over its estimate on
the adaptability of its teammate and change its own strategy
when interacting with non-adaptable participants, therefore
maintaining human trust.

In this work, we elicited trust at the end of the task using
participants’ rating of their agreement to the statement
“HERB is trustworthy”, which has been used in previous
work in human-robot collaboration (Shah et al., 2011; Hoff-
man, 2013). We refer the reader to Desai (2012), Kaniarasu
et al. (2013), Xu and Dudek (2015) and Yanco et al. (2016)
for approaches on measuring trust in real-time.

We additionally coded the participants’ open-ended com-
ments about their experience with working with HERB,
and grouped them based on the content and the sentiment
(positive, negative, or neutral). Table 3 shows the different
comments and associated sentiments, and Figure 9 illus-
trates the participants’ ratio for each comment. We note that
20% of participants in the Fixed condition had a negative
opinion about the robot behavior, noting that “[HERB] was
poorly designed”, and that probably “robot development
had not been mastered by engineers” (C8 in Table 3). On the

Table 2. Post-experimental questionnaire.

Q1: “HERB is trustworthy.”
Q2: “I trusted HERB to do the right thing at the right time.”
Q3: “HERB is intelligent.”
Q4: “HERB perceived accurately what my goals are.”
Q5: “HERB did not understand how I wanted to do the task.”
Q6: “HERB and I worked towards mutually agreed upon goals.”
Q7: “I was satisfied with HERB and my performance.”
Q8: “HERB and I collaborated well together.”
Q9: “HERB made me change my mind during the task.”
Q10: “HERB’s actions were reasonable.”

other hand, 26% of users in the Mutual-adaptation condi-
tion noted that the robot “attempted to anticipate my moves”
and “understood which way I wanted to go” (C2). Several
adaptable participants in both conditions commented that
“[HERB] was programmed to move this way” (C5), while
some of them attempted to justify HERB’s actions, stating
that it “was probably unable to move backwards” (C4).

Recall hypothesis H3: that the robot’s performance as a
teammate in the Mutual-adaptation condition, as perceived
by the participants, would not be worse than in the Cross-
training condition. We define “not worse than” similarly to
Dragan et al. (2013) using the concept of “non-inferiority”
(Lesaffre, 2008). A one-tailed unpaired t-test for a non-
inferiority margin 1 = 0.5 and a level of statistical signif-
icance α = 0.025 showed that participants in the Mutual-
adaptation condition rated their satisfaction on robot perfor-
mance (p = 0.006), robot intelligence (p = 0.024), robot
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Table 3. Participants’ comments and associated sentiments.

Description Sentiment

C1 “The robot followed my instructions.” Positive
C2 “The robot adapted to my actions.” Positive
C3 “The robot wanted to be efficient.” Positive
C4 “The robot was unable to move.” Neutral
C5 “The robot was programmed this way.” Neutral
C6 “The robot wanted to face the door.” Neutral
C7 “The robot was stubborn.” Negative
C8 “The robot was poorly programmed.” Negative

Fig. 9. Ratio of participants per comment for the Mutual-

adaptation and Fixed conditions.

trustworthiness (p < 0.001), quality of robot actions (p <

0.001), and quality of collaboration (p = 0.002) not worse
than participants in the Cross-training condition. With Bon-
ferroni corrections for multiple comparisons, robot trust-
worthiness, quality of robot actions, and quality of collab-
oration remain significant. This supports hypothesis H3 of
Section 6.2.

7.2. Quantitative measures

To test hypothesis H2, we consider the ratio of participants
that changed their strategy to the robot strategy towards the
optimal goal in the Mutual-adaptation and Cross-training
conditions. A change was detected when the participant
started as a preferred strategy a table rotation towards Goal
B (Figure 1b), but completed the task in the configuration of
Goal A (Figure 1a) in the final trial of the Mutual-adaptation
session, or in the task-execution phase of the Cross-training
session. As Figure 10a shows, 57% of participants adapted
to the robot in the Mutual-adaptation condition, whereas
26% adapted to the robot in the Cross-training condition. A
Pearson’s chi-square test showed that the difference is sta-
tistically significant ( χ2( 1, N = 46) = 4.39, p = 0.036).
Therefore, participants that interacted with the robot of the
proposed formalism were more likely to switch to the robot
strategy towards the optimal goal, than participants that
cross-trained with the robot, which supports our hypothesis.

In Section 7.3, we discuss the robot’s behavior for differ-
ent values of history length k in BAM.

7.3. Selection of history length

The value of k in BAM indicates the number of time-steps
in the past that we assume humans consider in their deci-
sion making on a particular task, ignoring all other history.
Increasing k results in an exponential increase of the state
space size, with large values reducing the robot’s respon-
siveness to changes in the human behavior. On the other
hand, very small values result in unrealistic assumptions on
the human decision making process.

To illustrate this, we set k = 1 and ran a pilot study of
30 participants through Amazon-Turk. Whereas most users
rated highly their agreement to questions assessing their sat-
isfaction and trust in the robot, some participants expressed
their strong dissatisfaction with the robot behavior. This
occurred when human and robot oscillated back and forth
between modes, similarly to when two pedestrians on a nar-
row street face each other and switch sides simultaneously
until they reach an agreement. In this case, which occurred
in 23% of the samples, when the human switched back to
their initial mode, which was also the robot mode of the
previous time-step, the robot incorrectly inferred them as
adaptable. However, the user in fact resumed their initial
mode followed before two time-steps, implying a tendency
for non-adaptation. This is a case where the 1-step bounded
memory assumption did not hold.

In the human subject experiment of Section 6, we used
k = 3, since we found this to describe accurately the human
behavior in this task. Figure 8 shows the belief update and
robot behavior for k = 1 and k = 3, in the case of mode
oscillation.

7.4. Discussion

This online study in the table-carrying task seems to suggest
that the proposed formalism enables a human-robot team
to achieve more effective policies, compared to state-of-
the-art human-robot team training practices, while achiev-
ing subjective ratings on robot performance and trust that
are comparable to those achieved by these practices. It is
important to note that the comparison with the human-robot
cross-training algorithm is done in the context of human
adaptation. Previous work (Nikolaidis and Shah, 2013) has
shown that switching roles can result in significant bene-
fits in team fluency metrics, such as human idle time and
concurrent motion (Hoffman and Breazeal, 2007), when a
human executes the task with an actual robot. Addition-
ally, the proposed formalism assumes as input a set of
modal policies, as well as a quality measure associated with
each policy. On the other hand, cross-training requires only
an initialization of a reward function of the state space,
which is then updated in the rotation phase through inter-
action. It would be very interesting to explore a hybrid
approach between learning the reward function and guid-
ing the human towards an optimal policy, but we leave this
for future work.
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Fig. 10. (a) Number of participants that adapted to the robot for the Mutual-adaptation and Cross-training conditions. (b) Rating of

agreement to statement “HERB is trustworthy”. Note that the figure does not include participants, whose mode of the belief on their

adaptability was below a confidence threshold and therefore were not clustered into any of the three groups.

7.5. Information-seeking behavior

We observe that in the experiments, the robot always starts
moving towards the optimal goal, until it is confident that
the human is non-adaptable, in which case it adapts to the
human. The MOMDP chooses whether the robot should
adapt or not, based on the estimate of the human adaptabil-
ity, the rewards of the optimal and suboptimal goal and the
discount factor.

In the general case, information-seeking actions can
occur at any point during the task. For instance, in a multi-
staged task, where information gathering costs differently
in different stages (i.e. moving a table out of the room /
through a narrow corridor), the robot might choose to dis-
agree with the human in a stage where information-seeking
actions are cheap, even if the human follows an optimal path
in that stage.

7.6. Generalization to complex tasks

The presented table-carrying task can be generalized with-
out significant modifications in the proposed mathemat-
ical model, with the cost of increasing the size of the
state-space and action-space. In particular, we made the
assumptions: (1) discrete time-steps, where human and
robot apply torques causing a fixed table-rotation, (2) binary
human-robot actions, (3) fully observable modal policies.
We discuss how we can relax these assumptions;

1. We can approximate a continuous-time setting by
increasing the resolution of the time discretization.
Assuming a constant displacement per unit time v and
a time-step dt, the size of the state-space increases
linearly with ( 1/dt): O( |X world||M |2k) = O( ( θmax −

θmin) ∗( 1/v) ∗( 1/dt) ∗|M |2k), where θ is the rotation
angle of the table.

2. The proposed formalism is not limited to binary actions.
For instance, we can allow torque inputs of different
magnitudes. The action-space of the MOMDP increases
linearly with the number of possible inputs.

3. While we assumed that the modal policies are fully
observable, an assumption that enables the human and
the robot to infer a mode by observing an action, in
the general case different modal policies may share the
same action selection in some states, which would make
them undeterminable. In this case, the proposed for-
malism can be generalized to include the human modal
policy as additional latent variable in the MOMDP. Sim-
ilarly, we can model the human as inferring a proba-
bility distribution over modes from the recent history,
instead of inferring the robot mode with the maximum
frequency count (equation (2) in Section 4.2). We leave
this for future work.

Finally, we note that the presented formalism assumes
that the world-state, representing the current task-step, is
fully observable, and that human and robot have a known
set of actions. This assumption holds for tasks with clearly
defined objectives and distinct task-steps. In Section 9, we
apply our formalism in the case where a human and a robot
cross a hallway and coordinate to avoid collision, and the
robot guides the human towards one side of the corridor.
Applicable scenarios include also a wide range of manu-
facturing tasks (e.g. assembly of airplane spars), where the
goal and important concepts, such as tolerances and com-
pletion times, are defined in advance, but the sequencing of
subtasks is flexible and can vary based on the individual-
ized style of the mechanic (Nikolaidis et al., 2015). In these
scenarios, the robot could lead the human to strategies that
require less time or resources.

8. Adaptability in repeated trials

Previous work by Shah et al. (2011) has shown that robot
adaptation significantly improves perceived robot trustwor-
thiness. Therefore, we hypothesized that trust in the mutu-
ally adaptation condition would increase over time for non-
adaptable participants, and that this increase in trust would
result in a subsequent increased likelihood of human adap-
tation to the robot. We conducted four repeated trials of the
table-carrying task. Results did not confirm our hypothesis:
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even though trust increased for non-adaptable participants,
a large majority of them remained non-adaptable in the
second task as well.

8.1. Experiment setting

The task has two parts, each consisting of two trials of task
execution. At the end of the first part, we reset the robot
belief on participants’ adaptability to a uniform distribu-
tion over α. Therefore, in the beginning of the second part,
the robot attempted again to guide participants towards the
optimal goal, identically to the first part of the task. We
recruited participants through Amazon’s Mechanical Turk
service, using the same inclusion criteria as in Section 6.4.
Each participant was compensated $1. Following the data
collection process described in Section 6.4, we disregarded
participants that had as initial preference the robot goal,
resulting in a total of 43 samples. All participants inter-
acted with the robot following the MOMDP policy com-
puted using the proposed formalism. After instructing par-
ticipants in the task, as well as after each trial, we asked
them to rate on a five-point Likert scale their agreement to
the following statements:

• “HERB is trustworthy”;
• “I am confident in my ability to complete the task”.

We used the ratings as direct measurements of partici-
pants’ self-confidence and trust in the robot.

8.2. Hypotheses

H4 The perceived initial robot trustworthiness and the

participants’ starting self-confidence on their ability to

complete the task will have a significant effect on their

likelihood to adapt to the robot in the first part of the exper-

iment. We hypothesized that the more the participants trust
the robot in the beginning of the task, and the less confi-
dent they are on their ability, the more likely they would
be to adapt to the robot. In previous work, Lee and Moray
found that control allocation in a supervisory control sys-
tem is dependent on the difference between the operator’s
trust of the system and their own self-confidence to control
the system under manual control (Lee and Moray, 1991).
H5 The robot’s trustworthiness, as perceived by non-

adaptable participants, will increase during the first part

of the experiment. We hypothesized that working with a
robot that reasons over its estimate on participants’ adapt-
ability and changes its own strategy accordingly would
increase the non-adaptable participants’ trust in the robot.
We base this hypothesis by observing in Figure 10b that
non-adaptable participants in the Mutual-adaptation condi-
tion agreed strongly to the statement “HERB is trustwor-
thy” at the end of the task. We focus on non-adaptable
participants, since they observe the robot changing its pol-
icy to their preference, and previous work has shown that

robot adaptation can significantly improve perceived robot
trustworthiness (Shah et al., 2011).
H6 Participants are more likely to follow the robot optimal

policy in the second part of the experiment, compared to the

first part. We hypothesized that if, according to hypothe-
ses H4 and H5, trust is associated with increased likelihood
of adapting to the robot in the first part of the experiment,
and non-adaptable participants trust the robot more after the
first part, a significant ratio of these participants would be
willing to change their strategy in the second part. Addi-
tionally, we expected participants that switched to the robot
optimal policy in the first part to continue following that
policy in the second part, resulting in an overall increase in
the number of subjects that follow the optimal goal.

8.3. Results and discussion

We consider Hypothesis H4, that the perceived robot trust-
worthiness and the participants’ self-confidence on their
ability to complete the task, as measured in the beginning of
the experiment, will have a significant effect on their likeli-
hood to adapt to the robot in the first part of the experiment.
We performed a logistic regression to ascertain the effects
of the participants’ ratings on these two factors on the
likelihood that they adapt to the robot. The logistic regres-
sion model was statistically significant χ2( 2) = 13.58, p =

0.001. The model explained 36.2% (Nagelkerke R2) of the
variance in the participant’s adaptability and correctly clas-
sified 74.4% of the cases. Participants that trusted the robot
more in the beginning of the task (β = 1.528, p = 0.010)
and were less-confident (β = −1.610, p = 0.008) were
more likely to adapt to the robot in part 1 of the experiment
(Figure 11). This supports hypothesis H4 of Section 8.2.

Recall Hypothesis H5, that the robot trustworthiness, as
perceived by non-adaptable participants, will increase dur-
ing the first part of the experiment. We included in the non-
adaptable group all participants that did not change their
strategy when working with the robot in the first part of
the experiment. The mean estimated adaptability for these
participants at the end of the first part was α̂ = 0.16 [SD =
0.14]. A Wilcoxon signed-rank test indeed showed that non-
adaptable participants agreed more strongly that HERB is
trustworthy after the first part of the experiment, when com-
pared to the beginning of the task (Z = −3.666, p < 0.001),
as shown in Figure 11a). In the same figure we see that
adaptable participants rated highly their agreement on the
robot trustworthiness in the beginning of the task, and their
ratings remained relatively similar through the first part
of the task. The results above confirm our hypothesis that
working with the robot following the MOMDP policy had a
significant effect on the non-adaptable participants’ trust in
the robot.

To test Hypothesis H6, we consider the ratio of partic-
ipants that followed the robot optimal policy in the first
part of the experiment, compared to the second part of
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Fig. 11. (a) Rating of agreement to the statement “HERB is trustworthy”. for the first part of the experiment described in Section 8. The

two groups indicate participants that adapted / did not adapt to the robot during the first part. (b) Rating of agreement to the statement

“I am confident in my ability to complete the task”.

the experiment. In the second part, 53% of the partici-
pants followed the robot goal, compared to 47% in the first
part. A Pearson’s chi-square test did not find the differ-
ence between the two ratios to be statistically significant
( χ2( 1, N = 43) = 0.42, p = 0.518). We observed that
all participants that adapted to the robot in the first part,
continued following the optimal goal in the second part,
as expected. However, only 13% of non-adaptable partici-
pants switched strategy in the second part. We observe that
even though trust increased for non-adaptable participants,
a large majority of them remained non-adaptable in the sec-
ond task as well. We attribute this to the fact that users, who
successfully completed the task in the first part with the
robot adapting to their preference, were confident that the
same action sequence would result in successful completion
in the second part, as well. In fact, a Wilcoxon signed-rank
test showed that non-adaptable participants rated their self-
confidence on their ability to complete the task significantly
higher after the first part, compared to the beginning of the
task (Z = −2.132, p = 0.033, Figure 11b). It would be
interesting to assess the adaptability of participants after
inducing drops in their self-confidence, for instance by pro-
viding limited explanation about the task or introducing
task “failures”, and we leave this for future work.

This experiment showed that non-adaptable participants
remained unwilling to adapt to the robot in repeated trials
of the same task. Can this result generalize across multi-
ple tasks? This is an important question, since in real-world
applications such as home environments, domestic robots
are expected to perform a variety of household chores.
We conducted a follow-up experiment, where we explored
whether the adaptability of participants in one task is infor-
mative of their willingness to adapt to the robot at a different
task.

9. Transfer of adaptability across tasks

The previous experiment showed that non-adaptable partic-
ipants remained unwilling to adapt to the robot in repeated
trials of the same task. To test whether this result can

generalize across multiple tasks, we conducted an experi-
ment with two different collaborative tasks: a table-carrying
task followed by a hallway-crossing task. Results showed
that non-adaptable participants in the table-carrying task
would be less likely to adapt in the hallway-crossing task.

9.1. Hallway-crossing task

We introduced a new hallway-crossing task, where a human
and a robot cross a hallway (Figure 12). As in the table-
carrying task, we instructed participants of the task and
asked them for their preferred side of the hallway. We then
set the same side as the optimal goal for the robot, in order
to ensure that the robot’s optimal policy would conflict with
the human preference. The user chose moving actions by
clicking on buttons on a user interface (left / right). If the
human and robot ended up in the same side, a message
appeared on the screen notifying the user that they moved
in the same direction as the robot. The participant could
then choose to remain on that side, or switch sides. The task
ended when human and robot ended up in opposite sides of
the corridor.

9.2. MOMDP model of hallway-crossing task

The observable state variables x of the MOMDP formu-
lation were the discretized position of the human and the
robot, as well as the human and robot modes for each
of the three previous time-steps. We specified two modal
policies, each deterministically selecting moving actions
towards each side of the corridor. The size of the observ-
able state-space X was 340 states. As in the table-carrying
task, we set a history length k = 3 and assumed a discrete
set of values of the adaptability α : {0.0, 0.25, 0.5, 0.75, 1.0}.
Therefore, the total size of the MOMDP state-space was
5 × 340 = 1700 states. The human and robot actions aH,
aR were deterministic discrete motions towards each side of
the corridor. We set the reward function R to be positive at
the two goal states based on their relative cost, and 0 else-
where. We computed the robot policy using the SARSOP
solver (Kurniawati et al., 2008).
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Fig. 12. (a) Hallway-crossing task. The robot’s optimal goal is to move to the right side (top), compared to moving to the left side

(bottom). (b) The user faces the robot. They can choose to stay on the same side or switch sides.

9.3. Experiment setting

We first validated the efficacy of the proposed formalism by
doing a user study (n = 65) that included only the hallway-
crossing task. We recruited participants through Amazon’s
Mechanical Turk service, using the same inclusion criteria
as in Section 6.4. Each participant was compensated $0.50.
48% of participants adapted to the robot by switching sides,
a ratio comparable to that of the table-carrying task exper-
iment (Section 7.2). The mean estimated adaptability for
participants that adapted to the robot, which we call “adapt-
able”, was α̂ = 0.85 [SD = 0.25], and for participants that
did not adapt (“non-adaptable”) was α̂ = 0.07 [SD = 0.13].

We then conducted a new human subject experiment,
having users do two trials of the table-carrying task
described in 6.3 (part 1), followed by the hallway-crossing
task (part 2). Similarly to the repeated table-carrying task
experiment (Section 8), we reset the robot belief on the
human adaptability at the end of the first part. We recruited
participants through Amazon’s Mechanical Turk service,
using the same inclusion criteria as in Section 6.4, and
following the same data collection process, resulting in a
total of n = 58 samples. Each participant was compensated
$1.30. We make the following hypothesis:
H7 Participants that did not adapt to the robot in the table-

carrying task are less likely to adapt to the robot in the

hallway task, compared to participants that changed their

strategy in the first task.

9.4. Results and discussion

In line with our hypothesis, a logistic regression model was
statistically significant (χ2( 1) = 5.30, p = 0.021), with
participants’ adaptability in the first task being a signifi-
cant predictor of their adaptability in the second task (β =

1.335, p = 0.028). The model explained 11.9% (Nagelk-
erke R2) of the variance and correctly classified 62.5% of
the cases. The small value of R2 indicates a weak effect size.
Interestingly, whereas 79% of the users that did not adapt to

Fig. 13. Adaptation rate of participants for two consecutive tasks.

The lines illustrate transitions, with the numbers indicating tran-

sition rates. The thickness of the lines is proportional to the tran-

sition rate, whereas the area of the circles is proportional to the

number of participants. Whereas 79% of the users that insisted in

their strategy in the first task remained non-adaptable in the sec-

ond task, only 50% of the users that adapted to the robot in the

table-carrying task, adapted to the robot in the hallway-crossing

task.

the robot in the first task remained non-adaptable in the sec-
ond task, only 50% of the users that adapted to the robot in
the table-carrying task, adapted to the robot in the hallway
task (Figure 13).

We interpret this result by observing that all partici-
pants that were non-adaptable in the first task saw the robot
changing its behavior to their preferred strategy. A large
majority expected the robot to behave in the same way in the
second task, as well: disagree in the beginning but eventu-
ally adapt to their preference, and this encouraged them to
insist on their preference also in the second task. In fact,
in their answers to the open-ended question “Did you com-
plete the hallway task following your initial preference?”,
they mentioned that “The robot switched in the last [table-
carrying] task, and I thought it would this time too”, and
that “I knew from the table-turning task that HERB would
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Fig. 14. Ratio of participants per justification to the total number

of participants in each condition. We group the participants based

on whether they adapted in both tasks (Adapted-both), in the first

[table-carrying] task only (Adapted-first), in the second [hallway-

crossing] task only (Adapted-second) and in none of the tasks (Did

not adapt).

eventually figure it out and move in the opposite direc-
tion, so I stood my ground” (J1 in Table 1, Figure 14). On
the other hand, adaptable participants did not have enough
information on the robot ability to adapt, since they aligned
their own strategy with the robot policy, and they were
evenly divided between adaptable and non-adaptable in the
second task. 47% of participants that remained adaptable
in both tasks attributed the change in their strategy to the
robot’s behavior (J4). Interestingly, 29% of participants that
adapted to the robot in the table-carrying task but insisted
on their strategy in the hallway task stated that they did so,
“because I was on the correct side (you should walk on
the right hand side) and I knew eventually he would move”
(J3). We see that task-specific factors, such as social norms,
affected the expectation of some participants on the robot
adaptability for the hallway task. We hypothesize that there
is an inverse relationship between participants’ adaptability,
as it evolves over time, and their belief on the robot’s own
adaptability, and we leave the testing of this hypothesis for
future work.

10. Conclusion

We presented a formalism for human-robot mutual adapta-
tion, which enables guiding the human teammate towards
more efficient strategies, while maintaining human trust in
the robot. First, we proposed BAM, a model of human adap-
tation based on a bounded memory assumption. The model
is parameterized by the adaptability of the human team-
mate, which takes into account individual differences in
people’s willingness to adapt to the robot. We then inte-
grated BAM into an MOMDP formulation, wherein the
adaptability was a partially observable variable. In a human
subject experiment (n = 69), participants were significantly
more likely to adapt to the robot strategy towards the opti-
mal goal when working with a robot utilizing our formalism
(p = 0.036), compared to cross-training with the robot.
Additionally, participants found the performance as a team-
mate of the robot executing the learned MOMDP policy to

be not worse than the performance of the robot that cross-
trained with the participants. Finally, the robot was found
to be more trustworthy with the learned policy, when com-
pared with executing an optimal strategy while ignoring
human adaptability (p = 0.048). These results indicate that
the proposed formalism can significantly improve the effec-
tiveness of human-robot teams, while achieving subjective
ratings on robot performance and trust comparable to those
of state-of-the-art human-robot team training strategies.

We have shown that BAM can adequately capture human
behavior in two collaborative tasks with well-defined task-
steps on a relatively fast-paced domain. However, in
domains where people typically reflect on a long history
of interactions, or on the beliefs of the other agents, such as
in a poker game (Von Neumann and Morgenstern, 2007),
people are likely to demonstrate much more complex adap-
tive behavior. Developing sophisticated predictive models
for such domains and integrating them into robot decision
making in a principled way, while maintaining computa-
tional tractability, is an exciting area for future work.
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