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Human collaborators coordinate effectively their actions through both verbal and non-verbal communication.
We believe that the the same should hold for human-robot teams. We propose a formalism that enables a robot
to decide optimally between taking a physical action towards task completion and issuing an utterance to the
human teammate. We focus on two types of utterances: verbal commands, where the robot asks the human to
take a physical action, and state-conveying actions, where the robot informs the human about its internal state,
which captures the information that the robot uses in its decision making. Human subject experiments show that
enabling the robot to issue verbal commands is the most effective form of communicating objectives, while
retaining user trust in the robot. Communicating information about the robot’s state should be done judiciously,
since many participants questioned the truthfulness of the robot statements when the robot did not provide
sufficient explanation about its actions.

Additional Key Words and Phrases: Human-robot collaboration, planning under uncertainty, verbal communica-
tion, partially observable Markov decision process

1 INTRODUCTION

The recent development of robotic systems designed to co-exist with humans highlights the need
for systems that can act as trustworthy partners in a team, while collaborating effectively with their
human counterparts.

This is often challenging; inexperienced users often form inaccurate expectations of a robot’s
capabilities [50], and thus come up with suboptimal ' strategies to complete a collaborative task. We
use as an example a table carrying task, where a human-robot team works together to move a table
outside of a room (Fig. 1). The pair can accomplish this in two ways. The first involves the robot
facing the door and the second involves the robot facing the room. Having the robot facing the room
is a suboptimal strategy, since its on-board sensors will not be able to detect the exit accurately. In
the case where the human starts with this strategy, the robot should guide them towards a better way
of doing the task.

"Here we consider optimality with respect to a predefined objective performance metric.
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HERB
“Let's rotate the table
clockwise!"

HERB
“| think | know the best way of
doing this task!"

(b)

Fig. 1. (a) Human-robot table carrying task. (b) The robot issues a verbal command. (c) The robot
issues a state-conveying action.

A simple approach would be to always have the robot insist on the best goal. However, previous
work [46] has shown that several participants wanted to impose their preferences on the robot. If the
robot did not adapt, people lost their trust in the system and were hesitant to work with the robot in
the future. While we want to improve human-robot team performance, we do not want this to be to
the detriment of user trust in the robotic system.

In previous work, Nikolaidis et al. [45, 46] proposed a mutual-adaptation formalism, where robots
can infer the adaptability of their human teammate. If their teammate is adaptable, the robot will insist
on the optimal strategy. Otherwise, the robot will adapt to their strategy, in order to retain their trust.
While the authors did not consider verbal communication, previous studies suggest that there is a
significant benefit when teammates verbally communicate intentions and expectations [8, 16, 51, 61].

We generalize the mutual-adaptation formalism of previous work to include verbal communication.
Our generalized formalism enables a robot to combine optimally verbal communication and actions
towards task completion to guide a human teammate towards a better way of doing a collaborative
task.

We focus on the robot verbally communicating two types of information: how the robot wants
them to behave, and why the robot is behaving this way. Therefore, we identify two types of verbal
communication: verbal commands, where the robot asks the human to take a specific action, i.e.,
“Let’s rotate the table clockwise”, and state-conveying actions, where the robot informs the human
about its internal state, which captures the information that the robot uses in its decision making
(Fig. 1). A robot may have different levels of capability in translating internal representations into
sensible human representations [27]. We first assume that the robot is given a cost function, which it
interprets as an objective metric of task performance, and informs the human teammate about this
knowledge through the utterance “I think I know the best way of doing the task.” We then assume
that the robot can provide more concrete explanations about its capabilities, i.e., “I need to be able to
see the door with my forward-facing camera.”

To compute the robot actions, we formulate and learn from data a mixed-observability Markov
decision process (MOMDP) model. The model allows the robot to reason about the human internal
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state, in particular about how willing the human teammate is to follow a robot task action, a robot
verbal command, or a robot state-conveying action, and to optimally choose to take a task action or
issue a communication action.

We conducted an online human subjects experiment featuring a table carrying task and compared
results between three instantiations of our formalism. The experiment had three conditions: in the
first condition the robot combined task actions with verbal utterances, in the second it combined
task actions with the state-conveying action “I think I know the best way of doing the task.”, and
in the third it executed the policy computed using the formalism from previous work [46] that
considers only non-verbal task actions, i.e., rotating the table in the table carrying example. We then
compared the number of users that adapted to the robot in the three conditions, and we assessed the
users’ trust in the robot. Results show that adding verbal commands to the robot decision making
is the most effective form of interaction: 100% of participants changed their strategy towards a
new, optimal goal demonstrated by the robot in the first condition. On the other hand, only 60%
of participants in the third condition adapted to the robot. Trust ratings tended to be comparable
between the two conditions. Interestingly, in the second condition state-conveying actions did not
have a similar positive effect, since participants questioned whether the robot was truthful, as shown
in their open-ended responses.

In a follow-up study, we added a new condition, where the robot combined task actions with a
state-conveying action that was more informative, i.e., “I need to be able to see the door with my
forward-facing camera.” In this condition, participants were significantly more likely to adapt to the
robot.

These results indicate that when designing interactions in human-robot collaborative tasks, issuing
a verbal command where the robot prompts the human teammate to take a specific action appears
to be the most effective way of communicating objectives, while retaining user trust in the robot.
Communicating information about the robot’s internal state should be done judiciously, since the
observed behaviors appear to be sensitive to the level of detail of the information provided.

2 RELEVANT WORK
2.1 Verbal Communication in Human Teams

Verbal discourse is a joint activity [11], where participants need to establish a shared understanding
of their mutual knowledge base. This shared understanding, also called common ground, can be
organized into two types: a communal common group, which represents universal shared knowledge,
and personal common groups which represent mutual knowledge gathered from personal experi-
ence [11, 12]. People develop personal common ground by contributing new information, which
enables participants in the conversation to reach a mutual belief. This belief, known as grounding [14],
indicates that they have understood the information as the speaker intended. Grice [21] has shown
that grounding is achieved when people avoid expending unnecessary effort to convey information.
Previous work has shown that establishing grounding through verbal communication can improve
performance, even when combined with other types of feedback. Wang et al. [61] show that the
efficiency of haptic communication was improved only after dyads were first given a learning period
in which they could familiarize themselves with the task using verbal communication. Parikh et al.
[51] find that for a more complicated task, verbal feedback coupled with haptic feedback has a
significant positive effect on team performance, as opposed to haptic feedback alone. In general,
verbalization is more flexible than haptic feedback, since it allows for the communication of more
abstract and complex ideas [16], while it can facilitate a shared understanding of the task [8].
However, verbal communication is costly in terms of time and cognitive resources [16]. For
example, according to Clark and Brennan [13], it costs time and effort to formulate coherent
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utterances, especially when talking about unfamiliar objects or ideas. Receivers also experience
costs in receiving and understanding a message; listening and understanding utterances can be
especially costly when contextual cues are missing and the listener needs to infer the meaning. Thus,
after teams have a shared understanding of the task, it may be beneficial to switch to a less costly
mode of communication, such as haptic feedback. In fact, Kucukyilmaz et al. [31] show that haptic
feedback increases a perceived sense of presence and collaboration, making interaction easier. Haptic
communication has been shown to be especially effective in tasks that involve deictic referencing
and guiding physical objects [40].

We draw upon these insights to propose a formalism for combining verbal communication and
task actions, in order to guide a human teammate towards a better way of doing a task. We investigate
the effect of different types of verbal communication in team performance and trust in the robot.

2.2 Verbal communication in Human-Robot Teams

Verbal communication in human-robot teams has been shown to affect collaboration, as well as
people’s perception of the robot [22, 39, 58]. Robot dialog systems have mostly supported human-
initiated or robot-initiated communication in the form of requests. An important challenge for
generating legible verbal commands has been symbol grounding [39, 57], which is described as the
ability of the robot to map a symbol to a physical object in the world. Tellex et al. [57] presented
a model for inferring plans from natural language commands; inverting the model enables a robot
to recover from failures, by communicating the need for help to a human partner using natural
language [56]. Khan et al. [26] proposed a method for generating the minimal sufficient explanation
that explains the policy of a Markov decision process, and Wang et al. [62] proposed generating
explanations about the robot’s confidence on its own beliefs. Recent work by Hayes and Shah [24]
has generalized the generation of explanations of the robot policies to a variety of robot controllers.

Of particular relevance is previous work in the autonomous driving domain [30]. Messages that
conveyed “how” information, such as “the car is breaking,” led to poor driving performance, whereas
messages containing “why”” information, such as “There is an obstacle ahead,” were preferred and
improved performance. Contrary to the driving domain, in our setting the human cannot verify
the truthfulness of the robot “why” action. Additionally, unlike driving, in a physical human-robot
collaboration setting there is not a clearly right action that the robot should take, which brings
the human to a state of uncertainty and disagreement with the robot. In agreement with Koo et al.
[30], our results show the importance of finding the right away to explain robot behavior to human
teammates.

Our work is also relevant to the work by Clair and Mataric [10]. The authors explored com-
munication in a shared-location collaborative task, using three different types of verbal feedback:
self-narrative (e.g., “T’ll take care of X”), role-allocative (e.g., “you handle X”) and empathetic (e.g.,
“Oh no” or “Great”). They showed that feedback improves both objective and subjective metrics of
team performance. In fact, the robot’s verbal commands (“Let’s rotate the table clockwise”) and
state-conveying actions (“I think I know the best way of doing the task,”) of our work resemble the
role-allocative and self-narrative feedback. Additionally, Oudah et al. [49] integrated verbal feedback
about past actions and future plans into a learning algorithm, resulting in improved human-robot
team performance in two game scenarios.

Contrary to existing work ~, our formalism enables the robot to reason about the effects of various
types of verbal communication on the future actions of different human collaborators, based on their
internal state. The human internal state captures inter-individual variability. Integrating it as a latent

2In Devin and Alami [15], the robot reasons over the human mental state, which represents the human knowledge of the world
state and of the task goals. The human mental state is assumed to be fully observable by the robot.
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variable in a partially observable stochastic process allows the robot to infer online the internal state
of a new human collaborator and decide when it is optimal to give feedback, as well as which type of
feedback to give.

2.3 Planning Under Uncertainty in Human-Robot Collaboration

In previous work, partially observable Markov decision processes (POMDP) have enabled robotic
teammates to coordinate through communication [6] and software agents to infer the intention of
human players in game Al applications [35]. In human-robot collaboration, the model has been
successfully applied to real-world tasks, such as autonomous driving where the robot car interacts
with pedestrians and human drivers [4, 5, 18, 53]. Nikolaidis et al. [45, 46] recently proposed a
human-robot mutual adaptation formalism, where the robot builds online a model of how willing
the human is to adapt to the robot, based on their adaptability. The formalism models the human
adaptability as a latent variable in a mixed-observability Markov decision process. This enables the
robot to update its estimate on the adaptability of its human collaborator through interaction and
actively guide its teammate towards a better way of doing their task. In this work, we generalize the
human-robot mutual adaptation formalism by incorporating verbal communication from the robot to
the human.

3 PROBLEM SETTING

A human-robot team can be treated as a multi-agent system, with world state x,, € X,,, robot action
ar € Ay, and human action ay, € Ay. The system evolves according to a stochastic state transition
function T: X,, X A, X Ay, — II(X,,). At each time step, the human-robot team receives a real-valued
reward R(x,,, ar, ap). Its goal is to maximize the expected total reward over time: >}3° y*R(t), where
the discount factor y € [0, 1) gives higher weight to immediate rewards than future ones.

The robot’s goal is to compute an optimal policy 7, that maximizes the expected total discounted
reward:

7I; = arg max E[Zytﬂ(x(t),a,(t),ah(t)) | ﬂr,ﬂh] (1)
Tr t=0

The expectation is taken over the human behavioral policies 7, and the sequence of uncertain state
transitions over time. In order to solve the optimization problem from Eq. 1, the robot needs access
to the human policies . In Sec. 3.1 we provide an overview of the Bounded-Memory Adaptation
Model, presented in [46], which specifies the human policies .

3.1 Bounded-Memory Adaptation Model

BAM defines a set M of modal policies or modes and assumes that the human switches among
the modes stochastically. A mode m: X,, X A, X A, — {0, 1} is a deterministic policy that maps
the current world state to joint human-robot actions. At each time step, the human follows a mode
my, € M and observes that the robot follows a mode m, € M.

For instance, in the table carrying task of Fig. |, one mode informally represents the human and
the robot moving the table clockwise. Another mode can represent the human and the robot moving
the table counter-clockwise. Intuitively, a set of modes captures the different ways that lead to task
completion.

If human and robot disagree, that is they follow different modes, the human may switch from their
mode my, to the robot’s mode m, at the next time step. We assume that this occurs with probability «.
If « = 1, the human switches to m, almost surely. If « = 0, the human insists on the original mode
my, and does not adapt at all. Intuitively, a captures the human’s inclination to adapt. We define « the
human adaptability.
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When inferring the robot mode m,, the human may take into account not the whole history, but
only the last k time-steps * in the past. This assumption of “bounded rationality” was first proposed by
Herbert Simon: people often do not have the time and cognitive capabilities to make perfectly rational
decisions [54]. In game theory, bounded rationality has been modeled by assuming that players have
a “bounded memory” or “bounded recall" and base their decisions on recent observations [3, 41, 52].
We find this assumption particularly pertinent in a fast-paced task, such as the table carrying task,
where the human collaborator has limited time to choose their actions.

3.2 Mutual Adaptation Formalism via Task Actions

In this section we describe the integration of BAM in the robot decision making process using
the MOMDP formulation by [46]. A MOMDP uses proper factorization of the observable and
unobservable state variables S : X X Y, reducing the computational load [48].

We include in the set of observable variables X the modal policies followed in the last k time-steps,
so that X : X,, x M* x MF. X,, is the finite set of task-steps that signify progress towards task
completion and M is the set of modal policies followed by the human and the robot in a history
length k. The partially observable variable y in this case is identical to the human adaptability «,
so that Y = A. Nikolaidis et al. [46] consider « to be fixed throughout the task. We define 7, the
transition function that specifies how the observable state changes given a human and a robot action.
We denote as 7, the stochastic human policy. The latter gives the probability of a human action ay,
at state s, based on the BAM human adaptation model. The belief update for the MOMDP in this
model is:

b@)=n ), Y, Ty ar an x)mals, an)b(y) )
acAapcAy

We can then solve the MOMDP for a robot policy 7z} (Eq. 1) that takes into account the robot
belief on the human adaptability, while maximizing the agent’s expected total reward. Solving exactly
the MOMDP is intractable; we find an approximate solution using the SARSOP solver [32], a
point-based approximation algorithm which, combined with the MOMDP formulation, can scale up
to hundreds of thousands of states [5].

The policy execution is performed online in real time and consists of two steps. First, the robot
uses the current belief to select the action a, specified by the policy. Second, it uses the observation
of the new state to update the belief on « (Eq. 2).

The presented human-robot mutual adaptation formalism allows the robot to guide the human
towards a better way of doing the task via disagreement through actions. In Sec. 4, we generalize the
proposed model, allowing for the robot to communicate with the human through verbal utterances,
as well.

4 PLANNING WITH VERBAL COMMUNICATION

We identify two types of verbal communication: verbal commands, where the robot asks the human
to take a specific action, i.e., “Let’s rotate the table clockwise”, and state-conveying actions, i.e., “1
think I know the best way of doing the task,” where the robot informs the human about its internal
state. We manually specify the verbal utterances, rather than generating them automatically.

4.1 Robot Verbal Commands

We define as verbal command a robot action, where the robot asks the human partner to follow
an action ap € Ay specified by some mode m, € M. We use the notation a;’ € A}’ for robot task
actions that affect the world state and a; € A{. for robot actions that correspond to the robot giving a

3 A time-step indicates the fixed duration of a human or robot action. We assume that all actions have equal duration.
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Fig. 2. Human adaptation model that accounts for verbal commands. If the robot gave a verbal
command af in the previous time-step, the human will switch modes with probability c. Instead, if the
robot took an action ay” that changes the world state, the human will switch modes with probability «.

verbal command to the human. We assume a known bijective function f : A" — AS that specifies an
one-to-one mapping of the set of human actions to the set of robot commands.

Human Compliance Model. Given a robot command a¢ € A¢, the human can either ignore the
command and insist on their mode m; € M, or switch to a mode m, € M inferred by a¢ and take
an action ap € Ay, specified by that mode. We assume that this will happen with probability c,
which indicates the human compliance to following robot verbal commands. We model human
compliance separately to human adaptability, drawing upon insights from previous work on verbal
and non-verbal communication which shows that team behaviors can vary in different interaction
modalities [9, 60].

MOMDP Formulation. We augment the formulation of Section 3.2, to account for robot verbal
commands, in addition to task actions: the set of robot actions A, is now A, : AY X A¢.

The set of observable variables X includes the modal policies followed in the last k time-steps, so
that X : X,, x MK x M¥ x B. Compared to the formulation of Sec. 3.2, we additionally include a flag
B € {0, 1}, that indicates whether the last robot action was a verbal command or a task action. The
set of partially observable variables includes both human adaptability o in A and compliance c € C,
so that Y : A x C. We assume both « and c to be fixed throughout the task.

The belief update for the MOMDP in this model is:

b (a',c’) =n Z Z Z Te(x,y, ar, an, x")mn(x, a, ¢, ap)b(a,c) 3)

acAceCap€Ay

The human policy 7, (x, @, ¢, ap) captures the probability of the human taking an action ay, based
on their adaptability and compliance. In particular, if B = 1, indicating that the robot gave a verbal
command in the last time-step, the human will switch to a mode m, € M specified by the previous
robot command a{ with probability c, or insist on their human mode of the previous time-step my,
with probability 1 —c. If B = 0, the human will switch to a mode m, € M specified by the robot action
ay’ with probability ¢, or insist on their human mode of the previous time-step my, with probability
1 — «. Fig. 2 illustrates the model of human decision making that accounts for verbal commands.

As in Sec. 3.2, we then solve the MOMDP for a robot policy z; (Eq. 1). This time, the robot
optimal policy will take into account both the robot belief on human adaptability and the robot belief
on human compliance. It will decide optimally, based on this belief, whether to take a task action or
issue a verbal command. We show that this improves the adaptation of human teammates in Sec. 6.
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4.2 Communication of Robot Internal State

Previous work [59] has shown that communicating internal states among team members allows
participants to form shared mental models. Empirical evidence suggests that mental model similarity
improves coordination processes which, in turn, enhance team performance [36, 37]. The literature
presents various definitions for the concept of “shared mental models” [33]. Marks et al. [36]
state that mental models represent “the content and organization of inter-role knowledge held by
team members within a performance setting.” According to Mathieu et al. [38], mental models are
“mechanisms whereby humans generate descriptions of system purpose and form, explanations of
system functioning and observed system states and prediction of future system states ... and they
help people to describe, explain and predict events in their environment.” Other work [20, 28, 47]
has shown the effect of shared mental models on team performance for human-robot teams, as well.
Using these insights, we propose a way for the robot to communicate its internal state to the human.
State Conveying Actions. We define as state-conveying action a robot action, where the robot
provides to the human information about its decision making mechanism. We define a set of state-
conveying actions a; € Aj. These actions do not provide information about the robot mode, but we
expect them to increase the human adaptability and compliance levels. In autonomous driving, users
showed greater system acceptance, when the system explained the reason for its actions [30].
MOMDP Formulation. We describe the integration of state-conveying actions in the MOMDP
formulation.

The set of robot actions includes task-based actions and state-conveying actions, so that: A, :
AY x Aj. We model an action a} as inducing a stochastic transition from a human adaptability
aeAtoa’ € A,and ¢ € C to ¢’ € C. Formally, we define the transition functions for the partially
observable variables «, so that: 7, : A X A3 — II(A) and 7. : A x AS — II(C). We note that the
task actions a, ¢ A} do not change « and c.

The belief update now becomes:

b'(a’,c’) =n Z Tl ar,a’)Te(c, ar,c’) Z Tx(x,y, ar, ap, x")mp(x, a, ¢, ap)b(a, c) @)
aeA, ceC ap€Ay
As in Sec. 3.2, we solve the MOMDP for a robot policy 7, (Eq. 1). The robot policy will decide
optimally whether to take a task action or a state-conveying action. Intuitively, if the inferred human
adaptability / compliance is low, the robot should take a state-conveying action to make the human
teammate more adaptable / compliant. Otherwise, it should take a task action, expecting the human
to adapt / follow a verbal command. We examine the robot behavior in this case in Sec. 6.

5 MODEL LEARNING

To compute the belief update of Eq. 2, 3 and 4, we need a prior distribution * over the human
adaptability and compliance values. We additionally need to specify the 7, and 7, that indicate how
the adaptability and compliance will change, when the robot takes a state-conveying action.

In previous work, Nikolaidis et al. [46] assumed a uniform prior on human adaptability. While we
could do the same in this work, this would ignore the fact that people may in general have different a
priori dispositions towards adapting to the robot when it takes a task action and towards following a
robot verbal command. In fact, Albrecht et al. [2] have empirically shown that prior beliefs can have
a significant impact on the performance of utility-based algorithms. Therefore, in this section we
propose a method for learning a prior distribution on human adaptability and compliance from data.

We additionally propose a method for computing the state transition function 7, in Eq. 4. We can
use exactly the same process to compute 7. in Eq. 4, and we leave this for future work.

4We are using the term prior distribution and prior belief interchangeably.
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Click to choose Click to choose
clockwise counterclockwise
rotate action rotate action

(b)

Fig. 3. (a) Rotating the table so that the robot is facing the door (top, Goal 1) is better than the other
direction (bottom, Goal 2), since the exit is included in the robot’s field of view and the robot can avoid
collisions. (b) Ul with instructions.

5.1 Learning Prior Distributions on Adaptability and Compliance

Verbal communication is effective in building common ground [8, 13, 61] and has been shown to
increase anthropomorphic perceptions of robots [65]. In contrast, nonverbal communication alone
requires the human to infer the meaning of the action from contextual cues, leaving room for
ambiguity [1, 7]. Having the robot verbally declare the action it wants to take (e.g. “Let’s turn the
table clockwise") makes the robot’s intentions clear, and makes it less likely that participants attribute
non-agentic causes, like malfunction, to the robot’s action. Therefore, when integrating compliance
and adaptability, we hypothesize that users are a priori more likely to change their actions after a
robot issues a verbal command, compared with the robot taking a different task action. To account for
this, we compute a probability distribution over human adaptability and compliance, which the robot
will use as prior in the belief update of the MOMDP formulation. We conduct a study to collect data
for our distribution.

Materials. We used the table carrying task setting by Nikolaidis et al. [46]. In this task, which is
performed online via video playback, a human and HERB [55], an autonomous mobile manipulator,
must work together to carry a table out of the room. There are two strategies: the robot facing the
door (Goal 1) or the robot facing away from the door (Goal 2). We assume that Goal 1 is the optimal
goal, since the robot’s forward-facing sensor has a clear view of the door, resulting in better overall
task performance. Not aware of this, an inexperienced human partner may prefer Goal 2. In our
computational model, there are two modes; one with rotation actions towards Goal 1, and one with
rotation actions towards Goal 2. Disagreement occurs when human and robot attempt to rotate the
table towards opposite directions.

Procedure. We first instructed participants in the task and asked them to choose one of the two goal
configurations (Fig. 3), as their preferred way of accomplishing the task. To prompt users to prefer
the sub-optimal goal, we informed them about the starting state of the task, where the table was
slightly rotated in the counter-clockwise direction, making the sub-optimal Goal 2 appear closer.
Once the task started, the user chose the rotation actions by clicking on buttons on a user interface
(Fig. 3b). After clicking on an action, participants were able to view what action the robot chose, see
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Fig. 4. (a) Histograms of user adaptabilities &, and compliances ¢, . (b) Transition matrix 7 («, a$, a”)
given a robot state-conveying action a;. Darker colors indicate higher probabilities.

Fig. 1b. Participants continued to interact with the robot this way until they finished the task. All
participants executed the task twice.

Manipulated Variables. We manipulated the way the robot reacted to the human actions. When the
human chose a rotation action towards the sub-optimal goal, the table did not move and in the first
condition a message appeared on the screen notifying the user that they tried to rotate the table in a
different direction then the robot. In the second condition, the robot was illustrated as speaking to
the user, prompting them to move the table towards the opposite direction (Figure 1b)-top. In both
conditions, when the user moved the table towards the optimal goal, a video played showing the
table rotating.

Learning Prior Beliefs. Adaptability: In Sec. 3.1, we defined as adaptability « of an individual, the
probability of switching from the human mode my, to the robot mode m,. Therefore, we used the
data from the first condition to estimate the adaptability &, for each user u, as the number of times
the user switched modes, divided by the number of disagreements with the robot. We disregarded
the data from users when there was no disagreement, since this data was not informative of their
adaptability.

#times user u switched from my, to m,
a, =

®)

Intuitively, a very adaptable human will switch from my, to m, after only one disagreement with
the robot. On the other hand, a non-adaptable human will insist and disagree with the robot a large
number of times, before finally following the robot goal.

Compliance: In Sec. 4.1, we defined the compliance c as the probability of following a robot verbal
command and switching to a robot mode m, € M. Therefore, similarly to Eq. 5, we estimate the
compliance for each user u from the second condition ¢ as follows:

#disagreements

#times user u switched from my, to m,
Gy =

#verbal commands ©

We then assume a discrete set of values for a and c, so that « € {0,0.25,0.5,0.75,1.0} and
¢ € {0,0.25,0.5,0.75,1.0}, and we compute the histogram of user adaptabilities and compliances
(Fig. 4a). We then normalize the histogram to get a probability distribution over user adaptabilities
and a probability distribution over compliances. We use these distributions as prior beliefs for the
MOMDP model.
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Discussion. Fig. 4a shows that most of the users adapted to the robot immediately when the robot
issued a verbal command. This indicates that users are generally more likely to follow a robot verbal
command than adapt to the robot through action disagreement.

5.2 Learning Transition Function Parameters

Additionally, in order to compute the belief update of Eq. 4, we need to compute the state-transition
function 7, that represents how a state-conveying action affects the human adaptability a. As in
Sec. 5.1, we assume a € A, where A € {0,0.25,0.5,0.75, 1.0}. We conducted another study, in order
to learn the transition function parameters.

Materials. We use the same table carrying setup, as in Sec. 5.1.

Procedure. Participants interact with the robot twice. In the first round, participants interact with the
robot executing the MOMDP policy of Sec. 3.2, without any verbal communication. In the second
round, we set the robot policy to move towards a goal different than the goal reached in the end
of the previous round, and we have the robot take a state-conveying action in the first time-step
(Fig. 1b)-bottom.

Transition Function Estimation. Using the human and robot actions taken in the first round, we
estimate the adaptability &, € A of each user u using Eq. 5, rounded to the closest discrete value.
We then similarly estimate the new adaptability for the same user &;, € A from the human and robot
actions in the second round, after the user has observed the robot state-conveying action.

We can compute the Maximum Likelihood Estimate of the transition function 74 (e, a;, @’) in
Eq. 4 from the frequency count of users that had «, as estimated in the first round, and @’ in the
second round. Since we had only one user with &, = 0.75, we included the counts of adjacent entries,
so that:

2w Na-s,a+81(@u) Loy (d;,)

To(a,as,a’) = ~
( ) 2o La-5,a+51(0u)

s Uy

)

where § = 0.25 and 1 an indicator function.
Discussion. A repeated measures ANOVA showed a statistically significant effect of the state-
conveying action on participants’ adaptability (F(1,39) = 45.59,p < 0.001). Fig. 4b shows that most
users became very adaptable (¢’ = 1.0), after the robot took a state-conveying action. However, some
users with low adaptability remained non-adaptable, even after the robot stated that “[it knew] the
best way of doing the task”. We investigate this effect further in Sec. 6.

6 EVALUATION

We first simulate and comment on the different MOMDP policies using the table carrying setup of
Sec. 5.1. We then evaluate these policies in a human subject experiment.

6.1 Simulation

We define the reward function in Eq. 1, so that Ry, = 20 is the reward for the optimal goal (Goal 1),
Rsubopt = 15 the reward of the suboptimal goal (Goal 2), and we have Ry;per = 0 for the rest of the
state-space. We additionally assign a discount factor of y = 0.9. We use the MOMDP formulations
of Sec. 3.2, Sec. 4.1 and Sec. 4.2, and for each formulation we compute the optimal policy using the
SARSOP algorithm [32], which is computationally efficient and has been previously used in various
robotic tasks [5]. For the policy computation, we use as prior beliefs the learned distributions from
Sec. 5.1, and as transition function 7, its learned estimate from Sec. 5.2.

We call Compliance policy the resulting policy from the MOMDP model of Sec. 4.1, State-
Conveying policy the policy from the model of Sec. 4.2, and Baseline policy the policy from Sec. 3.2.
Fig. 5 shows sample runs of the three different policies with five simulated users. Users 1-3 work
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with a robot executing the compliance policy, User 4 with the state-conveying policy and User 5 with
the baseline policy. User 1 adapts to the robot strategy, and the robot does not need to issue a verbal
command. User 2 insists on their strategy after disagreeing with the robot, and does not comply with
the robot verbal command, thus the robot adapts to retain human trust. User 3 insists on their strategy
in the first two time-steps but then adapts to follow the robot command. User 4 starts with being
non-adaptable, but after the robot takes a state-conveying action their adaptability changes and the
user adapts to the robot. User 5 interacts with a robot executing the baseline policy; the robot adapts,
without attempting to issue a verbal communication action, contrary to Users 3 and 4. We see that
while User 5 had the same initial adaptability (¢ = 0.0) with Users 3 and 4, Users 3 and 4 adapted to
the robot when it issued a verbal communication action, whereas User 5 imposed its (suboptimal)
preference to the robot.

6.2 Human Subject Experiment

We conduct a human subjects experiment using the table carrying setup of Sec. 5.1. We manipulated
the policy that the robot executed. We had three conditions, which we call Baseline, Compliance,
and State-Conveying, and in each condition the robot executed the Baseline, Compliance and State-
Conveying policy respectively.

In human subjects experiments of previous work [46], a large number of participants adapted to
a robot executing the Baseline policy. At the same time, participants rated highly their trust in the
robot. In this work, we hypothesize that adding verbal communication will make participants even
more likely to adapt.

We additionally hypothesized that this would not be to the detriment of their trust in the system. In
particular, we expected trust to be retained between the three conditions. Previous work [45, 46] has
shown that the baseline policy resulted in high trust ratings; we expected the ratings from participants
interacting with the Compliance and State-Conveying conditions to tend to be comparable but not
significantly higher, since only a subset of users (Fig. 5, Users 3,4) witness the robot speaking and
some participants tend to avoid extreme ratings in their responses to questionnaires [17].
Hypotheses.

H1 Participants are more likely to change their strategy towards the optimal goal when they interact
with a robot executing the Compliance policy, compared to working with a robot executing the
Baseline policy. In Sec. 5.1, we saw that users were generally more likely to follow a verbal command
than adapt to the robot through action. Therefore, we hypothesized that integrating verbal commands
into robot decision making would improve human adaptation.

H2 Participants’ ratings of human trust in the robot will tend to be comparable between participants
that interact with a robot executing the Compliance policy and participants that interact with a robot
executing a Baseline policy. The robot executing the compliance policy reasons over the latent human
state, and adapts to the human team member, if they have low adaptability and compliance (Fig. 5,
User 2) °. In previous work [46], accounting for human adaptability resulted in retaining users’ trust
in the robot.

H3 Participants are more likely to change their strategy towards the optimal goal when they interact
with a robot executing the State-Conveying policy, compared to working with a robot executing
the Baseline policy. In simulation, taking a state-conveying action results in an increase in human
adaptability (Fig. 5, User 4). We hypothesized that the same would hold for participants in the actual
experiment.

H4 Participants’ ratings of human trust in the robot will tend to be comparable between participants

SWe assume that the robot can still complete the task following the suboptimal goal, which has a lower reward than the
optimal one.
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Fig. 5. Sample runs on the human-robot table carrying task, with five simulated humans of different
adaptability and compliance values. The plots illustrate the robot estimate of a, ¢ € {0,0.25,0.5,0.75, 1.0}
over time, after human and robot take the actions depicted with the arrows (clockwise / counterclock-
wise) or letters (S for state-conveying action, C for verbal command) below each plot. The starting
estimate is equal to the prior belief (Sec. 5.1). Red color indicates human (white dot) and robot (black
dot) disagreement, where the table does not rotate. Columns indicate successive time-steps. The
initial adaptability of User 4 is « = 0.0, but it increases after the robot takes a state-conveying action
at T = 2. User 5 interacts with a robot using the baseline policy that does not include any verbal
communication.
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that interact with a robot executing the State-Conveying policy and participants that interact with a
robot executing a Baseline policy. We hypothesized that enabling the robot to communicate its state
would improve the transparency in the interaction and would result in high trust, similarly to the
baseline condition.

Dependent Measures. To test hypotheses H1 and H3, we compare the number of users that adapted
to the robot in the three conditions. To test hypotheses H2 and H4, we asked the users to rate on a 1
to 5 Likert scale their agreement to the statement “The robot is trustworthy” after each task execution,
and compare the ratings in the three conditions.

Subject Allocation. We chose a between-subjects design, where different participant groups were
randomly assigned to different conditions, in order to avoid biasing the users with policies from
previous conditions. We recruited 200 participants through Amazon’s Mechanical Turk service and
compensated them with $0.50. The participants were all from United States, aged 18-65, and had an
approval rate higher than 95%. Since we are interested in exploring human-robot mutual adaptation,
we disregarded participants that had as initial preference the robot goal. Additionally, to ensure the
quality of the recorded data, we asked all participants a control question that tested their attention to
the task and eliminated data associated with wrong answers to this question, as well as incomplete
data. We were left with 151 participants (60% female, mean age = 35).

Materials. We used the same table-carrying task setting as described in Sec. 5.1.

Procedure. Participants were first familiarized with rules of the table turning task. We then asked
them to indicate which of the two goal configurations they preferred to complete the task with, shown
in (Fig. 3). Participants then began the first round of the table carrying task with the robot; they were
instructed to turn the table clockwise or counterclockwise by clicking on the respective buttons. The
task finished when the participant and robot agreed on a policy and carried the table out the door.
Depending on the participant’s condition and willingness to adapt to the robot’s preferred strategy,
they saw the robot issue a verbal command, a state conveyance action, or no verbal action at all.
Participants then completed a second round of the table turning task. Finally, we asked participants
to complete a series of survey questions.

6.3 Results and Discussion

Objective Metrics. We first evaluate the effect of verbal communication in human adaptation to
the robot. Similarly to previous results from the baseline policy in the same setup [46], 60% of
participants adapted to the robot in the Baseline condition. In the State-Conveying condition 79%
of participants adapted to the robot. Interestingly, 100% of participants adapted in the Compliance
condition. A Pearson’s chi-square test showed that the difference between the number of participants
in the three conditions was statistically significant (y*(2, N = 151) = 23.058, p < 0.001). Post-hoc
pairwise chi-square tests with Bonferroni corrections showed that participants in the Compliance
condition were significantly more likely to adapt to the robot, compared to participants in the Baseline
(p < 0.001) and State-Conveying (p = 0.003) conditions, supporting hypothesis H1. However, the
difference between the counts in the State-Conveying and Baseline conditions was not found to be
significant, which does not support hypothesis H3. Fig. 6-left shows the adaptation rate for each
condition.

Subjective Metrics. We additionally compare the trust ratings of participants in the three conditions.
An extended equivalence test [63, 64] © with a margin of A = 0.5 did not show any statistical
significance, indicating that the ratings among the three conditions were not equivalent. Pairwise
TOST equivalence tests with Bonferroni corrections showed that the ratings between the Compliance

6We follow the equivalence testing procedure that has been used in clinical trials [34]. We use the term equivalence to mean
that the annotated trust ratings are close enough that they cannot be considered superior or inferior to the other.
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Fig. 6. Participants’ adaptation rate and rating of their agreement to the statement “HERB is trustwor-
thy” for the Compliance, State-Conveying and Baseline conditions (left), and the State-Conveying |
and Il conditions (right).

and Baseline conditions are equivalent, verifying hypothesis H2. However, the trust ratings between
the State-Conveying and Baseline conditions were not found to be equivalent. This indicates that,
contrary to the Compliance policy, the State-Conveying policy did not retain human trust. Fig 6-left
shows the mean rating of robot trustworthiness for each condition.

Open-Ended Responses. In the end of the experiment, we asked participants to comment on the
robot’s behavior. We focus on the open-ended responses of participants in the Compliance and State-
Conveying conditions, who saw the robot taking at least one verbal action . Several participants
that interacted with the robot of the Compliance condition attributed agency to the robot, stating
that “he eventually said that we should try doing the task differently,” “HERB wanted to go to the
other direction” and that “he wanted to be in control.” This is in accordance with prior work [44],
which has shown that people may impute motivation to automation that can communicate verbally.
Additionally they attempted to justify the robot, noting that “it was easier for me to move than for
him,” “it wanted to see the doorway” and “it probably works more efficiently when it is pushing the
table out of the door.”

On the other hand, participants in the State-Conveying condition questioned that the robot actually
knew the best way of doing the task. This is illustrated by their comments: “he thinks that he knows
better than me,” “he felt like he knew better than humans” and “maybe he knew a better way or
maybe he was programmed to oppose me.” This indicates that some users are hesitant to accept the
information that the robot provides about its internal state.

These results show that when the robot issued a verbal command declaring its intent, this resulted
in significant improvements in human adaptation to the robot. At the same time, the human trust level
was retained to comparable levels to that of the Baseline condition. On the other hand, when the robot
attempted to improve human adaptability, by saying “I think I know the best way of doing the task,”
this did not have the same positive effect on human adaptation and trust, since some participants
questioned that the robot actually knew the best way.

6.4 Follow-up User Study I.

We hypothesized that the loss of trust in the State-Conveying condition may have resulted from the
phrasing “I think I know the best way of doing the task.” We attempted to make the robot sound more
assertive by removing the “I think” part of the phrasing, changing the state-conveying action to “I
know the best way of doing the task.” We ran a user study with 52 users, following a between-subjects
design, using the same setup with this additional condition, which we call “State-Conveying I1.” We

"This excludes participants that adapted to the robot after only one disagreement, and thus did not experience the robot taking
a verbal action.
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name the initial “State-Conveying” condition as “State-Conveying 1.” For the “State-Conveying I”’
condition, we reused the data from the initial study.

Hypotheses.

HS Participants of the State-Conveying Il condition are more likely to change their strategy towards
the optimal goal, compared to participants of the State-Conveying I condition.

H6 Participants in the the State-conveying Il condition will find the robot more trustworthy, compared
to participants of the State-conveying I condition.

Analysis. 90% of participants adapted to the robot in the State-Conveying II condition, compared to
79% in the State-Conveying I condition (Fig. 6-right), which is indicative of a small improvement. A
Pearson’s chi-square test showed that the difference between the number of participants in the two
conditions is not statistically significant. Additionally, the trust ratings between the two conditions
tended to be comparable (Fig. 6-right). Similarly to the initial study, users appeared not to believe
the robot. When asked to comment on the robot behavior, several participants stated that “HERB
believed he knew the best way to do the task,” and that “the robot was wrong, which made me not
trust it.” This indicates that these participants did not perceive the robot as truthful, and warrants
further investigation on the right way for robots to convey their internal state to human collaborators.

6.5 Follow-up User Study II.

We hypothesized that providing more explanation about the robot state and actions would positively
affect participants’ adaptation rate and trust in the robot. While translating robot to human repre-
sentations in this form is challenging [27], it is valuable to distill what information is essential in
affecting a person’s beliefs and goals. Therefore, we changed the state-conveying action to “I need
to be able to see the door with my forward-facing camera,” and ran a user study with 52 users,
following a between-subjects design, using the same setup with this additional condition, which we
call “State-Conveying with Explanation.” For the “State-Conveying I”’ condition, we reused the data
from the initial study, similarly to Sec. 6.4.

Hypotheses.

H7 Participants of the State-Conveying with Explanation condition are more likely to change their
strategy towards the optimal goal, compared to participants of the State-Conveying I condition.

H8 Participants in the the State-conveying with Explanation condition will find the robot more
trustworthy, compared to participants of the State-conveying I condition.

Analysis. 94% of participants adapted to the robot in the State-Conveying II condition, compared to
79% in the State-Conveying I condition (Fig. 7), which is indicative of an improvement. A Pearson’s
chi-square test showed the difference between the proportions in the two conditions to be statistically
significant (y?(1, N = 105) = 5.101,p = 0.024). Additionally, the trust ratings between the two
conditions appear to have increased, although a Mann-Whitney-Wilcoxon test found the difference
to be non-significant (p = 0.095). We attribute the absence of significance to the relatively small
sample size. When asked to comment on the robot behavior, participants stated that “I preferred to go
forward, but that was before knowing that the robot had a forward facing camera” and that “[HERB]
couldn’t see if he moved backwards.” This indicates that giving a concrete explanation on why the
robot chose to follow a different goal than the person was effective in changing the participants’
behavior.

7 DISCUSSION

In this work, we proposed a formalism for combining verbal communication with actions towards task
completion, in order to enable a human teammate to adapt to its robot counterpart in a collaborative
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Fig. 7. Participants’ adaptation rate and rating of their agreement to the statement “HERB is trustwor-
thy” for the State-Conveying | and State-Conveying with Explanation conditions.

task. We identified two types of verbal communication: verbal commands, where the robot explained
to the human how it wanted to do a task, and state-conveying actions, where the robot informed
the human why it chose to act in a specific way. In human subjects experiments, we compared the
effectiveness of each communication type with a robot policy that considered only non-verbal task
actions.

Results showed that verbal commands were the most effective forms of communication, since 100%
of participants adapted to the robot, compared with 60% of participants in the non-verbal condition.
Both conditions had comparable ratings of robot trustworthiness. Participants understood that the
robot is aware of their presence and they attributed agency to the robot; they thought that there must
be a reason for the robot asking them to act in a specific way and were eager to comply.

What is surprising is that some of the why actions did not have the same effect; when the robot
described that “it thought it knew the best way of doing the task,” or simply that “it knew the best
way of doing the task,” many participants questioned whether the robot was truthful. On the other
hand, when the robot provided a concrete explanation, i.e., “I need to be able to see the door with
my forward-facing camera,” a large number (94%) of participants adapted to the robot. While these
results appear to be counter-intuitive, we offer several explanations for this finding.

First, for the non-descriptive explanations, human teammates were unable to verify whether the
robot actually knew the best way of doing the task. According to Hancock et al. [23], performance
is one of the key characteristics that influences user trust, and the absence of evidence about the
truthfulness of the robot statement may have negatively affected users’ evaluation of the robot
performance. This is in contrast to previous work in autonomous driving, where the user could
see that the car is breaking because “there is an obstacle ahead” [30]. This finding is central to
considerations in designing legible robot behavior [29]. When the cause behind certain robot actions
may be unclear, it will be important for robots to show and not tell users why its behavior is optimal.

Second, explaining that the robot knows the best way without providing more information may
have been considered offensive, even though it is accurate, since the human teammate may find such
an utterance incomplete and unhelpful. This conjecture is supported by the results in our follow-up
user study: when we had the robot provide more informative utterances, such as explaining that
it cannot see the door with its forward camera, the adaptation rate significantly increased. In fact,
previous work [42] in multi-agent systems has shown that providing sound arguments supporting a
proposition are essential in changing a person’s beliefs and goals. However, translating information
that is typically encoded into the system in the form of a cost-function to a verbal explanation of this
detail is particularly challenging. Additionally, while providing more information could make humans
more adaptable, overloading them with more information than what is required could overwhelm
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them, leading to misunderstanding and confusion [21]. We are excited about further exploring this
trade-off in the future in a variety of human-robot collaboration settings.

An alternative explanation is that the task setting affected people’s perception of the robot as an
authority figure. Hinds et al. [25] show that participants were willing to follow an emergency guide
robot during a simulated fire alarm. Half of these participants were willing to follow the robot, even
though they had observed the robot perform poorly in a navigation guidance task, just minutes before.
In that study, the robot was clearly labeled as an emergency guide robot, putting it in a position of
authority. People may be more willing to rely on robots labeled as authority figures or experts when
they do not have complete information or confidence in completing the task. Distilling the factors
that enable robots to convey authority in collaborative settings is a promising research direction.

Finally, it is possible that the robot, as it appeared in the videos, was not perceived as “human-like”
enough for people to be willing to trust its ability on doing the task in the optimal way. Previous
work has shown that when robots convey human-like characteristics, they are more effective in
communicating participant roles [43], and people systematically increase their expectations on the
robot’s ability [19] .

We focused on single instances of the table carrying task, where we assumed that the human
strategy may change after either an action disagreement or a robot utterance. In repetitive tasks,
change may occur also as the human collaborator observes the outcomes of the robot’s and their
own actions. For instance, the human may observe that the robot fails to detect the exit and they may
change their strategy, so that in subsequent trials the robot carries the table facing the door. In this
scenario, it may be better for the robot to allow the human to learn from experience, by observing
the robot failing, rather than attempting to change the human preference during task execution.
Future work includes generalizing our formalism to repeated settings; this will require adding a more
sophisticated dynamics model of the human internal state, which accounts for human learning.

In summary, we have shown that when designing interactions in human-robot collaborative tasks,
having the robot directly describe to the human how to do the task appears to be the most effective
way of communicating objectives, while retaining user trust in the robot. Communicating why
information should be done judiciously, particularly if the truthfulness of the robot statements is not
supported by environmental evidence, by the robot form or by a clear attribution of its role as an
authority figure.
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