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1 Introduction

Concentric tube robots, or CTRs, are tentacle-like robots composed of precurved
telescoping tubes (Fig. 1a) and are controlled by rotating and translating each
individual tube [6]. Their dexterity and small diameter enable minimally-invasive
surgery in constrained areas, such as accessing the pituitary gland via the sinuses.
Unfortunately, their unintuitive kinematics make manually guiding the tip while
also avoiding obstacles with the entire tentacle-like shape extremely difficult [19].
This motivates a need for new user interfaces and planning algorithms.

Although existing planners [19] enable CTRs to reach specified points in
task-space, this is often insufficient. For example, cutting a window in the skull
during brain surgery (Fig. 1b) requires specifying an entire path R for the robot’s
tip. We have, to the best of our knowledge, implemented the first planner in this
domain able to compute a trajectory that closely follows such a task-space path.

Algorithms that are able to follow some task-space path R by computing
a constrained path in configuration space (C-space) [2,14,17,22] have two main
challenges: (i) some (e.g., a vector-field planner [17]) are fast but myopic, often
falling into local minima and (ii) all are oblivious to how closely the generated
paths follow R. In contrast, Holladay et al. [9] address both concerns by con-
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Fig. 1: (a) CTR with coin for scale. (b) Depiction of a CTR deployed via the
sinus. A reference path R, used to cut a window in the skull with the CTR’s tip,
is depicted in yellow. (c) An example of a surgical system that uses our planner
as a core component.
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Fig. 2: (a) Layered graph L and (b) nearest-neighbor graph Nk constructed in
C-space to follow a reference path R in task-space. Note that a layer in L is
depicted as a vertical stack of nodes. If reaching ri is impossible, all paths in L
become blocked. The structure of Nk, however, can bypass such blockages.

structing a layered graph L in C-space and searching it for a path that directly
minimizes the Fréchet distance [21] from R.

Key to this algorithm’s efficiency are the graph’s ordered layers (Fig. 2a),
each consisting of multiple Inverse Kinematics (IK) solutions for a specific point
on R. Directed edges connect each configuration to others in the same and adja-
cent layers, ensuring monotonic progress. Unfortunately, this requires any path
through L to touch R at every layer, leading to failure in constrained envi-
ronments such as ours. For example, a layer mapping to a point ri ∈ R made
unreachable due to collisions causes no collision-free path to exist in the graph.
The CTR’s kinematics make it difficult for a surgeon specifying a path to per-
fectly distinguish feasible locations in task space, accentuating this failure mode.

Our key insight is to generalize this algorithm by searching over a nearest-
neighbor graph, with less restrictive connections that allow deviation from in-
feasible portions of R (Fig. 2b). This makes planning in constrained anatomical
environments possible, and thus enables our key contribution—a system imple-
mented on a CTR, presented with a set of simulated and physical experiments.
The former reveal that our planner produces higher-quality solutions more reli-
ably than alternative algorithms, while the latter inform algorithmic next-steps
necessary to bridge the simulation and real-robot gap.

2 Technical Approach

2.1 Notation and Definitions

The Fréchet distance is a metric of path similarity that has been extensively
studied in computational geometry, with varied applications such as speech [12]
and handwriting [18] recognition. It can be explained intuitively via an analogy
where a dog on a leash traverses one path while its owner traverses another, each
with independent speed parameterizations α and β. In this case, the Fréchet
distance is the shortest leash length required for the two to stay connected,
assuming the dog and its owner are selecting optimal values of α and β.

Motion plans for surgical tasks, such as tissue manipulation, must respect
the physician’s intent by (i) minimizing the tip’s deviation from the specified
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path at each point in time and (ii) following the “flow” of the path by ensuring
that consecutive points along the two paths are traversed in the same order.
Because the Fréchet distance captures both objectives, it provides an excellent
optimization criteria for our domain.

Our planner searches for these motion plans in C-space, the set of all pos-
sible configurations of the robot. Each configuration is a d-dimensional point
that uniquely defines the robot’s shape. Similarly, the task-space of the robot is
defined as the space of all possible end-effector positions. We use the Forward
Kinematics (FK) operator to map points in C-space to points in task-space, and
use the Inverse Kinematics (IK) operator to perform the reverse mapping.

For a CTR, a configuration must describe the translation `i and rotation θi
of each individual tube. Thus, for a CTR comprised of k tubes (typically three
or four), each configuration is a 2k-length tuple q = (`1, θ1, . . . , `k, θk). We define
the robot’s task-space as the R3 location of its tip, which is sufficient for many
procedures such as cutting with heat or a laser. However, we note that our
planner can easily be used with other definitions of task-space that also account
for the tips’s orientation.

In our setting, the physician specifies a reference path R in task-space as a
sequence of R3 waypoints. Let Γ denote the set of collision-free C-space paths
and F : R3 ×R3 → R denote the discrete4 Fréchet distance between two task-
space paths. Our problem now calls for computing

arg min
γ∈Γ
F(FK(γ), R).5

2.2 Algorithmic Approach

Recall that Holladay et al. [9] construct a layered graph L in C-space. This is
done by evenly sampling waypoints along the reference path R, and computing
a “layer” of distinct IK solutions for each one. Each of these configurations
has out-edges to all configurations in both the same and next immediate layer.
Following Har-Peled and Raichel [8], the cross-product graph Φ = L × R6 is
then constructed and searched for a minimal-bottleneck path, which induces the
path ξ ∈ L such that FK(ξ) minimizes the discrete Fréchet distance with R.

Algorithmic Enhancement: Our early experiments, however, revealed
that this planner often fails in surgical scenarios. In these constrained envi-
ronments, some sampled waypoint ri ∈ R may be unreachable, often due to
a combination of collisions and robot kinematics (Fig. 3). Even the existence

4 Computing the continuous Fréchet distance, is notoriously difficult [16]. Thus, we
use the discrete variant, easily computed using dynamic programming [5]. Here, the
“leash” between points on the two paths is computed only for a discrete set of points
and serves as an approximation of the (continous) Fréchet distance.

5 By a slight abuse of notation we use FK to map both points as well as paths in
C-space to points and paths in task space, respectively.

6 By a slight abuse of notation we treat R both as the discrete reference path as well
as the one-dimensional graph defined by this sequence of waypoints.
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Fig. 3: A reference path R (purple, right) in the task-space of a robot (yellow,
right) induces a manifoldMR of IK solutions in C-space (grey, left). Following R
via a layered graph requires traversing MR from one end to the other, such as
by taking the path in green. However, even if R is not directly in collision with
some obstacle (red, right), its presence may cause a point τ ′ ∈ R to map to a self-
manifold [3] IK(τ ′) that is completely in collision (red, left) given the kinematics
of the robot. These in-collision self-manifolds require deviating from MR to
approximate R, and make traversal via the layered graph impossible.

of one such waypoint prevents the algorithm from finding any solutions, as all
paths are blocked by a layer of configurations in collision (Fig. 2a). To prevent
this, we construct a nearest-neighbor graph Nk by uniformly sampling IK solu-
tions from R and connecting each to its k-nearest neighbors (NN) in C-space.
This less-rigid structure allows the planner to avoid IK solutions sampled from
infeasible waypoints (Fig. 2b).

Specifically, each configuration q is connected to its k-NN in Qs(q), the set
containing all qs ∈ Nk such that FK(qs) lies after FK(q) along R. This ensures
that any path through Nk monotonically follows R. As in [9], we generate the
path ξ ∈ Nk that minimizes the Fréchet distance with R by searching the cross-
product graph Φ = Nk ×R.

Densification: This graph-based approach allows solutions to be improved
on-demand by sampling additional IK solutions from R and densifying Nk. To
connect each newly-sampled solution q to Nk, we add out-edges from q to its
k-NN in Qs(q). In addition, we add in-edges to q from its k-NN in Qp(q), the
set containing all qp ∈ Nk such that FK(qp) lies before FK(q) along R. These
additional connections increase the set of paths the planner can search over,
while still constraining it to monotonically follow R.

Implementation details: We collision check edges lazily [4,7], using LPA* [11]
for efficient replanning. Our CTR has three tubes, each of which can be ro-
tated and translated, inducing a 6-dimensional C-space. We use the damped
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Fig. 4: From left to right, reference paths (i) through (iv) used in our experiments.

least squares (DLS) IK algorithm [20], which has previously been used with the
CTR [19]. We represent obstacles as polygonal meshes, and use FCL [13] for
collision checks. We define the distance between two configurations q1 and q2 as:∑

k

|`k1 − `k2|+ ρ(θk1, θk2)

where ρ denotes the SO(2) difference between two angles. We note that the
choice of distance metric can drastically affect the algorithm’s performance [1].

3 Experiments and Results

We consider four surgically-motivated reference paths in our experimental eval-
uation (Fig. 4), all within a human skull base. The first (i) moves the CTR’s tip
in a straight line towards the back of the sinuses, ending near a region where
the second (ii) traces a trapezoid. These two paths are inspired by a clinical sce-
nario where the CTR is deployed via the first path, and then uses the second to
cut a window allowing deeper access into the skull. We also test (iii) a different
version of the second path, as well as (iv) a W-shaped path that could be used
for wound irrigation. While not in collision with the skull, these last two paths
reside in constrained areas and thus exhibit the phenomenon depicted in Fig. 3.

3.1 Simulation Comparison

We evaluate our algorithm, which we term NN Graph, in simulation and com-
pare its performance with the following alternatives: (a) VFP which follows a
vector-field along R by using the Jacobian to integrate a path in C-space [17],
(b) GreedyIK which adaptively samples a set of ordered IK solutions from R
and attempts to interpolate a collision-free path in C-space between them [17],
(c) CBiRRT which enables planning on constraint manifolds [2] and (d) Lay-
ered Graph—the approach presented by Holladay et al. [9]. It is worth noting
that planners (a) and (b) are myopic but efficient and that all but (d) were not
designed to minimize the Fréchet distance from a reference path.

Simple Paths: We first compare the planners using paths (i) and (ii), both
without regions made unreachable by the collision geometry or CTR kinematics.
We report the Fréchet distances of the produced trajectories from R for a wide
set of parameters (Fig. 5) and average results over ten random seeds.
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Fig. 5: Fréchet distances over a range of parameters for path (i) at top and
path (ii) at bottom. A grey square indicates the algorithm failed to find a solution
with that combination of parameters.

We see that for both paths, all planners successfully produce solutions. When
using path (i), a straight line, performance for all planners remains fairly stable
as parameters vary. However, both paths reveal weaknesses in VFP and GreedyIK.
With the former, optimal performance on path (ii) is only achieved under two
sets of parameters. Similarly, GreedyIK produces results of markedly lower quality
than NN Graph across most parameters. CBiRRT, meanwhile, is used to pin the
CTR’s tip within a tolerance of R and succeeds when this tolerance is made
sufficiently tight. This is especially evident on path (i), the straight line.

Constrained Paths: We also compare the planners using paths (iii) and (iv),
as seen in Fig. 6. Due to being located in constrained areas, these paths contain
small regions infeasible for the CTR to follow perfectly. We note that these paths
were not hand-engineered adversarially, but were generated by a human familiar
with the CTR and real-world surgical procedures.

Due to the infeasible regions, Layered Graph was unable to find any solutions
with either path, confirming the failure mode we observed in our early exper-
iments. While CBiRRT still constrains the CTR’s tip to lie within a tolerance
of R, it lacks any notion of path following, causing it to violate the flow of these
more constrained paths. This oblivious nature also hinders GreedyIK, causing
it to display unstable behavior where sampling more IK solutions can cause a
sharp drop in solution quality.

In our experiments with all four paths, NN Graph displayed stable behavior
under parameter variation and was the only planner able to consistently produce
high-quality solutions. In fact, for each of the four other planners, at least one
path led to either very low quality solutions or no solutions being found.

Additional Comparisons: We use our results from path (iii) to perform ad-
ditional comparisons between planners. In the first of these, we correlate Fréchet
distance and runtime for each planner by averaging results across all parameters
over ten-second windows (Fig. 7a). This confirms that GreedyIK produces solu-
tions quickly due to its simple nature. However, our planner outperforms the
others, which display fluctuating behavior over time.

In addition to evaluating our planner over a range of parameters, we are
interested in how a single set of parameters generalizes across a range of reference



Following Surgical Trajectories with Concentric Tube Robots 7

Fig. 6: Fréchet distances for path (iii) at top and path (iv) at bottom. We note
that Layered Graph failed on both paths, and that VFP failed on path (iii).

paths. We compare against GreedyIK using its optimal parameters, and select
a set for NN Graph that lead to similar runtime on path (iii). Generalization is
evaluated by adding independent Gaussian noise to the corners defining this path
and recording planner success rates (each taken over 20 trials) under increasing
levels of noise (Fig. 7b). We see that as the level of noise increases, our planner
has a higher success rate than GreedyIK.

3.2 Algorithmic Behavior

Runtime Analysis: A decomposition of NN Graph’s runtime on path (iii) as
we linearly scale both the number of nearest-neighbors and IK solutions sampled
is shown in Fig. 7c. FK, used in constructing the nodes of the cross-product
graph Φ [8,9], is notably the most expensive component. This cost arises from
modeling complex interactions between tubes, which requires solving a series of
differential equations rather than the typical matrix multiplication.

Densification: We also explore the ability of densification to improve exist-
ing NN Graph solutions. This provides our planner an advantage over alterna-
tives, as it enables a physician to improve a solution online until they are satis-
fied. Our trials use 20 nearest-neighbors and augment Nk with an additional 20
configurations per densification iteration. We report the Fréchet distances of
solutions as the graph increases in size.

(a) Fréchet vs. Time (b) Robustness to Noise (c) Runtime Components

Fig. 7: (a) Fréchet distance as a function of the runtime for each planner.
(b) Success rates for NN Graph and GreedyIK as we inject more noise into R.
(c) A decomposition of the runtime of our NN Graph. All results use path (iii)
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(a) Path (ii) (b) Path (iii) (c) Path (iv)

Fig. 8: Densification results.

Densification provides very little improvement with path (i), likely because
this simple straight-line path makes the initial solution already close to optimal.
The other three paths display notable improvement as the size of Nk increases
(Fig. 8). However, paths (iii) and (iv) both exhibit diminishing returns past a
given iteration.

3.3 Physical Experiments

We evaluate our algorithm on the real robot, testing all four paths inside a
3D-printed model of the skull base anatomy. Parameters are selected that create
high-quality solutions in simulation. To measure Fréchet distance, we use a mag-
netic tracking system to localize the tip during execution. Because this system
is noisy, we execute each trajectory ten times and average the results.

Imperfections in our kinematic model (discussed in the next section) prevent
us from scoring path (iii) due to collisions. While this path was not executed
successfully, the other three were. Paths (iv), (ii), and (i) were each executed
with average real Fréchet errors of 0.00806, 0.00747, and 0.00744 meters respec-
tively. These are all significantly higher than the respective simulation errors
of 0.00211, 0.00031, and 0.00034 meters. This discrepancy arises primarily from
the inaccuracies in our kinematic model. A comparison of simulated and real
execution using path (ii) is shown in Fig. 9.

4 Experimental Insights and Future Work

Our experiments support our use of a nearest-neighbor graph and demonstrate
the advantages of our planner over alternatives. They also reveal previously un-
considered domain-specific challenges, which we can only now begin to address.
We propose solutions to each of these, which we will explore in future work.

Our planner’s high runtime is mainly due to our robot’s expensive FK (Fig. 7c),
motivating a paradigm shift in planner design for all robots that incur high cost
in this operation. To address this, we propose constructing the cross-product
graph Φ implicitly, which avoids unnecessarily invoking FK to create nodes
never expanded during the search.
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Fig. 9: Simulated (top) and real (bottom) execution of path (ii). The reference
path is colored yellow in simulation.

While we demonstrate a successful planner, our physical experiments reveal
the kinematic model has now become the limiting factor. Although this model is
state-of-the-art [15], it fails to perfectly model certain physical phenomenon, such
as friction between tubes. This causes the shape of the robot in simulation to
only approximate reality. Naturally, improving this model is a solution. We also
propose taking its uncertainty into account via a bicriteria optimization problem
of (i) minimizing Fréchet and (ii) maximizing the distance of the robot from
obstacles to prevent collisions. This has the added benefit of mitigating error in
the collision geometry, constructed from a preoperative volumetric scan [10].

Additionally, successful execution of path (ii) on the real CTR required man-
ually tuning the insertion point of the robot into the skull. The kinematics of the
robot induce a trumpet-shaped workspace, leading to greater range of motion
farther from this insertion point. One of the insertion points was too close to the
reference path, placing it outside the robot’s workspace and causing a planning
failure. Likewise, the successful insertion point placed the shaft of the robot in
a less-constrained area, preventing a collision that otherwise occurred due to
modeling error. Because it proved so consequential, we propose incorporating
this selection of insertion point as a planning subproblem.
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8. S. Har-Peled and B. Raichel. The Frećhet distance revisited and extended. TALG,
10(1):3, 2014.

9. R. Holladay, O. Salzman, and S. Srinivasa. Minimizing task space Frećhet error
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