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Abstract— Our human-robot collaboration research aims to
improve the fluency and efficiency of interactions between
humans and robots when executing a set of tasks in a shared
workspace. During human-robot collaboration, a robot and
a user must often complete a disjoint set of tasks that use
an overlapping set of objects, without using the same object
simultaneously. A key challenge is deciding what task the robot
should perform next in order to facilitate fluent and efficient
collaboration. Most prior work does so by first predicting the
human’s intended goal, and then selecting actions given that
goal. However, it is often difficult, and sometimes impossible,
to infer the human’s exact goal in real time, and this serial
predict-then-act method is not adaptive to changes in human
goals. In this paper, we present a system for inferring a proba-
bility distribution over human goals, and producing assistance
actions given that distribution in real time. The aim is to
minimize the disruption caused by the nature of human-robot
shared workspace. We extend recent work utilizing Partially
Observable Markov Decision Processes (POMDPs) for shared
autonomy in order to provide assistance without knowing
the exact goal. We evaluate our system in a study with 28
participants, and show that our POMDP model outperforms
state of the art predict-then-act models by producing fewer
human-robot collisions and less human idling time.

I. INTRODUCTION

Human-robot collaboration (HRC) studies interactions be-
tween humans and robots when executing tasks in a shared
workspace [1]–[3]. Given a set of tasks (the actions to be
performed, e.g., to open, to grasp, to move) and goals (the
objects on which the task is performed, e.g., a door, a glass,
a cup), the human can select tasks to perform and goals on
which to perform them. Meanwhile, the robot can perform an
uncorrelated task on a secondary goal [4] or can support the
human during his/her task execution by performing another
task on the same goal (e.g., to grasp a bottle if the human
wants to open it) or on another goal (e.g., to open the fridge
door if the human wants to grab a bottle from it) [5], [6]
(Figure 1). Since one of the aims in HRC is to optimize
human satisfaction and comfort [7], [8], in the majority of
approaches, the human has priority over the robot on task
selection. Thus, the robot must adapt to the human’s task
selections. Robot adaptation is even more complex when
possible constraints on the execution order of the tasks exist
(e.g. in order to grasp the bottle in the fridge, the fridge door
must be open) and when the robot is sharing workspace,
goals and/or tasks with more than one human.
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Fig. 1: An example of HRC for clearing a table. All objects
on the table have to be moved on the tray.

Robot adaptation to human behavior has been widely
investigated during the last decade in terms of how robot
motion can be efficiently planned. Some papers focused
on the generation of robot trajectories through the use of
traditional motion planners [9], [10], such as Covariant
Hamiltonian Optimization for Motion Planning (CHOMP)
[11] or Constrained Bi-directional Rapidly-Exploring Ran-
dom Tree (CBiRRT) [9], while other papers worked on the
predictability and legibility of the robot trajectories [12], i.e.,
the robot motion has to match human expectation and the
robot goal can be easily inferred by the human.

All of these approaches rely on the hypothesis that, once
the human goal is predicted with a certain probability,
the robot trajectory can be calculated and executed. This
framework has been referred to as predict-then-act [13]. This
approach presents some disadvantages due to the lack of
reactiveness in the algorithms for the robot motion planning:
(i) the approach is not robust to errors in the goal prediction;
(ii) the approach can take into account the change of the
human goal only through re-planning the robot’s trajectory
while the previous trajectory is in execution [14], thus
implying the need to stop the robot and then to restart it



or to connect two trajectories on the fly; (iii) this approach
is often suboptimal, as the robot must act on a single goal
even when it is not confident about its goal prediction, or
perform no motion until it is confident.

An interesting reactive strategy that addresses these lim-
itations is presented in [13] and [15]. However, both these
papers focus on shared autonomy during robotic teleoper-
ation. Shared autonomy involves a human teleoperating a
robot, thus making the robot’s goals and tasks the same as
the human’s goals and tasks. In contrast, HRC attempts to
produce robot behaviors that are complementary to human
behaviors. The key difference between HRC and shared
autonomy is that in shared autonomy, human movements
become a direct input for the robot, and the robot reactively
adapts its motion by taking into account its continuous
prediction of the human goal derived from this direct input;
in HRC, the robot’s action is independent of direct human
control. Moreover, in shared autonomy, the robot and the
human do not necessarily share the same physical workspace,
even if they operate on it together. In contrast, a shared
workspace is one of the basic assumptions of HRC.

The goal of this paper is to adapt the techniques currently
used for teleoperation to human-robot shared workspace col-
laboration. A key aspect of such collaboration is minimizing
the robot’s disruptions of a human’s tasks when the two
are acting independently. In this domain, the human and the
robot have to perform different tasks on a set of goals. The
robot should not hinder the human’s actions, and therefore
should select only goals that the human has not currently
selected. Thus, the idea is to provide a real-time reactive
approach for HRC, overcoming the limitation of previous
frameworks. To simplify the problem, we assume there are
no precedence constraints among the tasks, i.e., that partial-
order plans do not exist.

The approach is based on two distinct integrated modules
allowing human-robot real-time collaboration (Figure 2). The
first module continuously tracks and analyzes the movements
of the human arm and updates a probability distribution
on a predefined set of goals. This probability distribution
represents the probability that the user will converge toward
an obstacle and is used as an input for the second module,
a Partially Observable Markov Decision Process (POMDP)
following prior work [13]. The POMDP generates commands
for the robot arm that reaches for the closest goal which is
not the human goal. This approach allows for collaborative
behavior in which human and robot have different tasks to
perform on the same set of goals.

To evaluate our approach, we implemented our system
and tested it in a real-time human-robot shared workspace
collaboration. The collaboration (a gift-wrapping task) was
designed so that human and robot each had distinct actions
(the human tied bows out of ribbon around a set of boxes,
while the robot stamped the boxes), but shared a set of
goals on which to perform those tasks (the boxes). Our
implemented system runs autonomously in real time by
using hindsight optimization to solve the POMDP, enabling
the robot to continually monitor and seamlessly replan its

motions according to changing human goals. We compare
our system against the current state of the art predict-then-
act method described above, as well as a baseline control
algorithm that does not account for human goals, but simply
executes a fixed set of robot behaviors.

Though the current work focuses on one-robot-one-human
manipulation tasks without sequence constraints, extensions
beyond these limitations are straightforward. The approach
can be applied to navigation tasks [16], thus extending the
work of Ziebart et al. [14] from human-robot avoidance
to goal-directed collaboration. Moreover, the approach can
be adapted to collaboration with two or more humans by
modifying our goal prediction strategy to predict the goals
of each human, and our belief to be over the set of user goals.
Our action selection through a POMDP would otherwise
be unchanged. Similarly, task precedences can be included
by modifying the probability distribution on the basis of
precedence constraints among the tasks. Specifically, trees of
probability can be built and used to define a single probability
distribution.

The paper, supported by a video, is structured as follows:
Section II presents the state of the art in HRC; Section III
provides a detailed description of the developed approach;
Section IV details our evaluation and results; and Section V
presents our conclusions and future work.

II. RELATED WORK

A. Human Goal Prediction

In many scenarios, effective HRC requires knowing which
goal the human wants to achieve. Prior works suggest that it
is ineffective to require the human to explicitly specify their
goal (e.g. through buttons) [17]–[19]. Instead, we should
infer the human’s goal based on their actions and a model
of how they would act for different goals.

In human-robot pedestrian settings, Ziebart et al. [20]
propose maximum entropy inverse optimal control (Max-
Ent IOC), which models the human as an intent driven
agent stochastically optimizing some cost function. Best
and Fitch [21] propose a Bayesian framework to predict
the human’s goal in complex 2D environments by using
Probabilistic Roadmaps [22] and Monte-Carlo sampling.

In human-robot collaboration settings, many papers aim at
identifying human intention by analyzing human kinematics
during the execution of a specific set of tasks. Wang et
al. [23] learn a generative predictor by extending Gaussian
Process Dynamical Models (GPDMs) with a latent variable
for intention. Koppula and Saxena [5] extend conditional
random fields (CRFs) with object affordances to predict
potential human motions for different tasks. Jiang and
Saxena [24] extend this framework to take into account
more complex human movements in static environments.
All of these approaches try to identify and predict human
trajectories. The current paper takes a different approach by
identifying a probability distribution over the goals.

As our algorithm requires real-time goal prediction in
continuous state and action spaces, we refer to the framework
of Dragan and Srinivasa [15] used in shared autonomy



Fig. 2: Framework of the proposed approach. The system tracks the human arm position h(t) and infers a distribution over
the human’s goals p(t) based on the human arm movements. Given this distribution, a POMPD identifies the best robot
behavior, and selects robot action a(t) to execute.

settings. Dragan and Srinivasa [15] extend the MaxEnt
IOC framework [20] to continuous state and action spaces.
They apply this framework with a fixed distance-based cost
function to predict a human’s goal in real time by tracking
their arm movements. On the basis of this prediction, we
calculate a probability distribution on the set of human goals
at each required time step. The details of the developed
approach are described Section III-A.

B. Human-Robot Collaboration

Ziebart et al. [25] present a method for navigating a mobile
robot in a room while avoiding humans. They utilize MaxEnt
IOC to predict the human trajectory based on the goals they
may be walking towards. With these predictions, they create
a time-varying cost map on this shared space, with high cost
where humans are likely to be. Finally, they integrate this
cost map into robot planning with D* [26]. Bandyopadhyay
et al. [27] similarly encode pedestrian motion models with
intent into a robot planner through a MOMDP, which they
use to select mobile robot motions. Karami et al. [28], [29]
utilize a PODMP to infer user goals and select the next robot
task in shared mission domains.

Nguyen et al. [30] and Macindoe et al. [31] apply POMDP
models to creating agents in cooperative games. Like our
method, the autonomous agents simultaneously infer human
intentions, and take corresponding assistance actions based
on a POMDP model. In contrast to these works, our state
and action spaces are continuous.

For anthropomorphic robots, Lasota and Shah [32] propose
modeling the human action and decision making process
as a stochastic transition function with an MDP. During
motion planning, they model the human arm as a dynamic
obstacle, enabling them to avoid it. However, this approach
requires training with the robot on specific tasks to identify
the optimal policy. Mainprice et al. [4] avoid this requirement
by predicting human motion through a Conditional Random
Field (CRF), and similarly integrating these predictions into
robot motion planning.

In contrast with the approaches described in this section,
we propose a real-time reactive approach for human-robot
cooperation where we continuously infer a distribution over

the human’s intention, and act based on that distribution.
Human intention is modeled as a latent state in a POMDP.

III. APPROACH

We assume a set of human goals gh ∈ Gh and robot
goals gr ∈ Gr. Both the human and robot want to achieve
all goals eventually. However, there are constraints as to
how these goals can be achieved, e.g. human and robot
cannot simultaneously use the same object. We assume
these constraints are given by a goal restriction set R ={

(gh, gr) : Cannot achieve gh and gr simultaneously
}

. In or-
der to efficiently collaborate with the human, our objective
is to simultaneously predict the human’s intended goal, and
achieve a robot goal not in the restricted set.

In the following, we present our method for achieving a
robot goal while inferring the current user goal. To achieve
all goals, we repeatedly execute this method, removing
already achieved goals from Gr. See Section IV for details.

A. Human Goal Prediction

In order to select effective robot actions, we first infer a
distribution over the human’s goal P (gh). Specifically, our
aim is to infer a distribution over goals given the human
trajectory ξ, e.g. a sequence of arm poses. Let p represent
a state of the human, i.e. the pose of the human’s hand, p0
the initial state, and pg the state for achieving goal gh. Let
ξpi→pj correspond to a trajectory starting at pi, and ending
at pj . Given the current trajectory ξp0→p from start state p0
to current state p, we wish to infer a distribution over goals
P (gh | ξp0→p). Using Bayes’ rule, this corresponds to:

P (gh | ξp0→p) ∝ P (ξp0→p | gh)P (gh),

where P (gh) is the prior probability of goal gh. Without prior
knowledge, we set this to the uniform distribution.

To compute P (ξp0→p | gh), we follow the formulation
of Maximum Entropy Inverse Optimal Control (MaxEnt
IOC) [20], which shows that minimizing the worst-case
predictive loss results in a model where the probability
decreases exponentially with cost, P (ξ|gh) ∝ exp(−Ch

g(ξ)).
Given this model, P (ξp0→p | gh) can be computed

marginalizing over the paths from the start to the goal
(Dragan and Srinivasa [15]):



Fig. 3: Example of our goal prediction method, where the
cost of a trajectory is the euclidean distance it traverses.
Here, the currently executed human trajectory ξp0→p is more
efficient for achieving g1 then g2, as it deviates less from
ξ∗p0→pg1 than ξ∗p0→pg2 . Therefore, P (g1|ξp0→p) is greater
than P (g2|ξp0→p).

P (ξp0→p | gh)

=
exp(−Ch

g(ξp0→p))
∫
ξp→pg

exp(−Ch
g(ξp→pg ))∫

ξp0→pg
exp(−Ch

g(ξp0→pg ))
,

where
∫
ξpi→pj

integrates over all trajectories between pi

and pj . However, computing P (ξp0→p | gh) in such a
way is generally intractable. Instead, we follow Dragan and
Srinivasa [15] who use Laplace’s method, obtaining the
following formulation:

P (ξp0→p | gh) ≈
exp(−Ch

g(ξp0→p)− Ch
g(ξ
∗
p→pg ))

exp(−Ch
g(ξ
∗
p0→pg ))

Where ξ∗pi→pj = arg minξpi→pj
Ch(ξpi→pj ), i.e. the opti-

mal trajectory from pi to pj .
Intuitively, this equation relates goal probability to how

efficiently we are achieving that goal relative to the best we
could have done. See Figure 3 for an illustration.

B. Robot Behavior

Assuming the human has selected their goal gh, our task
is to accomplish any robot goal gr ∈ Gr that is not within
the goal restriction set R. One possible method is to utilize
our predictor to infer the humans’s goal, commit to a robot
goal not in the restricted set, then execute motions. However,
correctly inferring and committing to a specific human goal
can be difficult, e.g. cluttered scenes, reducing the effective-
ness of collaboration. Instead, we follow Javdani et al. [13]
and encode our problem as a Partially Observable Markov
Decision Process (POMDP), enabling us to minimize the
expected robot cost for the (unknown) human goal.

Formally, let x ∈ X be the continuous robot state (e.g.
position, velocity), and let a ∈ A be the continuous action
(e.g. velocity, torque). We model the robot as a deterministic
system with transition function T : X ×A→ X .

In order to formalize our POMDP, we define a system state
as both the robot state and human goal, S = X×Gh. As we
do not know the humans’ goal beforehand, we keep track of
a distribution over the system state, known as the belief b.
We assume the robot state x is known, and this distribution
is only over the human goal gh.

To infer the human goal, we receive observations o ∈ O
which provides us information through a measurement model
Ω. In our setting, observations correspond to human states
p, which updates our distribution through the MaxEnt IOC.

We encode the task through a cost function C r : S ×
A → R, which the robot incurs at each time step. The
goal of the POMDP is to minimize the total expected cost,
E[
∑
t C

r(st, at)] [13].
Hindsight Optimization: Solving this POMDP, i.e. find-

ing the optimal cost-minimizing action for any belief b,
is computationally intractable due to the continuous state
and action spaces. Additionally, this would rely on accurate
human models to model observations. Instead, we follow
Javdani et al. [13] and utilize the QMDP approximation [33],
also referred to as hindsight optimization [34], [35] to select
actions. The idea is to estimate the cost-to-go of the belief
by assuming full observability will be obtained at the next
time step. The result is a system that never takes actions
for information gathering, but can plan efficiently through
deterministic subproblems. We believe this is a suitable ap-
proximation for our POMDP, as we assume human motions
are independent of robot actions, and we therefore cannot
explicitly gather information anyway.

For any known system state s = (x, gh), assume we have
defined the value function V (s), which specifies the cost-to-
go if we acted optimally from s. For any action, this also
defines the action-value function Q(s, a) = C r(s, a)+V (s′),
which corresponds to incurring the cost of taking action
a in state s, transitioning to state s′, and following the
optimal policy thereafter. The QMDP approximation [33]
selects actions by:

arg min
a

∑
s

b(s)Q(s, a)

As our actions are continuous, we may not be able to
compute arg mina exactly. Instead, we follow Javdani et
al. [13] and utilize a first-order approximation to select an
approximately optimal action.

Defining the Cost Function: A key challenge is defining
a cost function C r(s, a) which, when optimized, produces
behavior for effective collaboration. Our objective is to
produce behavior that quickly achieves any goal gr ∈ Gr

not in the restricted set R for gh in system state s = (x, gh).
Javdani et al. [13] provide a method for defining cost

functions that achieve any target in a set, e.g. any grasp pose
for an object. Let C r

g(x, a) be a cost function such that,
when optimized, efficiently achieves the robot goal gr. In
our setting, we wish to achieve any goal not in the restricted
set, leading to:

C r(s, a) = C r((x, gh), a) = min
gr s.t. (gr,gh) 6∈R

C r
g(x, a)

Importantly, Javdani et al. [13] provide a method for
computing the corresponding value function V . Let Vgr be
the corresponding value function for robot goal gr. For
deterministic MDPs, this leads to:

V (s) = V ((x, gh)) = arg min
gr s.t. (gr,gh) 6∈R

Vgr(x)



IV. EXPERIMENTS

We implemented the system on a real-world shared
workspace collaboration. First, we show that an implemen-
tation of our algorithm successfully operates in real time
with naive users. Second, we investigate the effectiveness
of the POMDP representation with hindsight optimization
by comparing our approach to a system that monitors user
goals, but separates the goal prediction and assistance phases.
To achieve this second goal, we measured the fluency and
efficiency of the human-robot collaboration across three
conditions: (i) when using our POMDP model with hindsight
optimization; (ii) when using a state of the art predict-then-
act controller that must first predict goals, then act when goal
prediction reaches a certain confidence; and (iii) when using
a control algorithm that executes a fixed sequence without
accounting for human goals.

To compare these three algorithms, we measure user
performance on objective and subjective metrics detailed
below. We hypothesize that:

H1 Task fluency will be improved with our POMDP
algorithm compared with the predict-then-act and
control systems.

H2 Task efficiency will be improved with our POMDP
algorithm compared with the predict-then-act and
control systems.

H3 People will subjectively prefer the POMDP algo-
rithm to the predict-then-act or control systems.

A. Design

We developed a gift-wrapping task (Figure 4). A row of
four boxes was arranged on a table between the human and
the robot; each box had a ribbon underneath it. The robot’s
task was to stamp the top of each box with a marker it held
in its hand. The human’s task was to tie a bow from the
ribbon around each box. By nature of the task, the goals
had to be selected serially, though ordering was unspecified.
Though participants were not explicitly instructed to avoid
the robot, tying the bow while the robot was stamping the
box was challenging because the robot’s hand interfered,
which provided a natural disincentive toward selecting the
same goal simultaneously. To compare the three systems, we
used a within subjects design. Each participant completed the
gift-wrapping task three times, each time with a different
robot control algorithm. The order of the algorithms was
counterbalanced.

B. Metrics

Task fluency involves seamless coordination of action. One
measure for task fluency is the minimum distance between
the human and robot end effectors during a trial. This was
measured automatically by a Kinect mounted on the robot’s
head, operating at 30Hz. Our second fluency measure is
the proportion of trial time spent in collision. Collisions
occur when the distance between the robot’s end effector
and the human’s hand goes below a certain threshold. We
determined that 8cm was a reasonable collision threshold
based on observations before beginning the study.

Fig. 4: Participants performed a collaborative gift-wrapping
task with HERB to evaluate our reactive goal prediction
system against a non-adaptive control and a state of the art
predict-then-act system.

Task efficiency relates to the speed with which the task
is completed. Objective measures for task efficiency were
total task duration for robot and for human, the amount
of human idle time during the trial, and the proportion of
trial time spent idling. Idling is defined as time a participant
spends with their hands still (i.e., not completing the task).
For example, idling occurs when the human has to wait for
the robot to stamp a box before they can tie the ribbon on it.
We only considered idling time while the robot was executing
its tasks, so idle behaviors that occurred after the robot was
finished stamping the boxes—which could not have been
caused by the robot’s behavior—were not taken into account.

We also measured subjective human satisfaction with
each algorithm through a seven-point Likert scale survey
evaluating perceived safety (four questions) and sense of
collaboration (four questions).

C. Implementation

We implemented the three control algorithms on HERB
[36], a bi-manual mobile manipulator with two Barrett WAM
arms. A Kinect was used for skeleton tracking and object
detection. Motion planning was performed using CHOMP,
except for our algorithm in which motion planning works
according to Section III-B.

The stamping marker was pre-loaded in HERB’s hand. A
stamping action began at a home position, the robot extended
its arm toward a box, stamped the box with the marker, and
retracted its arm back to the home position.

To implement the non-adaptive control algorithm, the
system simply calculated a random ordering of the four
boxes, then performed a stamping action for each box. To
implement the predict-then-act algorithm, the system ran the
human goal prediction algorithm from Section III-A until a
certain confidence was reached (50%), then selected a goal
that was not within the restricted set R and performed a
stamping action on that goal. There was no additional human
goal monitoring once the goal action was selected. In con-
trast, our POMDP implementation performed as described in
Section III, accounting continually for adapting human goals
and seamlessly re-planning when the human’s goal changed.



(a) (b)

Fig. 5: Distance metrics: no difference between algorithms
for minimum distance during interaction, but the POMDP
algorithm yields significantly less time in collision between
human and robot.

(a) (b)

Fig. 7: Idle time metrics: POMDP yielded significantly less
idle time, both for (a) absolute time and (b) percentage of
trial time, than the control algorithm.

D. Procedure

28 participants (14 female, 14 male; mean age 24, SD
6) performed the gift-wrapping task. Each participant was
compensated $5 for their time.

After providing consent, participants were introduced to
the task by a researcher. They then performed the three gift-
wrapping trials sequentially. Immediately after each trial,
before continuing to the next one, participants completed
an eight question Likert-scale survey to evaluate their col-
laboration with HERB on that trial. At the end of the
study, participants provided verbal feedback about the three
algorithms. All trials and feedback were video recorded.

E. Results

Two participants were excluded from all analyses for
noncompliance during the study (not following directions).
Additionally, for the fluency objective measures, five other
participants were excluded due to Kinect tracking errors that
affected the automatic calculation of minimum distance and
time under collision threshold. Other analyses were based on
video data and were not affected by Kinect tracking errors.

To evaluate H1 (fluency), we conducted a repeated mea-
sures ANOVA testing the effects of algorithm type (POMDP,
predict-then-act, and control) on our two measures of human-
robot distance: the minimum distance between participant
and robot end effectors during each trial, and the proportion
of trial time spent with end effector distance below the 8cm

collision threshold (Figure 5). The minimum distance metric
was not significant (F (2, 40) = 1.405, p = 0.257). However,
proportion of trial time spent in collision was significantly
affected by algorithm type (F (2, 40) = 3.364, p = 0.045).
Interestingly, the POMDP algorithm never entered under
the collision threshold. Post-hoc pairwise comparisons with
a Bonferroni correction reveal that the POMDP algorithm
yielded significantly (p = 0.033) less time in collision than
the predict-than-act algorithm (POMDP M = 0.0%, SD =
0; predict-then-act M = 0.44%, SD = 0.7).

Therefore, H1 is partially supported: the POMDP algo-
rithm actually yielded no collisions during the trials, whereas
the predict-then-act algorithm yielded collisions during 0.4%
of the trial time on average. This confirms the intuition
behind the differences in the two algorithms: the POMDP
continually monitors human goals, and thus never collides
with the human, whereas the predict-then-act algorithm com-
mits to an action once a confidence level has been reached,
and is not adaptable to changing human goals.

To evaluate H2 (efficiency), we conducted a similar re-
peated measures ANOVA for the effect of algorithm type
on task durations for robot and human (Figure 6), as well
as human time spent idling (Figure 7). Human task duration
was highly variable and no significant effect for algorithm
was found (F (2, 50) = 2.259, p = 0.115). On the other
hand, robot task duration was significantly affected by algo-
rithm condition (F (2, 50) = 79.653, p < 0.005). Post-hoc
pairwise comparisons with a Bonferroni correction reveal
that differences between all conditions are significant at
the p < 0.005 level. Unsurprisingly, robot task completion
time was shortest in the control condition, in which the
robot simply executed its actions without monitoring human
goals (M = 46.4s, SD = 3.5s). It was significantly
longer with the predict-then-act algorithm, which had to
wait until prediction reached a confidence threshold to begin
its action (M = 56.7s, SD = 6.0). Robot task time was
still longer for the POMDP algorithm, which continually
monitored human goals and smoothly replanned motions
when required, slowing down the overall trajectory execution
(M = 64.6s, SD = 5.3).

Total task duration (the maximum of human and robot
time) also showed a statistically significant difference
(F (2, 50) = 4.887, p = 0.012). Post-hoc tests with Bonfer-
roni correction show that control (M = 58.6s, SD = 14.1)
performed significantly (p < 0.05) faster than the other
two algorithms (predict-then-act: M = 60.6s, SD = 7.1;
POMDP: M = 65.9s, SD = 6.3). However, there is no
statistically significant difference between predict-then-act
and POMDP algorithms. In other words, though algorithm
execution time slows down robot actions, people’s faster
performance with the POMDP somewhat redeems this by
eliminating differences between POMDP and predict-then-
act algorithms.

Total idle time was also significantly affected by algorithm
type (F (2, 50) = 3.809, p = 0.029). Post-hoc pairwise com-
parisons with Bonferroni correction reveal that the POMDP
algorithm yielded significantly less idle time than the control
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Fig. 6: Duration metrics: human trial time was approximately the same across all algorithms, but robot time increased with
the computational requirements of the algorithm. Total time thus also increased with algorithmic complexity.

condition (POMDP M = 0.46s, SD = 0.93, control M =
1.62s, SD = 2.1). In other words, the POMDP algorithm
performed significantly better than the non-adaptive control
in reducing human idling time, while the predict-then-act
method did not.

Idle time percentage (total idle time divided by human trial
completion time) was also significant (F (2, 50) = 3.258, p =
0.047). As with total idle time, post-hoc pairwise tests
with Bonferroni correction show that the POMDP yielded
shorter idle percentages than the control (POMDP M =
0.9%, SD = 1.9, control M = 2.8%, SD = 3.6).

Therefore, H2 is partially supported: although total human
task time was not significantly influenced by algorithm
condition, the total robot task time, human idle time, and
human idle percentage were all significantly affected by
which algorithm was running on the robot. The robot task
time was slower in the POMDP condition, but human idling
was significantly reduced by the POMDP algorithm.

To evaluate H3 (subjective responses), we first conducted
a Chronbach’s alpha test to assure that the eight survey
questions were internally consistent. The four questions
asked in the negative (e.g., “I’m dissatisfied with how HERB
and I worked together”) were reverse coded so their scales
matched the positive questions. The result of the test showed
high consistency (α = 0.849), so we proceeded with our
analysis by averaging together the participant ratings across
all eight questions.

During the experiment, participants sometimes saw colli-
sions with the robot. We predict that collisions will be an
important covariate on the subjective ratings of the three
algorithms. In order to account for whether a collision
occurred on each trial in our within-subjects design, we
cannot conduct a simple repeated measures ANOVA. Instead,
we conduct a linear mixed model analysis, with average
rating as our dependent variable; algorithm (control, predict-
then-act, and POMDP), collision (present or absent), and
their interaction as fixed factors; and algorithm condition as a
repeated measure and participant ID as a covariate to account
for the fact that participant ratings were not independent
across the three conditions. Table I shows details of the
scores for each algorithm broken down by whether a collision
occurred.

No Collision Collision

mean rating (SD) N mean rating (SD) N

Control 5.625 (1.28) 14 4.448 (1.23) 12
Predict-then-act 5.389 (1.05) 18 4.875 (1.28) 8

POMDP 5.308 (0.94) 26 — 0

TABLE I: Subjective ratings for each algorithm condition,
separated by whether a collision occurred during that trial.

We found that collision had a significant effect on ratings
(F (1, 47.933) = 6.055, p = 0.018), but algorithm did not
(F (1, 47.933) = 0.312, p = 0.733). No interaction was
found. In other words, ratings were significantly affected by
whether or not a participant saw a collision, but not by which
algorithm they saw independent of that collision. Therefore,
H3 is not directly supported. However, our analysis shows
that collisions lead to poor ratings, and our results above
show that the POMDP algorithm yields fewer collisions.
Therefore, these results support our approach to improving
HRC.

V. CONCLUSIONS

This paper presents a new approach for real-time human-
robot collaboration. The human and the robot work to
achieve a predefined set of goals. The method infers a
probability distribution over the human’s goal based on
their motions. This probability distribution is used by a
POMPD to select actions for achieving a robot goal that
does not interfere with the human’s inferred goal. Compared
to existing methods, this approach enables us to take actions
without committing to a human goal, and continuously replan
trajectories as we receive new observations.

We performed a user study in order to asses the fluency
and efficiency of our approach. We found that the proportion
of time spent in collision, proportion of time spent idling,
and total time spent idling were significantly reduced by the
use of our algorithm. Our analysis of subjective responses
indicated that collisions, which our algorithm had the fewest
of, had a significant effect on ratings. However, independent
of collisions, ratings were not significantly affected by the
algorithm.



This work can be extended in several directions. First,
we can incorporate a model of how the human infers the
robot’s goal into our framework. Using these models for
motion generation had led to more fluent collaboration [37],
and we can use similar models to predict the effect of
robot motion on which goal the human chooses. Second, the
applicability of the approach can be considerably extended
introducing preconditions among tasks, i.e., partial-order
plans based on precedence constraints among the tasks. The
approach will be extended in this direction, preserving a
satisfactory level of quality in human-robot collaboration.
Finally, the prediction of human goals could be modified
taking into account multiple human subjects working in the
same workspace.
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