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Abstract— Iteration is often sufficient for a simple hand to
accomplish complex tasks, at the cost of an increase in the
expected time to completion. In this paper, we minimize that
overhead time by allowing a simple hand to abort early and
retry as soon as it realizes that the task is likely to fail. We
present two key contributions. First, we learn a probabilistic
model of the relationship between the likelihood of success of
a grasp and its grasp signature—the trace of the state of the
hand along the entire grasp motion. Second, we model the
iterative process of early abort and retry as a Markov chain and
optimize the expected time to completion of the grasping task by
effectively thresholding the likelihood of success. Experiments
with our simple hand prototype tasked with grasping and
singulating parts from a bin show that early abort and retry
significantly increases efficiency.

I. INTRODUCTION

Simple hands are characterized by simple mechanical
designs and simple control strategies, both of which com-
promise the potential generality of the hand. In practice, and
based on observations of humans using simple tools and ef-
fectors, simple hands offer broader manipulation capabilities
than any autonomous system has yet demonstrated.

After arguing the case for simplicity in [1], and with the
aim of demonstrating manipulation capabilities with simple
hands, we approached the problem of singulating objects out
of a bin in [2]. The approach in [2] has three key elements:

• Simple mechanism: The simple hand in Fig. 1 has
thin cylindrical fingers compliantly coupled to a single
actuator, arranged symmetrically around a low friction
flat circular palm.

• Simple control: Contrary to the more traditional ap-
proach where complex robot hands that try to “put the
fingers in the right place”, we close the hand and “let
the fingers fall where they may.”. We expect the fingers
either to drive the object to a stable pose or to reject it,
effectively reducing the space of possible outcomes of
the grasp. By simplifying the relationship between the
signature of a grasp and its outcome, we facilitate the
creation of a data-driven model.

This work was sponsored in part by the Army Research Laboratory under
Cooperative Agreement Number W911NF-10-2-0016, DARPA-BAA-10-
28, NSF-IIS-0916557, and NSF-EEC-0540865. The views and conclusions
contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied,
of the Army Research Laboratory, DARPA, or the U.S. Government.

(a) (b)

Fig. 1. (a) Bin-picking scenario. A robotic manipulator drives a simple
hand in and out of a bin full of identical objects. (b) P2, a simple hand
prototype with four fingers compliantly coupled to a single actuator. Motor
and fingers have absolute encoders that provide the full state of the hand.

• Iteration: To address the expected shortcomings of the
simple approach, we iterate upon failure (Fig. 2) until
we succeed in singulating a part.

The simplicity of the approach often comes at the cost
of increasing the expected time to a successful grasp. The
robot reaches into the bin of parts (Fig. 1), closes its hand
and pulls it out, after which it queries its encoders and uses
a learned discriminative model to decide if it has a single
part. If it does not, it iterates until it succeeds.

We propose to reduce the expected time to completion by
using proprioceptive feedback to predict failure early during
execution and possibly abort and restart the procedure. Key
to our approach is the concept of grasp signature, the trace of
the state of the hand along the entire grasp motion (Sect. III).
We learn a probabilistic model to track the instantaneous
probability of success during the grasp process. Based on
that probability, we model abort and retry as a Markov chain,
and derive analytically the expected time to a successful
grasp (Sect. IV). We then use the model to optimize abort
thresholds to minimize the expected time to a successful
grasp (Sect. V).
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Fig. 2. Iterative framework: The grasp is iterated until the system predicts a high probability of success. (a) At the beginning of the grasp the hand is
above the bin. (b) The interaction of the hand with the environment is logged during the entire grasp process, constituting the grasp signature. (c) As the
grasp is being executed, a data-driven model classifies the grasp as success or failure. In the case of failure, the grasp immediately aborts and restarts. (d)
During the training phase, the learning process is supervised by a vision system that provides ground truth on the number and pose of grasped markers.

Our experiments show that early abort and retry signifi-
cantly increases the efficiency of the system (Sect. VI). Fur-
thermore, we demonstrate how the overhead of the iterative
framework—expected time to a successful grasp minus the
nominal length of the grasp—evolves with the number of
possible abort points along the grasp process (Sect. VII).

II. PREVIOUS WORK

We focus on a bin-picking scenario, a challenging grasping
task that combines high clutter with high pose uncertainty,
and for decades the focus of numerous research efforts [3],
[4].

We use a data-driven approach for failure detection and
abort optimization based on the signature of the grasp.
Data-driven approaches have previously been proposed for
failure detection in different contexts, including milling op-
erations [5], [6], machine vibration analysis [7] or failure
detection in automated assembly [8], [9].

Dollar et al. [10] showed how in-hand sensor information
can be used to improve grasping performance. In the process
of detecting failure, we estimate the outcome of the grasp
based on kinesthetic sensor data. Bicchi, Salisbury and
Brock [11] explored a similar problem: assuming known
finger shape and location, they estimate the contact point
from a measured applied wrench, a technique known as
intrinsic contact sensing. This contact information can be
used to infer the pose of a known shape.

Also relevant is the related problem of inferring ob-
ject location from kinesthetic or contact data, studied by
Siegel [12], Jia and Erdmann [13], [14] and Wallack and
Canny [15]. All of these works are based on analytical
models of contact and grasp mechanics. Instead, we use
a statistical data-driven approach to create a model of the
complex relationship between the signature of the grasp
process and its outcome, thereby bypassing the intermediate
estimation of contact points. With this, we are able to
incorporate numerous sources of information that are very
challenging to model, including the effect of the grasping
motion and that of surrounding clutter. Laaksonen, Kyrki and

Kragic [16] compared the effectiveness of different statistical
data-driven methods for estimation of grasp stability, based
on both kinesthetic and contact sensor data.

Our framework for optimizing the series of abort condi-
tions has some similarities with the cascades of classifiers
proposed in computer vision to speed up the detection rate
of object classifiers without compromising performance [17],
[18]. A series of incrementally more computationally expen-
sive classifiers trade off the cost and risk of taking a decision
or letting the following classifier in the cascade do it.

III. PRELIMINARY CONCEPTS

A. Grasp Signature

We define the grasp signature G as the trace of the state
of the hand along the entire grasp motion as perceived by
the hand’s sensors. The signature can be composed of, but
not limited to, time-stamped data from joint encoders, tactile
sensors, and torque sensors. This work tests the hypothesis
that the grasp signature encodes enough information to
characterize the outcome of a grasp.

The compliant simple hand we have built, called P2, has
absolute motor and fingers encoders that allow us to recover
the full kinematic state of the hand. Figure 3 shows a side by
side comparison of the finger encoder signatures of examples
of successful and failed grasps.

B. Expected Time to a Successful Grasp

We define the expected time to a successful grasp τ , as
the expected number of attempts until a successful grasp
multiplied by the time span of the grasp T .

In [2] we improve system precision (false negative rate)
by tuning the weights of positive and negative training
examples, at the cost of increasing the false positive rate. This
has the unsought consequence of increasing the probability
of iteration f of the system, leading to an increase in the
expected time to a successful grasp.

In this paper we propose to abort grasps that the system
predicts likely to fail as a technique to reduce the expected
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Fig. 3. Side by side comparison of the grasp signature (4 finger encoders)
of a typical (a) successful and (b) failed grasp. The fingers begin the grasp
perpendicular to the palm (0◦) and reach the final position shown in the
figures.

time to a successful grasp while still maintaining high values
for the precision of the system.

The expected time to a successful grasp of the simple
system in Fig. 2 is related to the iteration probability by
τ = T

f . Analogously we show in Sect. IV that, for the more
the complex system that allows early abort, the expected time
is a function of the probability of early failure.

C. Success Probability

Our goal is to decide at time t whether the grasp is worth
continuing, or if we should abort. To do so, we learn a
probabilistic model of the relationship between the first t
seconds of the signature and the expected final outcome
of the grasp. This contrasts with our previous approach [2]
where we learn a discriminative model to signal success only
at the end of the grasp.

We take as input a set of K grasp signatures {Gi(t)}1...K
and correspondent labels of success or failure and learn a
probabilistic model of their relationship:

M : G([0, t]) 7→ p(t)

where G(t) is the signature of a grasp execution and p(t)

is the instantaneous probability of success of the grasp as
predicted by the model M. As an example, Fig. 4 shows
the success probability signal for the successful and failed
grasp signatures in Fig. 3. At the beginning of the grasp,
the system is uncertain about the possible outcome of either
grasp, but becomes more confident over time. We describe
the model learning algorithm in Sec. VI-C.

%
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Fig. 4. Evolution of the probability of success for the successful (a) and
failed (b) examples illustrated in Fig. 3.

It is impractical to track the probability of success con-
tinuously. In practice we discretize the grasp into n time
slices [t0, t1] , [t1, t2] . . . [tn−1,tn] and train n independent
probabilistic classifiers at instants {ti}1...n. As the grasp
progresses, they output a series of estimated success proba-
bilities p1 . . . pn. To make a decision to abort, we compare
these against n cutoff probability thresholds π1 . . . πn:

If pi < πi → ABORT at ti (1)

A unique contribution of our paper is an analytical model
of the execution of such a system with n possible aborting
points (Sect. IV), and an optimization technique for tuning
the cut-off probabilities to minimize the expected time to a
successful grasp based on training data (Sect. V).

IV. MODELING ABORT AND RETRY

In this section we model the steady-state behavior of the
system with n abort points. We call state O to the beginning
of the grasp motion, states S1 . . . Sn to the abort points at
instants t1 . . . tn, and state S to the final successful grasp.

We represent the system by the graphical model in Fig. 5.
The system satisfies the Markov property, i.e., future state
depends only on the current state and not on the past. All
states except the initial one trivially satisfy the property since,
beginning from O, there is only one possible series of tran-
sitions to get to them. If we assume statistical independence
between successive repetitions of the experiment, the initial
state also satisfies the Markov property.

The behavior of a time-homogeneous Markov chain is
represented by the transition probabilities between states,
which we will call: probability of transition from state Si

to state Si+1. These are related to (1) by:

Pi = P [ pi > πi ] (2)

At each state Si the abort probability is then 1 − Pi. Pn

is the fraction of grasp attempts that reach the end of the
execution and are actually classified as good grasps.

The Markov chain model proves useful for analyzing
the steady-state behavior of the system and, in particular,
for computing the expected time to a successful grasp. We
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Fig. 5. Markov Chain that models a system with n abort points at instants ti = i · ∆t. State O represents the beginning of the grasp, states S1 . . . Sn

are the n abort points and S the final successful grasp. The system reaches the end state if and only if it is not discarded by any of the classifiers at the
abort points. The cost of forward transition is equal to ∆t and we assume that the cost of aborting a grasp is independent of the state and equal to R. At
each state Si the grasp continues with probability Pi and aborts with probability 1 − Pi.

assume all abort points to be equispaced in time, with a
constant spacing of ∆t. We also suppose that the time cost
of aborting, R, is constant and independent of the state of
the system. The following proposition gives a closed form
expression for the expected time to success as a function of
the transition probabilities.

Proposition 1 (Expected time to a successful grasp): In
the iterative system of Fig. 5 with n equispaced abort points
and transition probabilities P1 . . . Pn, the expected time to
success τ can be expressed as:

τ = ∆t

1 +
∑n−1

i=1

(∏i
j=1 Pj

)
∏n

i=1 Pi

+R

[
1−

∏n
i=1 Pi∏n

i=1 Pi

]
(3)

Proof: We introduce the intermediate variables τ0,
τ1 . . . τn to represent the expected time to success from each
one of the states of the system O, S1 . . . Sn correspondingly.
Notice that τ0 is by definition equal to the expected time to
a successful grasp τ . We will prove the general term by
induction on the number of time slices n.

For the case n = 1, the Markov chain reduces to the one in
Fig. 6. This corresponds to the original framework in Fig. 2
where the decision to abort is taken solely at the end of the
grasp.

Fig. 6. Markov chain of the system for the case of n = 1. In this case,
the only possible abort point t1 is at the end of the grasp.

In steady-state the expected times τ0 and τ1 are related by
the equations:{

τ0 = ∆t+ τ1
τ1 = P1 · 0 + (1− P1) · (R+ τ0)

(4)

Solving the system (4) for τ0, we get:

τ0 = ∆t · 1

P1
+R · 1− P1

P1
(5)

which satisfies the general term.
Now we assume that the general term is correct for the

case of n − 1 abort points and we prove for the case of n.
The Markov chain with n abort points in Fig. 5 is equivalent
to the simplified chain in Fig. 7 where the first n− 1 states
are combined into a macro initial state O∗ with transition
cost τ∗.

Fig. 7. Equivalent Markov chain for the case of n abort points. The first
n− 1 abort states can be included in a macrostate O∗. The new transition
cost τ∗ from O∗ to Sn is the expected time to a successful grasp of the
subsystem with n−1 abort states plus ∆t, the original transition cost from
Sn−1 to Sn.

The new initial state behaves internally as a system with
n−1 abort points. By induction, the transition cost from O∗

to Sn is:

τ∗ = ∆t

1 +
∑n−2

i=1

(∏i
j=1 Pj

)
∏n−1

i=1 Pi

+R

[
1−

∏n−1
i=1 Pi∏n−1

i=1 Pi

]
+∆t

The simplified equivalent system in Fig. 7 has the same
structure as in the case of n = 1, therefore, using (5) the
expected time to a successful grasp can be computed as:

τ0 = τ∗ · 1

Pn
+R · 1− Pn

Pn
=

= ∆t

1 +
∑n−2

i=1

(∏i
j=1 Pj

)
∏n

i=1 Pi

+

+ R

[
1−

∏n−1
i=1 Pi∏n

i=1 Pi

]
+ ∆t · 1

Pn
+R · 1− Pn

Pn
=

= ∆t

1 +
∑n−1

i=1

(∏i
j=1 Pj

)
∏n

i=1 Pi

+R

[
1−

∏n
i=1 Pi∏n

i=1 Pi

]
which concludes the proof.
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In the next section we see how the expression for τ in
Proposition 1 simplifies the estimation of the expected time
to a successful grasp of the system.

V. OPTIMIZING ABORT AND RETRY

As detailed in Sect. III-C, the learning system comprises
n predictive models producing success probability estimates
pi at abort points ti, and abort thresholds πi. In this section
we show how to optimize those thresholds to minimize the
expected time to a successful grasp τ .

We first need to study how variations of the thresholds
πi map to changes in the expected time τ . An online
experimental approach would be impossibly time consuming,
requiring numerous experiments to estimate the expected
time to success for every queried value of the thresholds.

Instead of the experimental approach, we combine the
analytical expression of Proposition 1 with offline experi-
ments. Given a candidate set of thresholds πi, we can use
offline experimental data to estimate transition probabilities
Pi, and then apply equation (3) to estimate τ . The transition
probabilities can be estimated experimentally by running K
grasp executions and computing:

Pi = P [ pi > πi ] =
Grasps reach Si+1

Grasps reach Si
(6)

It is key to notice that, when using the transition probabilities
as an intermediate step to evaluate τ , it is not necessary
to run the experiment again when the values of the cut-off
probabilities change. Equation (3) allows for a more efficient
strategy. Assuming that the learned predictive models of the
probability of success do not change, we can reapply the
abort condition in (1) to the same set of grasp executions, but
now with the new cut-off probabilities. We then reestimate
the transition probabilities with (6) and feed them to (3) to
estimate the new expected time. Therefore, once captured
the signatures of K grasp executions, the optimization pro-
cess can be done completely offline and without any extra
required experiments.

Since an analytical expression of τ directly as a function
of the thresholds π1 . . . πn is not feasible, and thanks to the
fact that evaluating τ is fast and simple, we use a direct
search gradient-free method to optimize it. In Sect. VII we
detail the implementation of the optimization and the results
obtained, in particular how the expected time decreases with
the number of abort points n.

VI. IMPLEMENTATION

A. System Architecture

The system implementation has a modular design, based
on the ROS (Robot Operating System) architecture [19].
Each subsystem is contained within a separate node, with
messages being passed between the nodes containing both
sensory data and commands.

A finite state machine that implements the Markov chain
in Fig. 5 governs the overall system. It cycles through each
one of the steps of the grasp and allows for easy modification

of the grasp behavior. Different nodes within the system
include:

• Main Controller: Primary node which implements the
state machine.

• Robot Controller: Controls the position of the indus-
trial manipulator.

• Grasp Controller: Controls the motor in the hand, and
broadcasts motor and finger encoder positions.

• Vision Interface: Aggregated vision routines to provide
ground truth for the learned models both on the number
of markers grasped and their position within the hand.

• Learning Interface: Receives motor and encoder read-
ings, and broadcasts success probabilities.

B. Vision System

The data-driven approach used to model the probability
of success in Sect. VI-C requires running a large number
of grasp executions and logging both their signatures and
outcomes. The vision system is meant to provide feedback
both in terms of the number of objects grasped and the
location of the objects within the palm of the gripper, making
the overall system self-supervised.

We have implemented a vision system tailored to the
specific application and object (highlighter marker) using
Willow Garage’s OpenCV vision processing library [20]. It
is composed of the following steps:

1) Background subtraction: We capture an image of the
hand with no markers and then black out all areas of
the image reasonably similar to the calibration image.

2) Find color regions: Since the highlighter markers are
brightly colored, we threshold the image to determine
regions of color. We then clean those same regions by
removing small clusters of color.

3) Find edges and lines: We recognize markers by their
straight edges using the Canny edge detector near
color regions. We then use the Hough line detector
to determine prominent lines in the image and assume
that the long edges of each marker are among those.

4) Most likely position for a marker: Each detected line
is scored proportional to the amount of color to each
one of its sides. Iteratively we detect the most likely
edge of a marker and subtract the color labeled region
until insufficient color is left in the image for another
marker to exist.

We evaluated the vision system with 266 images captured
in successive trials. In the task of classifying the grasp
outcome between success and failure, the algorithm was able
to correctly classify all images except one where a marker
was caught in the unlikely position of pointing perpendicular
to the palm. The accuracy of the vision algorithm is high
enough to treat its output as ground truth for the posterior
learning system.

C. Learning System

As detailed in Sect. III-C, the objective of the learning
system is to create a probabilistic model between the sig-
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Fig. 8. The vision system outputs the position and orientation of the marker
within the palm of the hand. (a) Filtered image after background subtraction.
(b) Image after color region filtering. (c) Edge and line detectors. (d) Most
likely position of the marker.

nature of a grasp G and the success probabilities at some
predefined abort points.

Among the different available techniques for probabilis-
tic classification we choose Relevance Vector Machines
(RVM) [21], which employ a similar formulation as Support
Vector Machines, but use Bayesian inference to provide prob-
abilistic classification. We use the implementation provided
in the Dlib Machine Learning library [22].

Prior to training the RVMs, we use Principal Component
Analysis (PCA) [23] to reduce the dimensionality of the grasp
signature. At each abort point ti, we compress the section
of the signature [0, ti]. PCA finds a linear transformation of
the signature into a smaller number of linearly uncorrelated
features while retaining most of the original variability across
the set of signatures.

After compression of the signatures, we use half of the
training set to learn the RVMs. The other half will be used
in Sect. VII to optimize the cut-off probabilities. Figure 4
shows an example of the evolution of the estimation of the
success probability provided by the trained RVMs.

VII. RESULTS

In order to optimize the cut-off probabilities π1 . . . πn we
first capture the signatures of K = 200 grasp executions.
Out of those we draw randomly K

2 that we use to train the
the probabilistic classifiers as detailed in Sect. VI-C. We use
then the other K

2 to optimize the probability thresholds.
For any given value of the cut-off probabilities, we make

use of (3) to efficiently evaluate the expected time to a
successful grasp. We then use ga optimizer in Matlab, to
optimize and the cut-off probabilities.

We normalize all obtained expected times by T , the time
span of the grasp, so that τ = 1 is the asymptotically optimal
solution. In the case of no early abort, the expected time is

TABLE I
NORMALIZED EXPECTED TIME TO A SUCCESSFUL GRASP.

n τ Improvement

1 2.17 -
2 2.12 4.3%
4 1.98 16.5%
8 1.91 22.0%

16 1.58 50.4%

1
f . The improvement when using early abort is measured as
the percentage of decrease of the expected time from that
same baseline, 1

f , towards the optimal.
Table I details the variation of the normalized expected

time to a successful grasp with the number of abort points
n after optimization. The case n = 1 is the baseline to
compare with (system without early abort). Around n = 16
the optimization problem gets too big to be addressed by the
off-the-shelf optimizer ga in Matlab. It is sufficient, though,
to demonstrate that early abort reduces the expected time to
a successful grasp, in the studied case with an improvement
of up to 50%.

VIII. DISCUSSION AND FUTURE WORK

When looking at humans manipulating the world, one soon
realizes that mistakes are not uncommon. As an example,
when grasping an object one of the fingers might contact it
in the wrong place, the object might slip from the fingertips
in an attempt to lift it, or they might tip it over in an attempt
to place it. Part of our skill set, however, is being good and
fast at recovering from those failures.

Following that same idealistic goal, in this paper we
introduce the concept of early abort and retry in the context
of grasping in a bin picking task. We allow a hand to abort
and retry the grasp as soon as it is confident that it will
fail. In doing so, we improve the efficiency of the system
with respect to earlier work and allow a simple hand to be
competent in solving a complex task.

The main contribution of this paper is to show that we
can model a iterative system with a set of predefined abort
points as a Markov chain and use the model to optimize the
expected time to successful completion of the desired task.

Although we have focused on grasping in a bin-picking
scenario, the proposed methodology generalizes to any pro-
cess generating a signature that correlates with the potential
success or failure of the execution. Automated assembly is
an example of application that would benefit from early abort
to improve their performance.

Our long-term goal is to demonstrate broad manipula-
tion capabilities with simple hands. In earlier work, we
approached the bin-picking problem with a blind policy
driving the hand. Early abort is a step forward that suggests
a binary policy that at each instant allows the hand either
to abort or to continue with the execution. In our process to
gradually complexify the grasp policy, we intend in future
work to learn an optimal singulating policy from a small
parametrized set.
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