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Abstract

A classical method for risk-sensitive nonlinear control is the iterative linear exponential quadratic Gaussian al-
gorithm. We present its convergence analysis from a first-order optimization viewpoint. We identify the objective
that the algorithm actually minimizes and we show how the addition of a proximal term guarantees convergence to a
stationary point.

Introduction
We present a convergence analysis of the classical iterative linear quadratic exponential Gaussian controller (ILEQG)
[Whittle, 1981] for finite-horizon risk-sensitive or safe nonlinear control. The ILEQG algorithm is particularly popular
in robotics applications [Li and Todorov, 2007] and can be seen as a risk-sensitive counterpart of the iterative linear
quadratic Gaussian (ILQG) algorithm . We adopt here the viewpoint of the modern complexity analysis of first-order
optimization algorithms as done by Roulet et al. [2019] for ILQG.

We address the following questions: (i) what is the convergence rate of ILEQG to a stationary point? (ii) how
can we set the step-size to guarantee a decreasing objective along the iterations? The analysis we present here sheds
light on these questions by highlighting the objective minimized by ILEQG which is a Gaussian approximation of
a risk-sensitive cost around the linearized trajectory. We underscore the importance of the addition of a proximal
regularization component for ILEQG to guarantee a worst-case convergence to a stationary point of the objective.

The main result of the paper is Theorem 2.5, where a sufficient decrease condition to choose the strength of the
proximal regularization is given. The result also yields a complexity bound in terms of calls to a dynamic programming
procedure implementable in a “differentiable programming” framework, that is, a computational framework equipped
with an automatic differentiation software library. We illustrate the variant of the iterative regularized linear quadratic
exponential Gaussian controller we recommend on simple risk-sensitive nonlinear control examples.

Related work. The linear exponential quadratic Gaussian algorithm is a fundamental algorithm for risk-sensitive or
safe control [Whittle, 1981, Jacobson, 1973, Speyer et al., 1974]. The algorithm builds upon a risk-sensitive measure, a
less conservative and more flexible framework than the H∞ theory also used for robust control; see [Glover and Doyle,
1988, Hassibi et al., 1999, Helton and James, 1999] and references therein. An excellent review of the classical results
in abstract dynamic programming and control theory, in particular for risk-sensitive control, was done by Bertsekas
[2018]. Risk-measures were analyzed as instances of the optimized certainty equivalent applied to specific utility
functions [Ben-Tal and Teboulle, 1986, 2007]. Risk-averse model predictive control was also studied to account for
ambiguity in the knowledge of the underlying probability distribution [Sopasakis et al., 2019].

Algorithms for nonlinear control problems are usually derived by analogy to the linear case, which is solved
in linear time with respect to the horizon by dynamic programming [Bellman, 1971]. In particular, the iterative
linear quadratic regulator (ILQR) and iterative linear quadratic Gaussian (ILQG) algorithms are usually informally
motivated as iterative linearization algorithms [Li and Todorov, 2007]. A risk-sensitive variant with a straightforward
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optimization algorithm without theoretical guarantees was considered by Farshidian and Buchli [2015], Ponton et al.
[2016].

On the first-order optimization front, optimization sub-problems such as Newton or Gauss-Newton-steps were
shown to be implementable by using dynamic programming in classical works [De O. Pantoja, 1988, Dunn and
Bertsekas, 1989, Sideris and Bobrow, 2005]. Iterative linearized methods such as ILQR or ILQG were recently
analyzed as Gauss-Newton-type algorithms and improved using proximal regularization and acceleration by extrapo-
lation in [Roulet et al., 2019]. This work shares the same viewpoint and establishes worst-case complexity bounds for
iterative linear quadratic exponential Gaussian controller (ILEQG) algorithms.

The companion code is available at https://github.com/vroulet/ilqc. All proofs and notations are pro-
vided in the Appendix.

1 Risk-sensitive control
Problem formulation. We consider discretized control problems stemming from continuous time settings with
finite-horizon, see Appendix E for the discretization step. Those are off-line control problems used for example at
each step of a model predictive control framework. We focus on the control of a trajectory of length τ composed of
state variables x1, . . . , xτ ∈ Rd and controlled by parameters u0, . . . , uτ−1 ∈ Rp through dynamics ψt perturbed by
i.i.d. white noise wt ∼ N (0, σ2 Iq) such that

x0 = x̂0, xt+1 = ψt(xt, ut, wt), (1)

for t = 0, . . . , τ − 1, where x̂0 is a fixed starting point and the functions ψt : Rd × Rp × Rq → Rd are assumed to be
continuously differentiable. Precise assumptions for convergence are detailed in Sec. 2.

Optimality is measured through convex costs ht, gt, on the state and control variables xt, ut respectively, defining
the objective

h(x̄) + g(ū) =

τ∑
t=1

ht(xt) +

τ−1∑
t=0

gt(ut), (2)

where x̄ = (x1; . . . ;xτ ) ∈ Rτd is the trajectory, ū = (u0; . . . ;uτ−1) ∈ Rτp is the command, h(x̄) =
∑τ
t=1 ht(xt)

and g(ū) =
∑τ−1
t=0 gt(ut), and in the following we denote by w̄ = (w0; . . . ;wτ−1) ∈ Rτq the noise. For a given

command ū, the dynamics in (1) define a probability distribution on the trajectories x̄ that we denote p(x̄; ū).
The standard objective consists in minimizing the expected cost minū∈Rτp Ex̄∼p(·;ū) [h(x̄)] + g(ū), where x̄ is a

random variable following the model (1). We focus on risk-sensitive applications by minimizing

min
ū∈Rτp

1

θ
log Ex̄∼p(·;ū)

[
exp θh(x̄)

]
+ g(ū), (3)

for a given positive parameter θ > 0. If the dynamics are bounded, the risk-sensitive objective is well defined for any
ū, otherwise it is only defined for small enough values of θ as illustrated in the linear quadratic case of Prop. 1.1. The
risk-sensitive objective (3) seeks to minimize not only the expected objective but also higher moments as can be seen
by expanding it around θ = 0,

1

θ
log Ex̄∼p(·;ū) [exp θh(x̄)] = Ex̄∼p(·;ū) [h(x̄)] +

θ

2
Varx̄∼p(·;ū) [h(x̄)] +O(θ2), (4)

which also shows that for θ → 0 we retrieve the expected cost. In Fig. 1 we illustrate the smoothness effect of the
risk-sensitive objective, which, for larger values of θ, tends to select the most stable minimizers, i.e., the ones with
the largest valley, see [Dvijotham et al., 2014] for a detailed discussion. An application of the risk-sensitive cost is to
make the controller robust to a random disturbance noise that would affect the dynamics at a given time (like a kick
on the machine). Although the risk-sensitive controller may not pick the minimal cost of the original function, we can
expect the risk-sensitive controller to be robust against disturbance noise as illustrated in Fig. 2.
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Figure 1: Effect of the risk-sensitive parameter θ for
fθ(x)=

1
θ
logEw∼N (0,1)

[
exp θF (x+w)

]
with F illustrated by the black line.
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Figure 2: Expected behavior of the risk-sensitive
controllers for increasing disturbance noise.

Linear Quadratic Exponential Gaussian control. The resolution of non-linear risk-sensitive control problems rest
on the linear quadratic case whose properties are recalled below.

Proposition 1.1. Consider quadratic objectives and linear dynamics defined by

ht(xt) =
1

2
x>t Htxt + h̃>t xt, gt(ut) =

1

2
u>t Gtut + g̃>t ut, xt+1 = Atxt +Btut + Ctwt, (5)

where Ht � 0, Gt � 0, wt ∼ N (0, σ2 Iq). and denote by H, B̃, C̃, x̃0 the matrices and vector such that for any
trajectory x̄, H = ∇2h(x̄), x̄ = B̃ū+ C̃w̄ + x̃0. We have that

(i) the risk sensitive control problem (3) is equivalent to1

min
ū∈Rτp

sup
w̄∈Rτq

Q(ū, w̄) = min
ū∈Rτp

sup
w̄∈Rτq

x̄∈Rτd

τ∑
t=1

1

2
x>t Htxt + h̃>t xt +

τ−1∑
t=0

1

2
u>t Gtut + g̃>t ut −

τ−1∑
t=0

1

2θσ2
‖wt‖22 (6)

subject to xt+1 = Atxt +Btut + Ctwt

x0 = x̂0,

where Q is a quadratic in ū, w̄ obtained from the right hand side by expressing x̄ in terms of ū, w̄,

(ii) if (θσ2)−1 < λmax(C̃>HC̃) the quadratic Q is not concave in w̄ such that the risk-sensitive objective is not
defined,

(iii) if (θσ2)−1 > λmax(C̃>HC̃), the quadratic Q is strongly concave in w̄ and the risk-sensitive problem can be
solved analytically by dynamic programming.

The resolution of the control problem by dynamic programming checks if the quadratic defining the objective is
concave in w̄ during the backward pass, otherwise the problem is not defined. Each cost-to-go function is indeed
a quadratic whose positive-definiteness determines the feasibility of the problem. The detailed implementation is
provided in Appendix B.

Iterative Linearized Quadratic Exponential Gaussian. A common method to tackle the non-linear risk-sensitive
control problem is the Iterative Linearized Quadratic Exponential Gaussian (ILEQG) algorithm, that (i) linearizes
the dynamics and approximates quadratically the objectives around the current command and associated noiseless
trajectory, (ii) solves the associated linear quadratic problem to get an update direction, (iii) moves along the update
direction using a line-search.

1By equivalent, we mean that the two problems share the same set of minimizers.
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Formally, at a given command ū(k) with associated noiseless trajectory x̄(k) given by x(k)
0 =x̂0, x(k)

t+1=ψt(x
(k)
t , u

(k)
t , 0),

am update direction is given by the solution v̄∗, if it exists, of

min
v̄∈Rτp

sup
w̄∈Rτp

ȳ∈Rτd

τ∑
t=1

(
1

2
y>t Htyt + h̃>t yt

)
+

τ−1∑
t=0

(
1

2
v>t Gtvt + g̃>t vt

)
−
τ−1∑
t=0

1

2θσ2
‖wt‖22 (7)

subject to yt+1 = Atyt +Btvt + Ctwt

y0 = 0,

where

At = ∇xψt(x(k)
t , u

(k)
t , 0)> Bt = ∇uψt(x(k)

t , u
(k)
t , 0)> Ct = ∇wψt(x(k)

t , u
(k)
t , 0)>

Ht = ∇2ht(x
(k)
t ) h̃t = ∇ht(x(k)

t ) Gt = ∇2gt(u
(k)
t ) g̃t = ∇gt(u(k)

t ).

The next command is given by
ū(k+1) = ū(k) + γv̄∗,

where γ is a step-size chosen by line-search. The complete pseudo-code is presented in Appendix C. The objective of
this work is to understand the relevance of this method and to improve its implementation by answering the following
questions:

1. Does ILEQG ensure the decrease of the risk-sensitive objective? If yes, what is its rate of convergence?
2. How can the step-size be chosen to ensure the monotonicity of the algorithm in a principled way?

2 Iterative linearized risk-sensitive control

2.1 Model minimization
We analyze the ILEQG method as a model-minimization scheme. To ease the exposition, we consider the case of
additive noise, i.e., dynamics of the form,

x0 = x̂0, xt+1 = φt(xt, ut + wt). (8)

for bounded continuously differentiable dynamics φt : Rd × Rp → Rd. Note that it implies p = q in the previous
framework. The algorithm and its interpretation can be extended to the general case (1), see Appendix C and D.

First, we consider the noiseless trajectory as a function x̃ : Rτp → Rτd of the control variables, decomposed as
x̃(ū) = (x̃1(ū); . . . ; x̃τ (ū)) where

x̃1(ū) = φ0(x̂0, u0), x̃t+1(ū) = φt(x̃t(ū), ut), (9)

such that the noisy trajectory is given by x̃(ū+ w̄). The risk sensitive objective (3) can then be written as

min
ū∈Rτp

fθ(ū) = ηθ(ū) + g(ū), with ηθ(ū) =
1

θ
log Ew̄

[
exp θh

(
x̃(ū+ w̄)

)]
, (10)

where, here and thereafter, w̄ ∼ N (0, σ2 Iτp) unless specified differently. Now, at a current command ū, for a given
control deviation v̄, the random trajectory x̃(ū+ v̄ + w̄) is approximated as a perturbed trajectory of x̃(ū), by

x̃(ū+ v̄ + w̄) ≈ x̃(ū) +∇x̃(ū)>(v̄ + w̄). (11)

The objective is then approximated as fθ(ū+ v̄) ≈ mfθ (ū+ v̄; ū), where

mfθ (ū+v̄; ū),
1

θ
log Ew̄ exp θqh

(
x̄+∇x̃(ū)>v̄+∇x̃(ū)>w̄; x̄

)
+ qg(ū+ v̄; ū), (12)

4



qh(x̄+ ȳ; x̄) , h(x̄) +∇h(x̄)>ȳ+ ȳ>∇2h(x̄)ȳ/2, qg(ū+ v̄; ū) is defined similarly and x̄ = x̃(ū) is the noiseless tra-
jectory. As the following proposition clarifies, the update direction computed by ILEQG in (7) is given by minimizing
directly the modelmfθ . Yet, from an optimization viewpoint, a regularization term must be added to this minimization
to ensure that the solutions stay in a region where the model is valid. Formally, we consider a regularized variant of
ILEQG, we call RegILEQG, that starts at a point ū(0) and defines the next iterate as

ū(k+1)=ū(k)+ arg min
v̄∈Rτp

{
mfθ (ū

(k)+v̄; ū(k))+
1

2γk
‖v̄‖22

}
, (13)

where γk is the step-size: the smaller γk is, the closer the solution is to the current iterate. The following proposi-
tion shows that the minimization step (13) amounts to a linear quadratic exponential Gaussian risk-sensitive control
problem.

Proposition 2.1. The model minimization step (13) is given as ū(k+1) = ū(k) + v̄∗ where v̄∗ is the solution, if it exists,
of

min
v̄∈Rτp

sup
w̄∈Rτp

ȳ∈Rτd

τ∑
t=1

(
1

2
y>t Htyt + h̃>t yt

)
+

τ−1∑
t=0

(
1

2
v>t (Gt + γ−1

k Ip)vt + g̃>t vt

)
−
τ−1∑
t=0

1

2θσ2
‖wt‖22 (14)

subject to yt+1 = Atyt +Btvt +Btwt

y0 = 0,

where, denoting x(k)
t = x̃t(ū

(k)),

At = ∇xφt(x(k)
t , u

(k)
t )> Bt = ∇uφt(x(k)

t , u
(k)
t )>

Ht = ∇2ht(x
(k)
t ) h̃t = ∇ht(x(k)

t ) Gt = ∇2gt(u
(k)
t ) g̃t = ∇gt(u(k)

t ).

Each model-minimization step can then be performed by dynamic programming. The overall algorithm for general
dynamics of the form (1) is presented in Appendix C. Note that for simplified dynamics (8), the matrix Ct defined
in (7) reduces to Bt. As detailed in Appendix C, ILEQG is indeed an instance of RegILEQG with infinite step-size.
If the costs depend only on the final state, i.e., h(x̄) = hτ (xτ ), the steps can be computed more efficiently by making
calls to automatic differentiation oracles, see Appendix C for more details.

2.2 Convergence analysis
We analyze the behavior of the regularized variant of ILEQG for quadratic convex costs ht, gt, a common setting
in applications. Our main contribution is to show that the algorithm can be seen to minimize a surrogate of the
risk-sensitive cost. The algorithm can indeed be decomposed in two different approximations:

(i) the random trajectories are approximated by Gaussians defined by the linearization of the dynamics,
(ii) the non-linear control of the trajectory is approximated by a linear control defined by the linearization of the

dynamics.
We show that the first approximation makes the algorithm work on a surrogate of the true risk-sensitive objective. By
identifying this surrogate, we can improve the implementation of the algorithm.

Surrogate risk-sensitive cost. By approximating the noisy trajectory by a Gaussian variable using first-order infor-
mation of the trajectory, we define the surrogate risk-sensitive objective as follows

f̂θ(ū) = η̂θ(ū) + g(ū), with η̂θ(ū) =
1

θ
log Ew̄ exp[θh(x̃(ū) +∇x̃(ū)>w̄)]. (15)

The surrogate risk-sensitive objective is essentially the log-partition function of a Gaussian distribution defined by the
linearized trajectory as shown in the following proposition.

5



Proposition 2.2. For ū ∈ Rτp with x̄ = x̃(ū), if

σ−2 Iτp � θ∇x̃(ū)∇2h(x̄)∇x̃(ū)>, (16)

the surrogate η̂θ in (15) is well-defined and is the scaled log-partition function of

p̂(w̄; ū) = exp

(
θh(x̃(ū)+∇x̃(ū)>w̄)− 1

2σ2
‖w̄‖22−θη̂θ(ū)

)
, (17)

which is the density of a Gaussian N (w̄∗,Σ) with

w̄∗ = θΣXh̃, Σ = (σ−2 Iτp−θXHX>)−1, (18)

where X = ∇x̃(ū), h̃ = ∇h(x̄), H = ∇2h(x̄) and x̄ = x̃(ū). Therefore, the surrogate risk-sensitive objective can be
computed analytically.

The approximation error induced by using the surrogate instead of the original risk-sensitive cost is illustrated
in Sec. 3. Note that the surrogate η̂θ(ū) in (15) shares similar properties as the original cost in (4), since it can be
extended around θ = 0 to

η̂θ(ū) = h(x̃(ū)) + Ew̄∼p̂(·;ū) w̄
>∇x̃(ū)∇2h(x̃(ū))∇x̃(ū)>w̄ +

θ

2
Varw̄∼p̂(·;ū) h(x̃(ū) +∇x̃(ū)>w̄)) +O(θ2).

Namely, it accounts not only for the cost of the noiseless trajectory but also for the variance defined by the linearized
trajectories. Provided that condition (16) holds, the gradient of the surrogate risk-sensitive cost reads (see Appendix D)

∇η̂θ(ū) = Ew̄∼p̂(·;ū)(∇x̃(ū)+∇2x̃(ū)[·, w̄, ·])∇h(x̃(ū)+∇x̃(ū)>w̄),

where p̂(·; ū) is defined in (17). The analysis of the algorithm requires to define also the truncated gradient of the
surrogate risk-sensitive cost as

∇̂η̂θ(ū) = Ew̄∼p̂(·;ū)∇x̃(ū)∇h(x̃(ū) +∇x̃(ū)>w).

We link the model-minimization steps of the regularized variant of ILEQG to the truncated gradient in the following
proposition.

Proposition 2.3. Consider the regularized iterative linear exponential Gaussian iteration (13), if condition (16) holds
on ū(k), the model mfθ in (12) is well-defined and convex and the step reads

ū(k+1) = ū(k)−(G+ γ−1
k Iτp +XHX>+θV )−1(∇g(ū(k)) + ∇̂η̂θ(ū(k))),

where

V = Varw̄∼p̂(·;ū(k))∇x̃(ū(k))∇h(x̃(ū(k)) +∇x̃(ū(k))>w) = XHX>(σ−2 Iτp−θXHX>)−1XHX>

and X=∇x̃(ū(k)), H=∇2h(x̄), G=∇2g(ū(k)), x̄=x̃(ū(k)).

Convergence to stationary points. We make the following assumptions for our analysis.

Assumption 2.4.
1. The dynamics φt are twice differentiable, bounded, Lipschitz, smooth such that the trajectory function x̃ is also

twice differentiable, bounded, Lipschitz and smooth. Denote by `x̃ and Lx̃ the Lipschitz continuity and smooth-
ness constants respectively of x̃ and define Mx̃ = maxū∈Rτp dist(x̃(ū), X∗), where X∗ = arg minx̄∈Rτd h(x̄).

2. The costs h and g are convex quadratics with smoothness constants Lh, Lg .
3. The risk-sensitivity parameter is chosen such that σ̃−2 = σ−2 − θLh`2x̃ > 0, which ensures that condition (16)

holds for any ū ∈ Rτp.

The following proposition shows stationary convergence for the regularized variant of ILEQG as an optimization
method of the surrogate risk-sensitive cost. The additional constant term is due to the truncation of the gradient of the
surrogate risk-sensitive cost.

6



Theorem 2.5. Under Asm. 2.4, suppose that the step-sizes of the regularized iterative linear exponential Gaussian
iteration (13) are chosen such that

f̂θ(ū
(k+1)) ≤ mfθ (ū

(k+1); ū(k)) +
1

2γk
‖ū(k+1) − ū(k)‖22, (19)

with γk ∈ [γmin, γmax]. Then, the surrogate objective f̂θ decreases and after K iterations we have

min
k=0,...,K−1

‖∇f̂θ(ū(k))‖2 ≤ L

√
2(f̂θ(ū(0))− f̂θ(ū(K)))

K
+ δ,

where

L = max
γ∈[γmin,γmax]

√
γ(Lg + γ−1 + (σ̃/σ)2`2x̃Lh)

δ = θσ̃2L2
hLx̃`x̃M

2
x̃ + θ2σ̃4L3

hLx̃`
3
x̃M

2
x̃ + τpσ̃2LhLx̃`x̃.

Previous proposition gives a criterion (19) for line-searches. We show in Appendix D that there exists a step-size
γ̂ such that condition (19) is satisfied along the iterations. With this step-size, the number of steps to get an ε + δ
stationary point is at most

2γ̂(Lg + γ̂−1 + (σ̃/σ)2`2x̃Lh)2(f̂θ(ū
(0))− f̂∗θ )

ε2
.

3 Numerical experiments

3.1 Experimental setting
Detailed description of the parameters setting can be found in Appendix E.

Control settings. We apply the risk-sensitive framework to two classical continuous time control settings: swinging-
up a pendulum and moving a two-link arm robot, both detailed in Appendix E. Their discretization leads to dynamics
of the form

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut),
(20)

for t = 0, . . . τ−1, where x1, x2 describe the position and the speed of the system respectively, f defines the dynamics
derived by Newton’s law, δ is the time step, u is a force that controls the system.

Noise modeling. The risk-sensitive cost is defined by an additional noisy force applied to the dynamics. Formally,
the discretized dynamics (20) are modified as

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut + wt),
(21)

for t = 0, . . . , τ − 1, where wt ∼ N (0, σ2 Ip) and σ is chosen to avoid chaotic behavior, see Appendix E.
We test the optimized expected or risk-sensitive costs on a setting where the dynamics are perturbed at a given

time tw by a force of amplitude ρ. This models the robustness of the control against kicking the robot. Formally,
we analyze the performance of the solutions of the expected cost (denoted θ = 0) or the risk-sensitive cost (3) on
dynamics of the form

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut + ρ1(t = tw)),

for t = 0, . . . , τ − 1, where ρ ∼ N (0, σtest Ip) with the same cost h(x̄) computed as an average on n = 100
simulations. We call this cost the test cost.
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Figure 3: Convergence of iterative linearized methods,
RegILEQG and ILEQG, on the pendulum problem.
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Figure 4: Risk-sensitive and gradient approximations.
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Figure 5: Robustness of controllers against disturbance noise.

3.2 Results
Convergence. In Fig. 3 we compare the convergence on the pendulum problem of RegILEQG and ILEQG. For both
algorithms, we use a constant step-size sequence tuned after a burn-in phase of 5 iterations on a grid of step-sizes 2i

for i ∈ [−5, 10]. The surrogate risk-sensitive cost was used to tune the step-sizes. The best step-sizes found were
0.5 for ILEQG and 16 for RegILEQG. We plot the minimum values obtained until now, as the true function can be
approximated. We observe that both ILEQG and RegILEQG minimize well the surrogate risk-sensitive cost. Yet,
the regularized variant provides smoother convergence. We leave as future work the implementation of line-search
procedures as done for Levenberg-Marquardt methods.

Risk-sensitive cost approximation. In Fig. 4, we compare f̂θ(ū(k)), ‖∇f̂θ(ū(k))‖2 computed by the Gaussian ap-
proximation given in (15) and fθ(ū(k)), ‖∇fθ(ū(k))‖2 approximated by Monte-Carlo for N = 100 samples and 10
runs. We plot these values along the iterations of the RegILEQG method for the pendulum (same experiment as in
Fig. 3). We observe that the approximation f̂θ(ū(k)) is close to the approximation by Monte-Carlo. The sequence of
compositions defining the trajectory leads to highly non-smooth functions (i.e. large smoothness constants), which
contributes to the high variance of gradients computed by Monte-Carlo.
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Robustness. In Fig. 5, we plot the test cost obtained by the expected or risk-sensitive optimizers on the movement
perturbed by a Dirac of increasing strength. We use our RegILEQG algorithm with constant-step-size tuned after a
burn-in phase. The risk-sensitive approach provides smaller costs against perturbed trajectories. On the two-link-arm
problem, we did not observe significant changes when varying the risk-sensitivity parameter. We leave the analysis of
the choice of the parameter for future work.

4 Conclusion
We dissected the ILEQG algorithm to understand its correct implementation, this revealed: (i) the objective it mini-
mizes, that is not the risk-sensitive cost but an approximation of it, (ii) the necessary introduction from an optimization
viewpoint of a regularization inside the step, (iii) a sufficient decrease condition that ensures proven stationary conver-
gence to a near-stationary point.
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A Notations

A.1 Miscellaneous
We use semicolons to denote concatenation of vectors, namely for n d-dimensional vectors a1, . . . , an ∈ Rd, we have
(a1; . . . ; an) ∈ Rnd. The Kronecker product is denoted ⊗. For a sequence of matrices X1, . . . Xτ ∈ Rd×p we denote

diag(X1, . . . , Xτ ) =


X1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 Xτ

 ∈ Rdτ×pτ .

the corresponding block diagonal matrix. For a set S ⊂ Rd and x ∈ Rd, denote dist(x, S)2 = miny∈Rd ‖x − y‖22.
Given a density function p : Rd → R+, such that

∫
Rd p(w)dw = 1 and a function f : Rd → Rp we denote

Ew∼p f(w) =

∫
Rd
f(w)p(w)dw.

For a random variable w ∈ Rd, we denote its covariance matrix by

Var(w) = E((w − E(w))(w − E(w))>).

For a matrixM ∈ Rd×d, we denote ‖M‖2 = supx∈Rd∗
x>Mx/‖x‖22 the spectral norm induced by the Euclidean norm.

We denote semi-definite positive matrices S ∈ Rd×d as S � 0 and denote λmax(S) = ‖S‖2 the maximal eigenvalue
of S. For a matrix A ∈ Rd×n we denote by A† the pseudo-inverse of A.

A.2 Tensors
For a tensor A = (ai,j,k)i∈{1,...,d}, j∈{1,...,n}, k∈{1,...,p} ∈ Rd×n×p, we denote Ai,·,· = (ai,j,k)j∈{1,...,n}, k∈{1,...,p} ∈
Rn×p the matrix obtained by fixing the first index at i. Similarly we define A·,j,· ∈ Rd×p and A·,·,k ∈ Rd×n. A tensor
A can be represented as the list of matrices A = (A·,·,1, . . . ,A·,·,k). Given matrices P ∈ Rd×d

′
, Q ∈ Rn×n

′
, R ∈

Rp×p
′
, we denote

A[P,Q,R] =

(
p∑
k=1

Rk,1P
>A·,·,kQ, . . . ,

p∑
k=1

Rk,p′P
>A·,·,kQ

)
∈ Rd

′×n′×p′

If P,Q or R are identity matrices, we use the symbol ” · ” in place of the identity matrix. For example, we denote
A[P,Q, Ip] = A[P,Q, ·] =

(
P>A·,·,1Q, . . . , P>A·,·,pQ

)
. If P,Q or R are vectors we consider the flatten object. In

particular, for x ∈ Rd, y ∈ Rn, we denote

A[x, y, ·] =

x
>A·,·,1y

...
x>A·,·,py

 ∈ Rp

rather than having A[x, y, ·] ∈ R1×1×p. Similarly, for z ∈ Rp, we have

A[·, ·, z] =

p∑
k=1

zkA·,·,k ∈ Rd×n.

For a tensor A, we denote

‖A‖2 = sup
x∈Rd∗,y∈Rn∗ ,z∈Rp∗

A[x, y, z]

‖x‖2‖y‖2‖z‖2
(22)

the norm induced by the Euclidean norm for the tensor A.
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A.3 Gradients
For a multivariate function f : Rd 7→ Rn, composed of f (j) real functions with j ∈ {1, . . . , n}, we denote ∇f(x) =

(∇f (1)(x), . . . ,∇f (n)(x)) ∈ Rd×n, that is the transpose of its Jacobian on x, ∇f(x) = (∂f
(j)

∂xi
(x))1≤i≤d,1≤j≤n ∈

Rd×n. We represent its 2nd order information by a tensor∇2f(x) = (∇2f (1)(x), . . . ,∇2f (n)(x)) ∈ Rd×d×n

For a real function, f : Rd×Rp 7→ R, whose value is denoted f(x, y), we decompose its gradient∇f(x, y) ∈ Rd+p

on (x, y) ∈ Rd × Rp as

∇f(x, y) =

(
∇xf(x, y)
∇yf(x, y)

)
with ∇xf(x, y) ∈ Rd, ∇yf(x, y) ∈ Rp.

For a multivariate function f : Rd×Rp 7→ Rn and (x, y), we denote∇xf(x, y) = (∇xf (1)(x, y), . . . ,∇xf (n)(x, y)) ∈
Rd×n and we define similarly∇yf(x, y) ∈ Rp×n.

We drop the dependency to the time when it is clear from context, e.g., for a dynamic φt : Rd+p → Rd we denote
by ∇uφt(xt, ut) = ∇utφt(xt, ut). Those definitions extend for noisy dynamics ψt, where we add the noise variable
w ∈ Rq .

All Lipschitz continuity constants are defined w.r.t. the norm induced by the Euclidean norm. In particular, for a
multivariate twice differentiable function f , we say that it is smooth if its second-order tensor has a bounded norm for
the Euclidean induced norm of a tensor defined in (22).

B Linear quadratic risk sensitive control

B.1 Min-max formulation
Proposition 1.1. Consider quadratic objectives and linear dynamics defined by

ht(xt) =
1

2
x>t Htxt + h̃>t xt, gt(ut) =

1

2
u>t Gtut + g̃>t ut, xt+1 = Atxt +Btut + Ctwt, (5)

where Ht � 0, Gt � 0, wt ∼ N (0, σ2 Iq). and denote by H, B̃, C̃, x̃0 the matrices and vector such that for any
trajectory x̄, H = ∇2h(x̄), x̄ = B̃ū+ C̃w̄ + x̃0. We have that

(i) the risk sensitive control problem (3) is equivalent to2

min
ū∈Rτp

sup
w̄∈Rτq

Q(ū, w̄) = min
ū∈Rτp

sup
w̄∈Rτq

x̄∈Rτd

τ∑
t=1

1

2
x>t Htxt + h̃>t xt +

τ−1∑
t=0

1

2
u>t Gtut + g̃>t ut −

τ−1∑
t=0

1

2θσ2
‖wt‖22 (6)

subject to xt+1 = Atxt +Btut + Ctwt

x0 = x̂0,

where Q is a quadratic in ū, w̄ obtained from the right hand side by expressing x̄ in terms of ū, w̄,

(ii) if (θσ2)−1 < λmax(C̃>HC̃) the quadratic Q is not concave in w̄ such that the risk-sensitive objective is not
defined,

(iii) if (θσ2)−1 > λmax(C̃>HC̃), the quadratic Q is strongly concave in w̄ and the risk-sensitive problem can be
solved analytically by dynamic programming.

Proof of (i). Since wt are i.i.d, the states xt given by the linear dynamics form a Markov sequence of random vari-
ables, i.e., denoting P the probability defined by the dynamics, for any t ∈ {0, . . . , τ − 1}, P(xt+1|xt, . . . , x0) =
P(xt+1|xt) ∼ N (Atxt + Btut,Σt) where Σt = σ2CtC

>
t and x0 = x̂0. Since Σt is potentially not full-ranked, the

probability distribution of x̄ requires to define an appropriate measure. Denote ΠNull(Σt) the orthonormal projection

2By equivalent, we mean that the two problems share the same set of minimizers.
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on the null space of Σt and denote by µ any measure such that

dµ(x̄) =

{
0 if ∃t ∈ {0, . . . τ − 1} : ΠNull(Σt)(xt+1 −Atxt −Btut) 6= 0,

dλ(x̄) otherwise,

where dλ(x̄) is the Lebesgue measure on Rτd. Therefore, we have

Ex̄∼p(·;ū) [exp(θh(x̄))] ∝
∫

exp

(
−
τ−1∑
t=0

1

2
(xt+1 −Atxt −Btut)>Σ†t(xt+1 −Atxt −Btut)

+ θ

τ∑
t=1

1

2
x>t Htxt + h̃>t xt

)
dµ(x̄)

=

∫
exp(−q(x̄, ū))dµ(x̄),

where q(x̄, ū) is a quadratic in x̄, ū and we ignored the normalization constants in the first line as we are interested in
computing the minimum. Fix ū and denote simply q̃(x̄) = q(x̄, ū). The integral will then be finite if and only if q̃(x̄)
is bounded below in x̄ ∈ X = {x̄ : ∀t ∈ {0, . . . , τ − 1} ΠNull(Σt)(xt+1 − Atxt − Btut) = 0}. In that case, denote
x̄∗ ∈ arg minx̄∈X q̃(x̄), using the Taylor expansion of q̃, we get for x̄ ∈ X , q̃(x̄) = q̃(x̄∗) + 1

2 (x̄ − x̄∗)>Q(x̄ − x̄∗)
where Q = ∇2q̃(x̄) is independent of x̄, ū and we use that∇q̃(x̄∗)>(x̄− x̄∗) = 0 for x̄ ∈ X by definition of x̄∗. The
expectation is then proportional to, the variance term defined by Q being independent of ū,

Ex̄∼p(·;ū) [exp(θh(x̄))] ∝ exp
(
−min

x̄
q(x̄, ū)

)
.

By parameterizing the states as xt+1 = Atxt +Btut + Ctwt for x̄ ∈ X , using that Ct has the same image as Σt, the
minimization can be rewritten

min
x̄∈X

q(x̄, ū) = min
w̄∈Rτd,x̄∈Rτd

− θ
τ∑
t=1

(
1

2
x>t Htxt + h̃>t xt

)
+

τ−1∑
t=0

1

2σ2
‖wt‖22

subject to xt+1 = Atxt +Btut + Ctwt

x0 = x̂0.

The risk sensitive control problem (3) is then equivalent to, i.e., shares the same set of minimizers as,

min
ū∈Rτp

sup
w̄∈Rτq,x̄∈Rτd

τ∑
t=1

1

2
x>t Htxt + h̃>t xt +

τ−1∑
t=0

1

2
u>t Gtut + g̃>t ut −

τ−1∑
t=0

1

2θσ2
‖wt‖22

subject to xt+1 = Atxt +Btut + Ctwt

x0 = x̂0,

which, if the sup is infinite, means that the problem is not defined.

Proof of (ii). The linear dynamics read xt+1 −Atxt = Btut + Ctwt for t = 0, . . . , τ − 1. Denoting

L =


I 0 . . . 0

−A1 I
. . .

...
...

. . . . . . 0
0 . . . −Aτ−1 I

 with L−1 =


I 0 . . . 0
A1 I 0 0
...

...
. . .

...
Aτ−1 . . . A1 Aτ−1 . . . A2 . . . I

 ,

we get
Lx̄ = B̄ū+ C̄w̄ + x̆0 and so x̄ = L−1(B̄ū+ C̄w̄ + x̆0),

where x̆0 = (A0x̂0; 0; . . . ; 0) ∈ Rτd, x̄ = (x1; . . . ;xτ ), B̄ = diag(B0, . . . , Bτ−1), C̄ = diag(C0, . . . , Cτ−1).
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Problem (6) reads then

min
ū∈Rτp

sup
w̄∈Rτq

1

2
(B̄ū+ C̄w̄ + x̆0)>L−>H̄L−1(B̄ū+ C̄w̄ + x̆0) + h̄>L−1(B̄ū+ C̄w̄ + x̆0) (23)

+
1

2
ū>Ḡū+ ḡ>ū− 1

2θσ2
‖w̄‖22,

where H̄ = diag(H1, . . . ,Hτ ), Ḡ = diag(G0, . . . , Gτ−1), h̄ = (h1; . . . ;hτ ) and ḡ = (g0; . . . ; gτ−1). It is always a
strongly convex problem in ū by assumption on the Gt. If

(θσ2)−1 < λmax(C̄>L−>H̄L−1C̄),

i.e., (θσ2)−1 Iτq 6� C̄>L−>H̄L−1C̄, then there exists w̄∗ such that w̄∗>(C̄>L−>H̄L−1C̄ − (θσ2)−1 Iτq)w̄
∗ > 0,

by taking αw̄∗ in place of w̄∗ with α → +∞, the maximization problem in (23) is always infinite, independently of
ū. The claim follows by identifying H = ∇2h(x̄) = H̄ , C̃ = L−1C̄ and x̃0 = L−1x̆0.

Proof of (iii). If
(θσ2)−1 > λmax(C̄>L−>H̄L−1C̄), (24)

i.e., (θσ2)−1 Iτq � C̄>L−>H̄L−1C̄, the maximization problem in (23) is a strongly concave problem in w̄ such that
the sup on w̄ is attained. For the dynamic programming resolution, define cost-to-go functions starting from y at time
t as

ct(y) = min
ut,...,uτ−1

sup
wt,...,wτ−1
xt,...,xτ

τ∑
s=t

1

2
x>s Hsxs + h̃>s xs +

τ−1∑
s=t

1

2
u>s Gsus + g̃>s us −

τ−1∑
s=t

1

2θσ2
‖ws‖22

subject to xs+1 = Asxs +Bsus + Csws for s = t, . . . , τ − 1

xt = y,

with the convention H0 = 0, h̃0 = 0. Cost-to-go functions satisfy the Bellman equation

ct(y) =
1

2
y>Hty + h̃>t y + min

ut∈Rp
sup
wt∈Rq

{
1

2
u>t Gtut + g̃>t ut −

1

2θσ2
‖wt‖22 + ct+1(Aty +Btut + Ctwt)

}
, (25)

with optimal control

u∗t (y) = arg min
ut∈Rp

{
1

2
u>t Gtut + g̃>t ut + sup

wt∈Rq

{
− 1

2θσ2
‖wt‖22 + ct+1(Aty +Btut + Ctwt)

}}
,

and optimal noise, if the sup is finite,

w∗t (ut, y) = arg max
wt∈Rd

{
− 1

2θσ2
‖wt‖22 + ct+1(Aty +Btut + Ctwt)

}
.

The final cost initializing the recursion is defined as cτ (y) = 1
2y
>Hτy+h̃>τ y. For quadratic costs and linear dynamics,

the cost-to-go functions are quadratic and can be computed analytically through the recursive equation (25). If the
quadratic defining the supremum problem is not negative semi-definite the problem is infeasible.

If condition (24) holds, the overall maximization is feasible, all suprema are reached. The solution of (6) is given
by computing c0(x̂0), which amounts to solve iteratively the Bellman equations starting from x0 = x̂0, i.e., getting
the optimal control at the given state and moving along the dynamics to compute the next cost-to-go:

u∗t = u∗t (xt), w∗t = w∗t (u∗t , xt), xt+1 = Atxt +Btu
∗
t + Ctw

∗
t .

B.2 Dynamic programming resolution
Detailed computations of the dynamic programming approach are given in the following proposition that supports
Algo. 1. Though finer sufficient conditions to get a solution can be derived in the case (θσ2)−1 = λmax(C>t Pt+1Ct),
simply reducing the risk sensitivity parameter is enough to get the condition in line 5. For simplicity, in Algo. 1, if
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condition (26) is not satisfied, we consider the problem to be infeasible.

Proposition B.1. Consider Algo. 1 applied for the linear quadratic risk sensitive control problem (6) with Ht � 0
and Gt � 0. If condition

(θσ2)−1 > λmax(C>t Pt+1Ct) (26)
in line 5 is satisfied for all t = τ − 1, . . . , 0, then the cost-to-go functions are quadratics of the form

ct(y) =
1

2
y>Pty + p>t y + c with Pt � 0, (27)

where c is a constant and Pt, pt are defined recursively in line 6.
If for any t = τ − 1, . . . , 0,

(θσ2)−1 < λmax(C>t Pt+1Ct),

the linear quadratic risk sensitive control problem (6) is infeasible.

Proof. The cost-to-go function at time τ reads cτ (y) = 1
2y
>Hτy + h̃>τ y. It has then the form (27) with pτ = h̃τ

and Pτ = Hτ � 0. Assume now that at time t + 1, the cost-to-go function has the form of (27), i.e., ct+1(y) =
1
2y
>Pt+1y + p>t+1y with Pt+1 � 0. Then, the Bellman equation reads, ignoring the constant terms,

ct(y) =
1

2
y>Hty + h̃>t y + min

ut∈Rp
sup
wt∈Rq

{
1

2
u>t Gtut + g̃>t ut −

1

2θσ2
‖wt‖22

+ p>t+1(Aty +Btut + Ctwt)

+
1

2
(Aty +Btut + Ctwt)

>Pt+1(Aty +Btut + Ctwt)

}
=

1

2
y>Hty + h̃>t y + min

ut∈Rp

{
1

2
u>t Gtut + g̃>t ut

+
1

2
(Aty +Btut)

>Pt+1(Aty +Btut) + p>t+1(Aty +Btut)

+ sup
wt∈Rq

[
1

2
w>t C

>
t [Pt+1(Aty +Btut) + pt+1]

− 1

2
w>t ((θσ2)−1 Iq −C>t Pt+1Ct)wt

]}
.

If (θσ2)−1 < λmax(C>t Pt+1Ct), the supremum in wt is infinite. If (θσ2)−1 > λmax(C>t Pt+1Ct), the supremum is
finite and reads

w∗t = ((θσ2)−1 Iq −C>t Pt+1Ct)
−1C>t [Pt+1(Aty +Btut) + pt+1]. (28)

So we get, ignoring the constant terms,

ct(y) =
1

2
y>Hty + h̃>t y + min

ut∈Rp

{1

2
u>t Gtut + g̃>t ut

+
1

2
(Aty +Btut)

>P̃t+1(Aty +Btut) + p̃>t+1(Aty +Btut)
}
, (29)

where

P̃t+1 = Pt+1 + Pt+1Ct((θσ
2)−1 Iq −C>t Pt+1Ct)

−1C>t Pt+1 � 0

p̃t+1 = pt+1 + Pt+1Ct((θσ
2)−1 Iq −C>t Pt+1Ct)

−1C>t pt+1.

We then get, ignoring the constant terms,

ct(y) =
1

2
y>(Ht +A>t P̃t+1At)y + (h̃t +A>t ρt)

>y − 1

2
y>A>t P̃t+1Bt(Gt +B>t P̃t+1Bt)

−1B>t P̃t+1Aty.
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where ρt = p̃t+1 − P̃t+1Bt(Gt +B>t P̃t+1Bt)
−1[B>t p̃t+1 + g̃t]. The cost function is then a quadratic defined by

Pt = Ht +A>t P̃t+1At −A>t P̃t+1Bt(Gt +B>t P̃t+1Bt)
−1B>t P̃t+1At.

Denoting P̃
1/2
t+1 a square root matrix of P̃t+1 such that P̃

1/2
t+1 � 0 and P̃

1/2
t+1P̃

1/2
t+1 = P̃t+1, we get

Pt = Ht +A>t P̃
1/2
t+1

(
Id−P̃

1/2
t+1Bt(Gt +B>t P̃t+1Bt)

−1B>t P̃
1/2
t+1

)
P̃

1/2
t+1At

= Ht +A>t P̃
1/2
t+1

(
Id +P̃

1/2
t+1BtG

−1
t B>t P̃

1/2
t+1

)−1
P̃

1/2
t+1At � 0,

where we use Sherman-Morrison-Woodbury formula for the last equality. This proves that ct(y) satisfies (27) at time
t with Pt defined above and

pt = h̃t +A>t

(
p̃t+1 − P̃t+1Bt(Gt +B>t P̃t+1Bt)

−1[B>t p̃t+1 + g̃t]
)
.

The optimal control is given from (29) as

u∗t (y) = −(Gt +B>t P̃t+1Bt)
−1[B>t P̃t+1Aty + g̃t +B>t p̃t+1]

and the optimal noise is given by (28), i.e.,

w∗t (y, ut) = ((θσ2)−1 Iq −C>t Pt+1Ct)
−1C>t [Pt+1(Aty +Btut) + pt+1].

Remark B.2. Consider the case h̃t = 0, g̃t = 0 such that p̃t+1 = 0 and pt+1 = 0. Then Algorithm 1 is a
modified version of the classical Linear Quadratic Regulator (LQR) algorithm where the value function at time t+ 1
is c̃t+1(y) = y>P̃t+1y/2 instead of ct+1(y) = y>Pt+1y/2 for the LQR derivations.

In particular, denoting P
1/2
t+1 a square root matrix of Pt+1 and using Sherman-Morrison-Woodbury formula, we

have that

P̃t+1 = P
1/2
t+1

(
Id−P

1/2
t+1Ct(C

>
t Pt+1Ct − (θσ2)−1 Id)

−1C>t P
1/2
t+1

)
P

1/2
t+1

= P
1/2
t+1(Id−θσ2P

1/2
t+1CtC

>
t P

1/2
t+1)−1P

1/2
t+1,

such that for θ = 0 we get P̃t+1 = Pt+1, so we retrieve the minimization of a Linear Quadratic Gaussian control
problem by dynamic programming.

C Iterative linearized algorithms

C.1 Model minimization
We present the implementation of RegILEQG for general noisy dynamics of the form

xt+1 = ψt(xt, ut, wt). (30)

We define the trajectory as a function x̃ : Rτp×τq → Rτd of the control and noise variables decomposed as x̃(ū, w̄) =
(x̃1(ū, w̄); . . . ; x̃τ (ū, w̄)) where

x̃1(ū, w̄) = ψ0(x̂0, u0, w0), x̃t+1(x̄, w̄) = ψt(x̃t(ū, w̄), ut, wt). (31)

The risk sensitive objective (3) can be written

min
ū∈Rτp

fθ(ū) = ηθ(ū) + g(ū) where ηθ(ū) =
1

θ
log Ew̄

[
exp θh

(
x̃(ū, w̄)

)]
. (32)

The model we consider for the trajectory reads

x̃(ū+ v̄, w̄) ≈ x̃(ū, 0) +∇x̃(ū, 0)>(v̄, w̄) = x̃(ū, 0) +∇ūx̃(ū, 0)>v̄ +∇w̄x̃(ū, 0)>w̄, (33)
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where x̃(ū, 0) is the noiseless trajectory,∇ūx̃ and∇w̄x̃ denote the gradient w.r.t. the command and the noise, respec-
tively, see Appendix A for gradient notations.

We approximate the objective as fθ(ū+ v̄) ≈ mfθ (ū+ v̄; ū), where

mfθ (ū+ v̄; ū) ,
1

θ
log Ew̄

[
exp θqh

(
x̄+∇ūx̃(ū, 0)>v̄ +∇w̄x̃(ū, 0)>w̄; x̄

)]
+ qg(ū+ v̄; ū), (34)

where qh(x̄ + ȳ; x̄) , h(x̄) + ∇h(x̄)>ȳ + ȳ>∇2h(x̄)ȳ/2, qg(ū + v̄; ū) is defined similarly and x̄ = x̃(ū, 0) is the
noiseless trajectory.

This model is then minimized with an additional proximal term. Formally, the algorithm starts at a point ū(0) and
defines the next iterate as

ū(k+1) = ū(k) + arg min
v̄∈Rτp

{
mfθ (ū

(k) + v̄; ū(k)) +
1

2γk
‖v̄‖22

}
, (35)

where γk is the step-size: the smaller γk is, the closer the solution is to the current iterate.
The following proposition shows that the minimization step (35) amounts to a linear quadratic risk-sensitive control

problem. Prop. 2.1 is then a sub-case of the following proposition.

Proposition C.1. The model minimization step (35) is given as ū(k+1) = ū(k) + v̄∗ where v̄∗ is the solution of

min
v̄∈Rτp

sup
w̄∈Rτq ȳ∈Rτd

τ∑
t=1

(
1

2
y>t Htyt + h̃>t yt

)
+

τ−1∑
t=0

(
1

2
v>t (Gt + γ−1

k Ip)vt + g̃>t vt

)
−
τ−1∑
t=0

1

2θσ2
‖wt‖22 (36)

subject to yt+1 = Atyt +Btvt + Ctwt

y0 = 0,

where x(k)
t = x̃t(ū

(k), 0) and

At = ∇xψt(x(k)
t , u

(k)
t , 0)> Bt = ∇uψt(x(k)

t , u
(k)
t , 0)> Ct = ∇wψt(x(k)

t , u
(k)
t , 0)>

Ht = ∇2ht(x
(k)
t ) h̃t = ∇ht(x(k)

t ) Gt = ∇2gt(u
(k)
t ) g̃t = ∇gt(u(k)

t ).

Proof. To ease notations denote ū(k) = ū. Recall that the trajectory defined by ū, w̄ reads

x̃1(ū, w̄) = ψ0(x̂0, F
>
0 ū, E

>
0 w̄), x̃t+1(ū, w̄) = ψt(x̃t(ū, w̄), F>t ū, E

>
t w̄)

where Ft = et+1 ⊗ Ip ∈ Rτp×p satisfies F>t ū = ut, Et = et+1 ⊗ Iq ∈ Rτq×q satisfies E>t w̄ = wt and et ∈ Rτ is the
tth canonical vector in Rτ . The gradient is then given by

∇x̃1(ū, w̄) =

(
F0∇uψ0(x̂0, u0, w0)
E0∇wψ0(x̂0, u0, w0)

)
∇x̃t+1(ū, w̄) = ∇x̃t(ū, w̄)∇xψt(x̃t(ū, w̄), ut, wt) +

(
Ft∇uψt(x̃t(ū, w̄), ut, wt)
Et∇wψt(x̃t(ū, w̄), ut, wt)

)
For a given v̄ = (v0; . . . ; vτ−1), the product ȳ = (y1; . . . ; yτ ) = ∇x̃(ū, 0)>(v̄, w̄) reads

y1 = ∇uψ0(x0, u0, 0)>v0 +∇wψ0(x0, u0, 0)>w0

yt+1 = ∇xψt(xt, ut, 0)>yt +∇uψt(xt, ut, 0)>vt +∇wψt(xt, ut, 0)>wt,

where xt = x̃t(ū, 0), x0 = x̂0 and we used that yt = ∇x̃t(ū, 0)>(v̄, w̄).
The approximate state objective inside the exponential in (34) reads then

qh
(
x̄+∇ūx̃(ū, 0)>v̄ +∇w̄x̃(ū, 0)>w̄; x̄

)
=

τ∑
t=1

qht(xt + yt;xt)

s.t. yt+1 = Atyt +Btvt + Ctwt

y0 = 0,
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where At = ∇xψt(xt, ut, 0)>, Bt = ∇uψt(xt, ut, 0)>, Ct = ∇wψt(xt, ut, 0)>. We retrieve the model of a linear
quadratic control problem perturbed by noise w̄. The risk sensitive objective can then be decomposed as in Proposi-
tion 1.1, leading to the claimed formulation.

C.2 ILEQG and RegILEQG implementations
C.2.1 Implementations by dynamic programming

We present in Algo. 2 the regularized variant of ILEQG that calls Algo. 1 at each step to solve the linear quadratic
problem by dynamic programming. We present it for constant step-size. A variant with line-search could also be
derived. We also present in Algo. 3 the classical ILEQG method equipped with a line-search on the Monte-Carlo
approximation of the objective.

C.2.2 Implementation by automatic differentiation

We consider here problems whose objective rely only in the last state, i.e.

h(x̄) = hτ (xτ ), (37)

and assume hτ strictly convex. In that case we can use automatic differentiation oracles as defined by Roulet et al.
[2019] and recalled below.

Definition C.2 (Automatic-differentiation oracle). Let x̃τ : Rτπ → Rd be a chain of compositions defined by

x0 = x̂0, xt+1 = ψ(xt, ωt) for t ∈ {0, . . . , τ − 1}
for differentiable functions ψt : Rd × Rπ , x̂0 ∈ Rd An automatic-differentiation oracle is any procedure that computes
∇x̃τ (ω̄)z for any ω̄ = (ω0, . . . , ωτ−1) ∈ Rτπ, z ∈ Rd.

We can then use the dual optimization problem of (35) as shown in the following proposition. For final-state
cost (37), the automatic differentiation implementation is computationally less expensive than a dynamic programming
approach whose naive implementation requires the inversion of multiple matrices. The detailed implementation by
automatic-differentiation oracle is provided in Algo. 4.

Proposition C.3. Consider the model minimization subproblem (35) for strictly convex last state cost (37) and nota-
tions defined in Prop. C.1. If ∇2hτ (x

(k)
τ )−1 � θσ2∇w̄x̃τ (ū(k), 0)>∇w̄x̃τ (ū(k), 0), then

(i) the dual of subproblem (36) reads

min
z∈Rd

q̃∗hτ (z) + q̃∗g(−∇ūx̃τ (ū(k), 0)z)− θσ2

2
‖∇w̄x̃τ (ū(k), 0)z‖22, (38)

where q̃hτ (y) = 1
2y
>
τ Hτyτ + h̃>τ yτ , q̃g(v̄) = 1

2 v̄
>(Ḡ + γ−1

k Iτp)v̄ + g̃>v̄, Ḡ = diag(G0, . . . , Gτ−1), g̃ =
(g̃0, . . . , g̃τ−1) and for a function f , we denote by f∗ its convex conjugate,

(ii) the model minimization step is then given as ū(k+1) = ū(k) +∇q̃∗g(−∇ūx̃(ū(k), 0)z∗), where z∗ is solution of
(38),

(iii) the model minimization step makes 10d + 1 calls to an automatic differentiation oracle defined in Def. C.2 by
using a conjugate gradient method to solve (38).

Proof. To ease notations denote ū(k) = ū. Denoting Ã = ∇ūx̃τ (ū, 0)>, B̃ = ∇w̄x̃τ (ū, 0)>, q̃hτ (y) = 1
2y
>
τ Hτyτ +

h̃>τ yτ , q̃g(v̄) = 1
2 v̄
>(Ḡ+ γ−1

k Iτp)v̄ + g̃>v̄, Ḡ = diag(G0, . . . , Gτ−1), g̃ = (g̃0, . . . , g̃τ−1), the model minimization
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subproblem (36) for last state cost (37) reads

min
v̄∈Rτp

sup
w̄∈Rτq

q̃g(v̄) + q̃hτ (Ãv̄ + B̃w̄)− 1

2θσ2
‖w̄‖22

= min
v̄∈Rτp

q̃g(v̄) + sup
w̄∈Rτq

sup
z∈Rd

z>(Ãv̄ + B̃w̄)− q̃∗hτ (z)− 1

2θσ2
‖w̄‖22

= min
v̄∈Rτp

sup
z∈Rd

q̃g(v̄) + z>Ãv̄ − q̃∗hτ (z) +
θσ2

2
‖B̃>z‖22. (39)

Recall that for a function f(x) = x>q + x>Qx/2 with Q � 0, we have f∗(z) = supx{z>x − f(x)} = (z −
q)>Q−1(z − q)/2. If H−1

τ 6� θσ2B̃B̃> the supremum in z is infinite. If H−1
τ � θσ2B̃B̃>, the supremum in z is

finite. The problem is then a strongly convex-concave problem such that min and max can be inverted leading to the
dual problem

max
z∈Rd

−q̃∗hτ (z)− q̃∗g(−Ã>z) +
θσ2

2
‖B̃>z‖22.

The primal solution is obtained from a dual solution z∗ by the mapping v̄∗ = ∇q̃∗g(−Ã>z∗) obtained from (39).
The dual problem (38) is a quadratic problem, which can then be solved in d iterations by a conjugate gradi-

ents method. The gradients of z → q̃∗g(−∇ūx̃(ū(k), 0)z) and z → θσ2

2 ‖∇w̄x̃τ (ū(k), 0)z‖22 can be computed by an
automatic differentiation procedure defined in Def. C.2. Each gradient computation requires the equivalent of two
calls to an automatic differentiation oracle as detailed by Roulet et al. [2019, Lemma 3.4]. The mapping to the pri-
mal solution costs an additional call. Finally, checking if the problem is feasible requires to compute the Hessian of
z → q̃∗hτ (z)− θσ2

2 ‖B̃
>z‖22 which costs 4d additional calls (each call computes the second order derivative with respect

to a given coordinate in Rd and computing the second order derivative amounts to back-propagate through the compu-
tation of the gradient of z → θσ2

2 ‖B̃
>z‖22 which itself cost 2 calls to an automatic differentiation procedure).

We detail the complete implementation by automatic differentiation in Algo. 4. We assume that we have access to
a conjugate gradients method conjgrad for quadratic problems of the form

min
z∈Rd

{
f(z) :=

1

2
z>Az + b>z

}
,

with A � 0, that given an oracle on the gradient of f outputs the solution of the quadratic problem. Formally, it reads
conjgrad(∇f) = arg minz∈Rd f(z). This can be implemented following Nesterov [2013, Section 1.3.2.]. Finally
note that the leading dimension of the problem is the length τ of the dynamics. By expressing the complexity in terms
of automatic differentiation oracle, we capture the main complexity of the algorithm. We ignore in particular the cost
of inverting the Hessian of the final state objective and the cost of checking if the subproblems are positive definite.

19



Algorithm 1 Dynamic programming for Linear Exponential Quadratic Gaussian (LEQG) (6)

1: Inputs: Initial state x̂0, risk-sensitivity parameter θ, variance σ2, convex quadratic costs Ht � 0, h̃t, strictly
convex quadratic costs Gt � 0, g̃t, linear dynamics At, Bt, Ct

2: Backward pass
3: Initialize Pτ = Hτ , pτ = h̃τ , feasible = True
4: for t = τ − 1, . . . , 0 do
5: if (θσ2)−1 > λmax(C>t Pt+1Ct) then
6: Compute

P̃t+1 = Pt+1 + Pt+1Ct((θσ
2)−1 Iq −C>t Pt+1Ct)

−1C>t Pt+1 (40)

p̃t+1 = pt+1 + Pt+1Ct((θσ
2)−1 Iq −C>t Pt+1Ct)

−1C>t pt+1 (41)

Pt = Ht +A>t P̃t+1At −A>t P̃t+1Bt(Gt +B>t P̃t+1Bt)
−1B>t P̃t+1At (42)

pt = h̃t +A>t
[
p̃t+1 − P̃t+1Bt(Gt +B>t P̃t+1Bt)

−1[B>t p̃t+1 + g̃t]
]

(43)

7: Store

Kt = −(Gt +B>t P̃t+1Bt)
−1B>t P̃t+1At Lxt = ((θσ2)−1 Iq −C>t Pt+1Ct)

−1C>t Pt+1At

kt = −(Gt +B>t P̃t+1Bt)
−1(g̃t +B>t p̃t+1) Lut = ((θσ2)−1 Iq −C>t Pt+1Ct)

−1C>t Pt+1Bt

lt = ((θσ2)−1 Iq −C>t Pt+1Ct)
−1C>t pt+1

8: else
9: State feasible = False

10: break
11: end if
12: end for
13: Roll-out pass
14: if feasible then
15: Initialize x0 = x̂0

16: for t = 0, . . . , τ − 1 do
17: Compute

u∗t = Ktxt + kt w∗t = Lxt xt + Lut u
∗
t + lt (44)

xt+1 = Atxt +Btu
∗
t + Ctw

∗
t (45)

18: end for
19: else
20: u∗t = None for all t
21: end if
22: Output: ū∗ = (u∗0; . . . ;u∗τ−1)
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Algorithm 2 Regularized Iterative Linear Exponential Quadratic Gaussian (RegILEQG) (13)

1: Inputs: Initial state x̂0, risk sensitive parameter θ, variance σ2, fixed step-size γ, initial command ū(0), number
of iterations K, convex costs ht, gt, dynamics ψt

2: for k = 0, . . . ,K do
3: Forward pass
4: Compute along the noiseless trajectory x̄(k) = x̃(ū(k), 0) defined by ū(k),

Ht = ∇2ht(x
(k)
t ) h̃t = ∇ht(x(k)

t ) Gt = ∇2gt(u
(k)
t ) g̃t = ∇gt(u(k)

t )

At = ∇xψt(x(k)
t , u

(k)
t , 0)> Bt = ∇uψt(x(k)

t , u
(k)
t , 0)> Ct = ∇wψt(x(k)

t , u
(k)
t , 0)>

5: Backward pass
6: Apply Algo. 1 to

min
v̄∈Rτp

sup
w̄∈Rτd

τ∑
t=1

(
1

2
y>t Htyt + h̃>t yt

)
+

τ−1∑
t=0

(
1

2
v>t (Gt + γ−1 Ip)vt + g̃>t vt

)
−
τ−1∑
t=0

1

2θσ2
‖wt‖22

subject to yt+1 = Atyt +Btvt + Ctwt

y0 = 0

7: if Algo. 1 cannot output a solution then
8: State feasible = False
9: break

10: else
11: Update ū(k+1) = ū(k) + v̄∗, with v̄∗ found in Step 6
12: end if
13: end for
14: Output: ū(K) if feasible or last iterate ū(k) if not feasible
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Algorithm 3 Iterative Linear Exponential Quadratic Gaussian (ILEQG) (7)

1: Inputs: Initial state x̂0, risk sensitive parameter θ, variance σ2, initial command ū(0), number of iterations K,
convex costs ht, gt, dynamics ψt, line-search precision ε

2: for k = 0, . . . ,K do
3: Forward pass
4: Compute along the noiseless trajectory x̄(k) = x̃(ū(k), 0) defined by ū(k),

Ht = ∇2ht(x
(k)
t ) h̃t = ∇ht(x(k)

t ) Gt = ∇2gt(u
(k)
t ) g̃t = ∇gt(u(k)

t )

At = ∇xψt(x(k)
t , u

(k)
t , 0)> Bt = ∇uψt(x(k)

t , u
(k)
t , 0)> Ct = ∇wψt(x(k)

t , u
(k)
t , 0)>

5: Backward pass
6: Apply Algo. 1 to

min
v̄∈Rτp

sup
w̄∈Rτd

τ∑
t=1

(
1

2
y>t Htyt + h̃>t yt

)
+

τ−1∑
t=0

(
1

2
v>t Gtvt + g̃>t vt

)
−
τ−1∑
t=0

1

2θσ2
‖wt‖22

subject to yt+1 = Atyt +Btvt + Ctwt

y0 = 0

7: if Algo. 1 cannot output a solution then
8: State feasible = False
9: break

10: else
11: Find α > 0 such that ū(k+1) = ū(k) + αv̄∗, with v̄∗ found in Step 6, satisfies

f̃θ(ū
(k+1)) ≤ f̃θ(ūk) + ε

where f̃θ(ū) is the Monte-Carlo approximation of the risk-sensitive cost
12: end if
13: end for
14: Output: ū(K) if feasible or last iterate ū(k) if not feasible
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Algorithm 4 Regularized Iterative Linear Exponential Gaussian (RegILEQG) (13)
using automatic differentiation oracles for final state cost (37)

1: Inputs: Initial state x̂0, risk sensitive parameter θ, variance σ2, step-size γ, initial command ū(0), number of
iterations K, convex costs gt, final strictly convex cost hτ , dynamics ψt

2: for k = 0, . . . ,K do
3: Forward pass
4: Compute x̄(k) = x̃(ū(k), 0) along the trajectory
5: Store ∇ψt(x(k)

t , u
(k)
t , 0)) to compute any ∇ūx̃(ū(k), 0)z or∇w̄x̃(ū(k), 0)z by automatic-differentiation

6: Dual formulation

7: Compute Hτ = ∇2hτ (x̄
(k)
τ ), hτ = ∇h(x̄

(k)
τ ), Gt = ∇2gt(u

(k)
t ), g̃t = ∇gt(u(k)

t )
8: Define q̃∗hτ : z → 1

2 (z − h̃τ )>H−1
τ (z − h̃τ )

9: Define q̃∗g : ζ̄ → 1
2 (ζ̄ − g̃)>(Ḡ+ γ−1

k Iτp)(ζ̄ − g̃) where Ḡ = diag(G0, . . . , Gτ−1), g̃ = (g0; . . . ; gτ−1)

10: Define ∇q̃∗g : ζ̄ → (Ḡ+ γ−1
k Iτp)(ζ̄ − g̃)

11: Define

f : z → q̃∗hτ (z) + q̃∗g(−∇ūx̃τ (ū(k), 0)z)− θσ2

2
‖∇w̄x̃τ (ū(k), 0)z‖22

where∇ūx̃τ (ū(k), 0)z and ∇w̄x̃τ (ū(k), 0)z are computed by automatic differentiation
12: Update pass

13: Define r : z → q∗hτ (z)− θσ2

2 ‖∇w̄x̃τ (ū(k), 0)z‖22
14: Compute ∇2r(z) for e.g. z = 0
15: if ∇2r(z) 6� 0 then
16: State feasible = False
17: break
18: else
19: Compute z∗ = conjgrad(∇f) = arg minz∈Rd f(z) where∇f is provided by automatic differentiation
20: Map to primal solution ū(k+1) = ū(k) +∇q̃∗g(−∇ūx̃(ū(k), 0)z∗)
21: end if
22: end for
23: Output: ū(K) or last iterate ū(k) if not feasible
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D Convergence analysis proofs

D.1 Gradient of the risk-sensitive objective
We recall the derivation of the gradient a risk-sensitive objective below. The proof follows from standard derivations.

Proposition D.1. Given a differentiable function f : Rτp+τq → R, define

F : ū→ 1

θ
log Ew̄∼N (0,σ2 Iτq) exp(θf(ū, w̄)).

Then for ū ∈ Rτp such that F (ū) < +∞,

∇F (ū) =
Ew̄∼N (0,σ2 Iτq) exp(θf(ū, w̄))∇ūf(ū, w̄)

Ew̄∼N (0,σ2 Iτq) exp(θf(ū, w̄))
= Ew̄∼p(·;ū)∇ūf(ū, w̄),

where

p(w̄; ū) = exp

(
θf(ū, w̄)− 1

2σ2
‖w̄‖22 − θF (ū)

)
.

D.2 Surrogate risk-sensitive objective
We study the surrogate risk-sensitive objective, its truncated gradient and the link with ILEQG in the following propo-
sitions. We present them for the quadratic case where we use extensively that the second order Taylor expansion of
a quadratic is equal to itself. Formally, for a quadratic q, we have for any x, y that q(x + y) = q(x) + ∇q(x)>y +
1
2y
>∇2q(x)y and ∇q(x+ y) = ∇q(x) +∇2q(x)y, i.e., that the gradient is an affine function. Recall that we denote

by x̃(ū) the trajectory induced by the control ū as defined in (9).

Proposition 2.2. For ū ∈ Rτp with x̄ = x̃(ū), if

σ−2 Iτp � θ∇x̃(ū)∇2h(x̄)∇x̃(ū)>, (16)

the surrogate η̂θ in (15) is well-defined and is the scaled log-partition function of

p̂(w̄; ū) = exp

(
θh(x̃(ū)+∇x̃(ū)>w̄)− 1

2σ2
‖w̄‖22−θη̂θ(ū)

)
, (17)

which is the density of a Gaussian N (w̄∗,Σ) with

w̄∗ = θΣXh̃, Σ = (σ−2 Iτp−θXHX>)−1, (18)

where X = ∇x̃(ū), h̃ = ∇h(x̄), H = ∇2h(x̄) and x̄ = x̃(ū). Therefore, the surrogate risk-sensitive objective can be
computed analytically.

Proof. For ū ∈ Rτp, since h is quadratic and w̄ → θh(x̃(ū) + ∇x̃(ū)>w̄) − ‖w̄‖22/2σ2 is strongly concave, the
function p(·; ū) is the density of a Gaussian where θη̂(ū) is its log-partition function. It can be factorized as follows
using h(x̄+ ȳ) = h(x̄)+∇h(x̄)>ȳ+ 1

2 ȳ
>∇2h(x̄)ȳ and denoting X = ∇x̃(ū), h̃ = ∇h(x̄), H = ∇2h(x̄), x̄ = x̃(ū),

θh(x̄+∇x̃(ū)>w̄)− 1

2σ2
‖w̄‖22 = θh(x̄) + θ(Xh̃)>w̄ +

θ

2
w̄>XHX>w̄ − 1

2σ2
‖w̄‖22

= θh(x̄)− 1

2
(w̄ − w̄∗)>Σ−1(w̄ − w̄∗) +

1

2
w̄>∗ Σ−1w̄∗ (46)

where Σ−1 = (σ−2 Iτp−θXHX>) � 0 and

w̄∗ = arg max
w̄∈Rτp

{
θ(Xh̃)>w̄ − 1

2
w̄>(σ−2 Iτp−θXHX>)w̄

}
= θ(σ−2 Iτp−θXHX>)−1Xh̃.

The claim follows from the factorization in (46). The surrogate risk-sensitive cost can then be computed analytically
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and reads

η̂(ū) =
1

θ
log

∫
(2πσ2)−τp/2 exp

[
θh(x̃(ū) +∇x̃(ū)>w̄)− 1

2σ2
‖w̄‖22

]
dw̄

=
1

θ
log

(√
det(σ−2Σ) exp

[
θh(x̄) +

1

2
w̄>∗ Σ−1w̄∗

])
= − 1

2θ
log det(Iτp−θσ2XHX>) + h(x̄) +

θσ2

2
h̃>X>(Iτp−θσ2XHX>)−1Xh̃.

As a corollary we get an expression for the truncated gradient.

Corollary D.2. Given ū ∈ Rτp such that condition (16) holds, the truncated gradient of the surrogate risk sensitive
cost reads

∇̂η̂θ(ū) = ∇x̃(ū)∇h(x̃(ū) +∇x̃(ū)>w̄∗)

where w̄∗ is given in (18).

Proof. For any affine function of the variable w̄ we have Ew̄∼p̂(·;ū)[Aw̄ + b] = Aw̄∗ + b. Since the truncated gradient
is the mean of an affine function of w̄ we get the result.

We can then link the truncated gradient to the RegILEQG step.

Proposition 2.3. Consider the regularized iterative linear exponential Gaussian iteration (13), if condition (16) holds
on ū(k), the model mfθ in (12) is well-defined and convex and the step reads

ū(k+1) = ū(k)−(G+ γ−1
k Iτp +XHX>+θV )−1(∇g(ū(k)) + ∇̂η̂θ(ū(k))),

where

V = Varw̄∼p̂(·;ū(k))∇x̃(ū(k))∇h(x̃(ū(k)) +∇x̃(ū(k))>w) = XHX>(σ−2 Iτp−θXHX>)−1XHX>

and X=∇x̃(ū(k)), H=∇2h(x̄), G=∇2g(ū(k)), x̄=x̃(ū(k)).

Proof. To ease notations denote ū(k) = ū, ū(k+1) = ū+ and γk = γ such that the RegILEQG step reads ū+ = ū+ v̄∗

where v̄∗ is the solution of the min-max problem in (14)

min
v̄∈Rτp

max
w̄∈Rτp

qh(x̄+∇x̃(ū)>(v̄ + w̄); x̄) + qg(ū+ v̄; ū) +
1

2γ
‖v̄‖22 −

1

2θσ2
‖w̄‖22

where x̄ = x̃(ū), qh(x̄+ ȳ; x̄) = h(x̄+ ȳ) = h(x̄)+∇h(x̄)>ȳ+ 1
2 ȳ
>∇2h(x̄)ȳ, same for qg . Denote g̃ = ∇g(ū), G =

∇2g(ū), h̃ = ∇h(x̄), H = ∇2h(x̄) and X = ∇x̃(ū). The problem is then equivalent to

min
v̄∈Rτp

(g̃ +Xh̃)>v̄ +
1

2
v̄>(G+ γ−1 Iτp +XHX>)v̄ + max

w̄∈Rτp
(Xh̃+XHX>v̄)>w̄ − 1

2
w̄>((θσ2)−1 Iτp−XHX>)w̄

= min
v̄∈Rτp

(g̃ +Xh̃)>v̄ +
1

2
v̄>(G+ γ−1 Iτp +XHX>)v̄ +

1

2
(Xh̃+XHX>v̄)>((θσ2)−1 Iτp−XHX>)−1(Xh̃+XHX>v̄)

(47)

where we used (σ−2 Iτp−θXHX>) � 0 by assumption. The objective in (47) is the model mfθ expressed as a
function of v̄ and is clearly convex. Denote

w̄∗ = ((θσ2)−1 Iτp−XHX>)−1Xh̃

which is equal to w̄∗ defined in Prop. 2.2. The solution of the problem reads then

v̄∗ = −(G+ γ−1 Iτp +R)−1(g̃ +Xh̃+XHX>w̄∗)

where

R = XHX> +XHX>((θσ2)−1 Iτp−XHX>)−1XHX>
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The truncated gradient from Corr. D.2 reads

∇̂η̂θ(ū) = ∇x̃(ū)∇h(x̃(ū) +∇x̃(ū)>w̄∗)

= X(h̃+HX>w̄∗)

which concludes the proof.

Extensions to non-quadratic case. Prop. 2.2, 2.3 and Corr. D.2 also hold for non-quadratic costs by considering

η̃θ(ū) =
1

θ
log Ew̄ exp[θqh(x̃(ū) +∇x̃(ū)>w̄; x̃(ū))].

in place of η̂θ and
∇̃η̃θ(ū) = Ew̄∼p̃(·;ū)

∇x̃(ū)∇qh(x̃(ū) +∇x̃(ū)>w̄; x̃(ū))

in place of ∇̂η̂θ(ū) where

p̃(w̄; ū) = exp

(
θqh(x̃(ū) +∇x̃(ū)>w̄; x̃(ū))− 1

2σ2
‖w̄‖22 − θη̃θ(ū)

)
Precisely, the surrogate risk-sensitive cost η̃θ(ū) is defined if condition (16) holds, the probability distribution p̃ is
given by the same Gaussian and the expression of the surrogate is the same. Prop. 2.3 is valid by replacing ∇̂η̂θ(ū) by
∇̃η̃θ(ū).

D.3 Convergence analysis
Recall the assumptions made for the convergence analysis.

Assumption 2.4.
1. The dynamics φt are twice differentiable, bounded, Lipschitz, smooth such that the trajectory function x̃ is also

twice differentiable, bounded, Lipschitz and smooth. Denote by `x̃ and Lx̃ the Lipschitz continuity and smooth-
ness constants respectively of x̃ and define Mx̃ = maxū∈Rτp dist(x̃(ū), X∗), where X∗ = arg minx̄∈Rτd h(x̄).

2. The costs h and g are convex quadratics with smoothness constants Lh, Lg .
3. The risk-sensitivity parameter is chosen such that σ̃−2 = σ−2 − θLh`2x̃ > 0, which ensures that condition (16)

holds for any ū ∈ Rτp.

On X = x̃(Rτp), h is Lipschitz continuous, denote `h(X ) the Lipschitz parameter. Using that h(x̄) = 1
2 (x̄ −

x̄∗)>H(x− x∗) + minx̄ h(x̄) with H = ∇2h(x̄) and x̄∗ ∈ arg minx̄ h(x̄), we get ‖∇h(x̄)‖2 ≤ Lh‖x̄− x̄∗‖2 and so

`h(X ) ≤ LhMx̃ (48)

We detail the approximation made by the truncated gradient in the following proposition.

Proposition D.3. Under Asm. 2.4, we have for any ū ∈ Rτp,

‖∇η̂θ(ū)− ∇̂η̂θ(ū)‖2 ≤ θσ̃2L2
hLx̃`x̃M

2
x̃ + θ2σ̃4L3

hLx̃`
3
x̃M

2
x̃ + τpσ̃2LhLx̃`x̃.

Proof. We have with p̂(·; ū) defined in (17), and denoting h̃ = ∇h(x̄), H = ∇2h(x̄) and X = ∇x̃(ū) for x̄ = x̃(ū),

∇η̂θ(ū)− ∇̂η̂θ(ū) = Ew̄∼p̂(·;ū)∇2x̃(ū)[·, w̄,∇h(x̃(ū) +∇x̃(ū)>w̄)]

= Ew̄∼p̂(·;ū)

[
∇2x̃(ū)[·, w̄, h̃] +∇2x̃(ū)[·, w̄,HX>w̄]

]
(49)

= ∇2x̃[·, w̄∗, h̃] +

 Tr(X1,·,·HX
> Ew̄∼p̂(·;ū)[w̄w̄

>])
...

Tr(Xτp,·,·HX> Ew̄∼p̂(·;ū)[w̄w̄
>]),

 (50)
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where X = ∇2x̃(ū) and we used the notations defined in Appendix A. We have then

Ew̄∼p̂(·;ū)[w̄w̄
>] = Varw̄∼p̂(·;ū)(w̄) + Ew̄∼p̂(·;ū)(w̄) Ew̄∼p̂(·;ū)(w̄)> = Σ + w̄∗w̄

>
∗

where w̄∗ and Σ are defined in (18). So we get

∇η̂θ(ū)− ∇̂η̂θ(ū) = ∇2x̃[·; w̄∗, h̃] +∇2x̃(ū)[·, w̄∗, HX>w̄∗] +

τp∑
i=1

∇2x̃(ū)[·, ui, HX>ui]

where Σ =
∑τp
i=1 uiu

>
i with ‖ui‖22 ≤ λmax(Σ). Therefore

‖∇η̂θ(ū)− ∇̂η̂θ(ū)‖2 ≤ Lx̃‖w̄∗‖2`h(X ) + Lx̃‖w̄∗‖22Lh`x̃ + τpLx̃‖Σ‖2Lh`x̃
where `h(X ) is the Lipschitz parameter of h on X = x̃(Rτp) that can be bounded by (48) and we used the tensor norm
defined in (22). The bound follows, using the definitions of w̄∗ and Σ, i.e.,

‖w̄∗‖2 ≤ θ(σ−2 − θLh`2x̃)−1`x̃`h(X ),

‖Σ‖2 ≤ (σ−2 − θLh`2x̃)−1.

The convergence under appropriate sufficient decrease condition is presented in the following proposition.

Theorem 2.5. Under Asm. 2.4, suppose that the step-sizes of the regularized iterative linear exponential Gaussian
iteration (13) are chosen such that

f̂θ(ū
(k+1)) ≤ mfθ (ū

(k+1); ū(k)) +
1

2γk
‖ū(k+1) − ū(k)‖22, (19)

with γk ∈ [γmin, γmax]. Then, the surrogate objective f̂θ decreases and after K iterations we have

min
k=0,...,K−1

‖∇f̂θ(ū(k))‖2 ≤ L

√
2(f̂θ(ū(0))− f̂θ(ū(K)))

K
+ δ,

where

L = max
γ∈[γmin,γmax]

√
γ(Lg + γ−1 + (σ̃/σ)2`2x̃Lh)

δ = θσ̃2L2
hLx̃`x̃M

2
x̃ + θ2σ̃4L3

hLx̃`
3
x̃M

2
x̃ + τpσ̃2LhLx̃`x̃.

Proof. Under Ass. 2.4, the model mfθ (v̄; ū(k)) defined in (12) is well-defined and convex as shown for example in
Prop. 2.3. By using that v̄ → mfθ (v̄; ū(k)) + 1

2γk
‖v̄− ū(k)‖22 is γ−1

k strongly convex with minimum achieved on ūk+1

we get

f̂θ(ū
(k)) = mfθ (ū

(k); ū(k)) ≥ mfθ (ū
(k+1); ū(k)) +

1

γk
‖ū(k+1) − ū(k)‖22

(19)
≥ f̂θ(ū

(k+1)) +
1

2γk
‖ū(k+1) − ū(k)‖22. (51)

Rearranging the terms and summing the inequalities we get

1

K

K−1∑
k=0

1

2γk
‖ū(k+1) − ū(k)‖22 ≤

f̂θ(ū
(0))− f̂θ(ū(K))

K
.

Now using Proposition 2.3, we have that

‖∇g(ū(k)) + ∇̂η̂θ(ū(k))‖2 ≤ (Lg + γ−1 + ‖R‖2)‖ū(k+1) − ū(k)‖2,
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where

‖R‖2 = ‖XH1/2(I−H1/2X>(XHX> − (θσ2)−1 I)−1XH
1/2)H

1/2X>‖2
= ‖XH1/2(I−θσ2H

1/2XX>H
1/2)−1H

1/2X>‖2

≤ `2x̃Lh
1− θσ2`2x̃Lh

,

using that for a semi-definite positive matrix A s.t 0 � A ≺ I, ‖I − A‖2 ≥ 1 − λmax(A) and ‖H1/2‖22 = ‖H‖2.
Therefore we get

min
k=0,...,K−1

‖∇g(ū(k)) + ∇̂η̂θ(ū(k))‖22 ≤
2L2(f̂θ(ū

(0))− f̂θ(ū(K)))

K

where L = maxγ∈[γmin,γmax]
√
γ(Lg + γ−1 + (σ̃/σ)2`2x̃Lh). Finally, using Prop. D.3, we get

min
k=0,...,K−1

‖∇f̂θ(ū(k))‖2 ≤ L

√
2(f̂θ(ū(0))− f̂θ(ū(K)))

K
+ θσ̃2L2

hLx̃`x̃M
2
x̃ + θ2σ̃4L3

hLx̃`
3
x̃M

2
x̃ + τpσ̃2LhLx̃`x̃.

The following proposition ensures that on any compact set there exists a step-size such that this criterion is satisfied.

Proposition D.4. Under Asm. 2.4, for any compact set C there exists MC > 0 such that for any ū ∈ C, v̄ ∈ C, the
model mfθ approximates the surrogate risk-sensitive cost as

|f̂θ(ū+ v̄)−mfθ (ū+ v̄; ū)| ≤ MC‖v̄‖2

2
.

Proof. Denote RC = maxū∈C ‖ū‖2. Denote X = ∇x̃(ū), H = ∇2h(x̄). Following proof of Prop. 2.2, we have

mfθ (ū+ v̄; ū) =h(x̃(ū) +∇x̃(ū)>v̄)− 1

2θ
log det(I−θσ2XHX>)

+
θσ2

2
∇h(x̃(ū) +∇x̃(ū)>v̄)>X>(Iτp−θσ2XHX>)−1X∇h(x̃(ū) +∇x̃(ū)>v̄)

+ g(ū+ v̄)

In the following denote h̊ = ∇h(x̃(ū) +∇x̃(ū)>v̄). On the other side, denote ȳ = x̃(ū + v̄), Y = ∇x̃(ū + v̄) and
ĥ = ∇h(x̃(ū+ v̄)) = ∇h(ȳ), such that

f̂θ(ū+ v̄) = h(ȳ)− 1

2θ
log det(I−θσ2Y HY >) +

θσ2

2
ĥ>Y >(I−θσ2Y HY >)−1Y ĥ+ g(ū+ v̄)

First we have using x̄∗ ∈ arg minx̄∈Rτd h(x̄),

|h(x̃(ū+ v̄))− h(x̃(ū) +∇x̃(ū)>v̄)| = |1
2

(x̃(ū+ v̄) + x̃(ū) +∇x̃(ū)>v̄ − 2x̄∗)>H(x̃(ū+ v̄)− x̃(ū)−∇x̃(ū)>v̄)|

≤ 1

4
(2Mx̃ + `x̃RC)LhLx̃‖v̄‖22.

Then denote

f(X) = − 1

2θ
log det(I−θσ2XHX>)

such that

‖∇f(X)‖2 = σ2‖(I−θσ2XHX>)−1XH‖2 ≤
σ2Lh`x̃

1− θσ2Lh`2x̃
.
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Therefore

|f(X)− f(Y )| ≤ `f‖∇x̃(ū+ v̄)−∇x̃(ū)‖2

≤ Lh`x̃Lx̃
1− θσ2Lh`2x̃

‖v̄‖2

where `f is the Lipschitz continuity of f for X s.t. ‖X‖2 ≤ `x̃.
Now for the last term, we have

Tr(F (Y )ĥĥ>)−Tr(F (X )̊h̊h>) = Tr((F (Y )− F (X))ĥĥ>) + Tr(F (X)(ĥĥ> − h̊̊h>))

where F (X) = X>(I−θσ2XHX>)−1X . Define for M ∈ Rτd×τd with M � 0,

fM (X) =
1

2
Tr(MX>(I−θσ2XHX>)−1X).

We have

‖∇fM (X)‖2 =‖(I−θσ2XHX>)−1XM + θσ2(I−θσ2XHX>)−1XMX>(I−θσ2XHX>)−1XH‖2

≤ ‖M‖2`x̃
1− θσ2Lh`2x̃

+
θσ2‖M‖2`3x̃Lh
(1− θσ2Lh`2x̃)2

.

Therefore

|Tr((F (Y )− F (X))ĥĥ>)| ≤ `f
ĥĥ>
‖Y −X‖2

≤ `2h,x̃
(

`x̃
1− θσ2Lh`2x̃

+
θσ2`3x̃Lh

(1− θσ2Lh`2x̃)2

)
Lx̃‖v̄‖2,

where `f
ĥĥ>

is the Lipschitz continuity of fĥĥ> for X s.t. ‖X‖2 ≤ `x̃. Finally,

|Tr(F (X)(ĥĥ> − h̊̊h>))| = |Tr(ĥ+ h̊)>F (X)(ĥ− h̊)|

≤ (2`h,x̃ + Lh`x̃RC)
`2x̃

1− θσ2Lh`2x̃
LhLx̃

‖v̄‖22
2

.

Combining all terms we get

|f̂θ(ū+ v̄)−mfθ (ū+ v̄)| ≤1

2
(2Mx̃ + `x̃RC)LhLx̃

‖v̄‖22
2

+
2Lh`x̃Lx̃

(1− θσ2Lh`2x̃)RC

‖v̄‖22
2

+ θσ2`2h,x̃

(
`x̃

1− θσ2Lh`2x̃
+

θσ2`3x̃Lh
(1− θσ2Lh`2x̃)2

)
Lx̃
‖v̄‖22

2

+
θσ2

2
(2`h,x̃ + Lh`x̃RC)

`2x̃
1− θσ2Lh`2x̃

LhLx̃
‖v̄‖22

2

This concludes the proof with

MC =
1

2
(2Mx̃ + `x̃RC)LhLx̃ +

2σ2Lh`x̃Lx̃
(1− θσ2Lh`2x̃)RC

+ θσ2`2h,x̃

(
`x̃

1− θσ2Lh`2x̃
+

θσ2`3x̃Lh
(1− θσ2Lh`2x̃)2

)
Lx̃ +

θσ2

2
(2`h,x̃ + Lh`x̃RC)

`2x̃
1− θσ2Lh`2x̃

LhLx̃.

Finally the iterates can be forced to stay in a compact set such that the overall convergence is ensured as shown in
the following proposition.
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Proposition D.5. Let S0 = {ū : f̂θ(ū) ≤ f̂θ(ū
(0))} be the initial sub-level set of f̂θ and assume S0 is compact.

Consider the iterations of RegILEQG in (13) under Asm. 2.4. Assume that

γk = γ̂ = min{`−1
0 ,M−1

C },
where MC is defined in Prop. D.4, and denoting B2,1 the Euclidean ball of radius 1 centered at 0,

`0 = max
ū∈S0

‖∇g(ū) + ∇̂η̂θ(ū)‖2, C = S0 + B2,1.

Then the sufficient decrease condition (19) is satisfied for all k.

Proof. Given ū(k) ∈ S0, we have from Proposition 2.3, using γk ≤ `−1
0

‖ū(k+1) − ū(k)‖2 ≤ γk‖∇g(ū(k)) + ∇̂η̂θ(ū(k))‖2 ≤ 1.

Therefore ū(k+1) ∈ S0 + B2,1 = C and ū(k) ∈ C. They satisfy then, using γk ≤M−1
C ,

f̂θ(ū
(k+1)) ≤ mfθ (ū

(k+1); ū(k)) +
MC

2
‖ū(k+1) − ū(k)‖22 ≤ mfθ (ū

(k+1); ū(k)) +
1

2γk
‖ū(k+1) − ū(k)‖22

Therefore ū(k+1) ∈ S. The claim follows by recursion starting from ū(k) = ū(0) ∈ S0.

E Detailed experimental setting

E.1 Discretization of the continuous time settings
The physical systems we consider below are described by continuous time dynamics of the form

z̈(t) = f(z(t), ż(t), u(t))

where z(t), ż(t), z̈(t) denote respectively the position, the speed and the acceleration of the system and u(t) is a force
applied on the system. The state x(t) = (x1(t), x2(t)) of the system is defined by the position x1(t) = z(t) and the
speed x2(t) = ż(t) and the continuous cost is defined as

J(x, u) =

∫ T

0

h(x(t))dt+

∫ T

0

g(u(t))dt or J(x, u) = h(x(T )) +

∫ T

0

g(u(t))dt,

where T is the time of the movement and h, g are given convex costs. The discretization of the dynamics with a time
step δ starting from a given state x̂0 = (z0, 0) reads then

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut)
for t = 0, . . . τ − 1

where τ = dT/δe and the discretized cost reads

J(x̄, ū) =

τ∑
t=1

h(xt) +

τ−1∑
t=0

g(ut) or J(x̄, ū) = h(xτ ) +

T−1∑
t=0

g(ut).

E.2 Continuous control settings
The control settings are illustrated in Fig. 6.

Pendulum. We consider a simple pendulum illustrated in Fig. 6, where m = 1 denotes the mass of the bob, l = 1
denotes the length of the rod, θ describes the angle subtended by the vertical axis and the rod, and µ = 0.01 is the
friction coefficient. Its dynamical evolution reads

θ̈(t) = −g
l

sin θ(t)− µ

ml2
θ̇(t) +

1

ml2
u(t)
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(a) Pendulum.

1

2

z *

z( )

(b) Two-link arm.

Figure 6: Control settings considered.

The goal is to make the pendulum swing up (i.e. make an angle of π radians) and stop at a given time T . Formally, the
continuous cost reads

J(x, u) = (π − θ(T ))2 + λ1θ̇(T )2 + λ2

∫ T

0

u2(t)dt, (52)

where x(t) = (θ(t), θ̇(t)), λ1 > 0 and λ2 > 0.

Two-link arm. We consider the arm model with 2 joints (shoulder and elbow), moving in the horizontal plane
presented by [Li and Todorov, 2004] and illustrated in Figure 6. The dynamics read

M(θ(t))θ̈(t) + C(θ(t), θ̇(t)) +Bθ̇(t) = u(t), (53)

where θ = (θ1, θ2) is the joint angle vector,M(θ) ∈ R2×2 is a positive definite symmetric inertia matrix, C(θ, θ̇) ∈ R2

is a vector centripetal and Coriolis forces, B ∈ R2×2 is the joint friction matrix, and u ∈ R2 is the joint torque
controlling the arm. See below for the complete definitions.

The goal is to make the arm reach a feasible target z∗ and stop at that point. Denoting θ∗(z∗) a joint angle pairs
that reach the target, the objective reads then

J(x, u) = ‖θ(T )− θ∗(z∗)‖22 + λ1‖θ̇(T )‖22 + λ2

∫ T

0

‖u(t)‖22dt, (54)

where x(t) = (θ(t), θ̇(t)), λ1 > 0, λ2 > 0.

Detailed two-link arm model. We detail the the forward dynamics drawn from (53). We drop the dependence on t
for readability. The dynamics read

θ̈ = M(θ)−1(u− C(θ, θ̇)−Bθ̇).

The expressions of the different variables and parameters are given by

M(θ) =

(
a1 + 2a2 cos θ2 a3 + a2 cos θ2

a3 + a2 cos θ2 a3

)
C(θ, θ̇) =

(
−θ̇2(2θ̇1 + θ̇2)

θ̇2
1

)
a2 sin θ2

B =

(
b11 b12

b21 b22

) a1 = k1 + k2 +m2l
2
1

a2 = m2l1d2

a3 = k2,

where b11 = b22 = 0.05, b12 = b21 = 0.025, li and ki are respectively the length (30cm, 33cm) and the moment of
inertia (0.025kgm2 , 0.045kgm2) of link i , m2 and d2 are respectively the mass (1kg) and the distance (16cm) from
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Figure 7: Convergence of iterative linearized methods,
RegILEQG and ILEQG, on the two-link arm problem.

the joint center to the center of the mass for the second link. The inverse of the inertia matrix reads3

M(θ)−1 =
1

(a1 + 2a2 cos(θ2))a3 − (a3 + a2 cos θ2)2

(
a3 −(a3 + a2 cos θ2)

−(a3 + a2 cos θ2) a1 + 2a2 cos θ2

)
.

E.3 Noise modeling details
Otherwise the modeled noise led experimentally to a chaotic behavior. Precisely we use for the risk-sensitive cost,

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut + wt)
for t = 0, . . . , τ − 1,

with wt ∼ N (0, σ2
0 I) and for the test cost,

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut + ρ1(t = tw))
for t = 0, . . . , τ − 1,

where ρ ∼ N (0, σtest/σ0 Ip) and the plots are shown for increasing σtest. For the pendulum problem we used σ0 = 1.
For the two-link arm we use σ0 = 1/‖M(θ)−1‖ to normalize the noise in the risk-sensitive and the test costs. We
leave the analysis of the choice of σ for future work.

E.4 Optimization details
Convergence results. For Fig. 3, we took λ1 = 0.1, λ2 = 0.01, T = 5, in (52) for an horizon τ = 100 and θ = 4.
We present in Fig. 7 the convergence obtained for the two-link arm problem, where we used the same parameters for
λ1, λ2, T, τ, θ. The best step-sizes found after the burn-in phase were 8 for RegILEQG and 0.5 for ILEQG. Again the
advantage of the regularized approach is that it can select bigger step-sizes while staying stable.

Robustness results. For both settings we used RegILEQG with a burn-in phase of 10 iterations and a grid of step-
sizes 2i for i ∈ {−5, 5}. We run the algorithm for 50 iterations and take the best solution according to the surrogate
risk-sensitive function.

For the pendulum problem we used λ1 = 10, λ2 = 10−3, T = 5, for an horizon τ = 100. For the two-link arm
problem we used λ1 = 10−2 and λ2 = 10−3, T = 5, and the same horizon.

3Note that the dynamics have continuous derivatives if the norm of the denominator is bounded below by a positive constant 0. We have

(a1 + 2a2 cos(θ2))a3 − (a3 + a2 cos θ2)
2 = α− β cos2 θ2

with
α = a3(a1 − a3) = k1k2 +m2l

2
1k2 β = a22 = m2

2l
2
1d

2
2,

which gives α = 9.1125 × 10−2 and β = 2.304 × 10−3. Therefore it is bounded below by a positive constant, the function is continuously
differentiable.
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