
C EN T R E
MER S ENN E

Open Journal of Mathematical Optimization is a member of the
Centre Mersenne for Open Scientific Publishing

http://www.centre-mersenne.org/
e-ISSN: 2777-5860

Open Journal of
Mathematical
Optimization

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui
Iterative Linear Quadratic Optimization for Nonlinear Control: Differentiable Programming Algorithmic
Templates
Volume 5 (2024), article no. 8 (63 pages)
https://doi.org/10.5802/ojmo.32

Article submitted on January 18, 2023, revised on December 6, 2023,
accepted on July 3, 2024.

© The author(s), 2024.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

http://www.centre-mersenne.org/
https://doi.org/10.5802/ojmo.32
http://creativecommons.org/licenses/by/4.0/

Iterative Linear Quadratic Optimization for Nonlinear Control:
Differentiable Programming Algorithmic Templates

Vincent Roulet
Google Brain, Seattle, USA (Work completed at the University of Washington before joining Google)
vroulet@google.com

Siddhartha Srinivasa
Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
siddh@cs.washington.edu

Maryam Fazel
Department of Electrical and Computer Engineering, University of Washington, Seattle, USA
mfazel@uw.edu

Zaid Harchaoui
Department of Statistics University of Washington, Seattle, USA
zaid@uw.edu

Abstract
Iterative optimization algorithms depend on access to information about the objective function. In a differentiable
programming framework, this information, such as gradients, can be automatically derived from the computational graph.
We explore how nonlinear control algorithms, often employing linear and/or quadratic approximations, can be effectively
cast within this framework. Our approach illuminates shared components and differences between gradient descent,
Gauss–Newton, Newton, and differential dynamic programming methods in the context of discrete time nonlinear control.
Furthermore, we present line-search strategies and regularized variants of these algorithms, along with a comprehensive
analysis of their computational complexities. We study the performance of the aforementioned algorithms on various
nonlinear control benchmarks, including autonomous car racing simulations using a simplified car model. All
implementations are publicly available in a package coded in a differentiable programming language.

Digital Object Identifier 10.5802/ojmo.32

Keywords Nonlinear Discrete Time Control, Differentiable Programming, Newton, Gauss–Newton, Dynamic
Differentiable Programming.

Acknowledgments This work was supported by NSF DMS-1839371, DMS-2134012, CCF-2019844, CIFAR-LMB, NSF
TRIPODS II DMS-2023166 and faculty research awards.

1 Introduction

We consider nonlinear control problems in discrete time with finite horizon, i.e., problems of the form

min
x0,...,xτ ∈Rnx

u0...,uτ−1∈Rnu

τ−1∑
t=0

ht(xt, ut) + hτ (xτ)

subject to xt+1 = ft(xt, ut), for t ∈ {0, . . . , τ − 1}, x0 = x̄0,

(1)

where at time t, xt ∈ Rnx is the state of the system, ut ∈ Rnu is the control applied to the system, ft :
Rnx × Rnu → Rnx is the discrete dynamic, ht : Rnx → R is the cost on the state and control variables and
x̄0 ∈ Rnx is a given fixed initial state. Problem (1) is entirely determined by the initial state and the controls.

Problems of the form (1) have been tackled in various ways, from direct approaches using nonlinear
optimization ([7, 16, 42, 45, 61, 62, 64]) to convex relaxations using semi-definite optimization ([10]). Numerous
packages exist for such problems such as CasAdi ([2]), Pyomo ([13]), JumP ([17]), IPOPT ([59]), or SNOPT ([22]),
Crocoddyl ([27]), acados ([56]). A popular approach of the former category proceeds by computing at each
iteration the linear quadratic regulator associated with a linear quadratic approximation of the problem around
the current candidate solutions ([26, 30, 50, 53]). The computed feedback policies are then applied either along

© Vincent Roulet & Siddhartha Srinivasa & Maryam Fazel & Zaid Harchaoui;
licensed under Creative Commons License Attribution 4.0 International

Volume 5 (2024), article no. 8

mailto:vroulet@google.com
mailto:siddh@cs.washington.edu
mailto:mfazel@uw.edu
mailto:zaid@uw.edu
https://doi.org/10.5802/ojmo.32
https://creativecommons.org/licenses/by/4.0/
https://ojmo.centre-mersenne.org

2 Iterative Linear Quadratic Optimization

the linearized dynamics or along the original dynamics to output a new candidate solution. Such canonical
nonlinear control algorithms efficiently incorporate second-order information into the optimization procedure by
exploiting the dynamical structure of the problem. This approach lends itself to an integration in a differentiable
programming framework to extend this paradigm beyond first-order oracles.

Differentiable programming consists of the implementation of functions in a programming language that
enables access to derivatives of these functions by automatic differentiation ([1, 4, 5, 9, 21, 24, 29, 43, 48, 49,
60]). Automatic differentiation itself has roots in the control literature, and its use is pervasive in numerous
domains ([24]), in particular deep learning ([23, 65]). Canonical nonlinear control algorithms incorporating second
order information can also be integrated in reinforcement learning pipelines ([28, 46]), and may then benefit
from a differentiable programming viewpoint to isolate their underlying principles. These algorithms have indeed
generally be presented through linear algebraic manipulations instantiated separately for each algorithm, which
hinder a global perspective ([30, 38, 42, 50, 53]).

The motivation of this work is to cast all such algorithms in a common differentiable programming viewpoint to
delineate the discrepancies between the different algorithms and identify the common subroutines. We review the
implementation of (i) a Gauss–Newton method ([50]), a.k.a. Iterative Linear Quadratic Regulator (ILQR), (ii) a
Newton method ([16, 31, 42]), (iii) a differential dynamic programming approach based on linear approximations of
the dynamics and quadratic approximations of the costs, a.k.a. iterative Linear Quadratic Regulator (iLQR) ([53]),
(iv) a differential dynamic programming approach based on quadratic approximations of both dynamics and
costs, usually simply called DDP ([26]), and consider regularized variants of the aforementioned algorithms with
their corresponding line searches. In turn, the differentiable programming viewpoint informs efficient handling of
memory by appropriate check-pointing. An extended related work discussion is in Appendix B.

Outline

In Section 2 we recall how linear quadratic control problems are solved by dynamic programming and used as a
building block for nonlinear control algorithms. The implementation of classical optimization oracles such as a
gradient step, a Gauss–Newton step, or a Newton step is presented in Section 3. Section 4 details the rationale
and implementation of differential dynamic programming approaches. Section 5 presents the computational
complexities of each oracle in terms of space and time complexities in a differentiable programming framework. All
algorithms are tested on several synthetic problems in Section 6: swinging-up a fixed pendulum, and autonomous
car racing with simple dynamics. Code is available at https://github.com/vroulet/ilqc.

Appendices A, B, C, D detail notations, related work, proofs and line-search procedures respectively. A
summary of all algorithms with detailed pseudocode and computational schemes is given in Appendix E.
Alternative implementations using check-pointing and different linear algebra solvers are presented in Appendix F
and G respectively. Experimental setups and additional experiments are detailed in Appendix H and I.

Notation

For a sequence of vectors x1, . . . , xτ ∈ Rnx , we denote by semicolons their concatenation s.t. x = (x1; . . . ; xτ) ∈
Rτnx . For a function f : Rd → Rn, we denote by ∇f(x) := (∂xi

fj(x))1≤i≤d,1≤j≤n ∈ Rd×n the transpose of
the Jacobian of f on x. For a function f : Rd × Rp → Rn, we denote for x ∈ Rd, y ∈ Rp, ∇xf(x, y) =
(∂xi

fj(x, y))1≤i≤d,1≤j≤n ∈ Rd×n the partial transpose Jacobian of f w.r.t. x on (x, y).
For a multivariate function f : Rd → Rn composed of coordinates fj : Rd → R for j ∈ {1, . . . , n}, we

denote its Hessian x ∈ Rd as a tensor ∇2f(x) := (∇2f1(x), . . . ,∇2fn(x)) ∈ Rd×d×n. For a multivariate function
f : Rd × Rp → Rn composed of coordinates fj : Rd × Rp → R for j ∈ {1, . . . , n}, we decompose its Hessian
on x ∈ Rd, y ∈ Rp by defining, e.g., ∇2

xxf(x, y) = (∇2
xxf1(x, y), . . . ,∇2

xxfn(x, y)) ∈ Rd×d×n. The quantities
∇2

yyf(x, y) ∈ Rp×p×n,∇2
xyf(x, y) ∈ Rd×p×n,∇2

yxf(x, y) ∈ Rp×d×n are defined similarly.
For a function f : Rd → Rn, and x ∈ Rd, we define the finite difference expansion of f around x, the linear

expansion of f around x and the quadratic expansion of f around x as, respectively,

δx
f (y) := f(x + y)− f(x), ℓx

f (y) := ∇f(x)⊤y, qx
f (y) := ∇f(x)⊤y + 1

2∇
2f(x)[y, y, ·]. (2)

The linear and quadratic approximations of f around x are then f(x+y) ≈ f(x)+ℓx
f (y) and f(x+y) ≈ f(x)+qx

f (y)
respectively. Tensor notations, such as ∇2f(x)[y, y, ·], inspired from ([39]), are detailed in Appendix A.

https://github.com/vroulet/ilqc

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 3

2 From Linear Quadratic Control Problem to Nonlinear Control Algorithm

Algorithms for nonlinear control problems revolve around solving linear quadratic control problems by dynamic
programming. Therefore, we start by recalling the rationale of dynamic programming and how discrete time
control problems with linear dynamics and quadratic costs can be solved by dynamic programming.

2.1 Dynamic Programming
The idea of dynamic programming is to decompose dynamical problems such as (1) into a sequence of nested
subproblems defined by the cost-to-go ct, from xt at time t ∈ {0, . . . , τ − 1}:

ct(xt) := min
ut,...,uτ−1∈Rnu

yt,...,yτ ∈Rnx

τ−1∑
s=t

hs(ys, us) + hτ (yτ)

subject to ys+1 = fs(ys, us) for s ∈ {t, . . . , τ − 1}, yt = xt.

The cost-to-go from xτ at time τ is simply the last cost, namely, cτ (xτ) = hτ (xτ), and the original problem (1)
amounts to compute c0(x̄0). The cost-to-go functions define nested subproblems that are linked for t ∈ {0, . . . ,

τ − 1} by Bellman’s equation ([6])

ct(xt) = min
ut∈Rnu

ht(xt, ut) + min
ut+1,...,uτ−1∈Rnu

yt+1,...,yτ ∈Rnx

τ−1∑
s=t+1

hs(ys, us) + hτ (yτ)

subject to ys+1 = fs(ys, us) for s ∈ {t + 1, . . . , τ − 1}, yt+1 = ft(xt, ut)
= min

ut∈Rnu
ht(xt, ut) + ct+1(ft(xt, ut)). (3)

The optimal control at time t from state xt is given by ut = πt(xt), where πt, called a policy, is given by

πt(xt) := arg min
ut∈Rnu

{ht(xt, ut) + ct+1(ft(xt, ut))} .

Define the procedure that back-propagates (BP) the cost-to-go functions as

BP : ft, ht, ct+1 →

 ct : x→ min
u∈Rnu

{ht(x, u) + ct+1(ft(x, u))} ,

πt : x→ arg min
u∈Rnu

{ht(x, u) + ct+1(ft(x, u))}

 .

A dynamic programming approach, formally described in Algorithm 1, solves problems of the form (1) as follows.
1. Compute recursively the cost-to-go functions ct for t = τ, . . . , 0 using Bellman’s equation (3), i.e., compute

from cτ = hτ ,

ct, πt = BP(ft, ht, ct+1) for t ∈ {τ − 1, . . . , 0},

and record at each step the policies πt.
2. Unroll the optimal trajectory that starts from time 0 at x̄0, follows the dynamics ft, and uses at each step

the optimal control given by the computed policies, that is, starting from x∗
0 = x̄0, compute

u∗
t = πt(x∗

t), x∗
t+1 = ft(x∗

t , u∗
t) for t = 0, . . . , τ − 1. (4)

The resulting command u∗ = (u∗
0; . . . ; u∗

τ−1) and trajectory x∗ = (x∗
1; . . . ; x∗

τ) are then optimal for problem (1).
In the following, the dynamic programming (DynProg) procedure, detailed1 in Algorithm 1 in Appendix E, is
denoted

DynProg : (ft)τ−1
t=0 , (ht)τ

t=0, x̄0, BP→ u∗
0, . . . , u∗

τ−1. (5)

The bottleneck of the approach is the ability to solve Bellman’s equation (3), i.e., having access to the
procedure BP defined above.

1 For ease of reference and comparisons, all procedures, algorithms, and computational schemes are grouped in Appendix E.

4 Iterative Linear Quadratic Optimization

2.2 Linear Dynamic, Quadratic Cost
For linear dynamics and quadratic costs, problem (1) takes the form

min
x0,...,xτ ∈Rnx

u0...,uτ−1∈Rnu

τ−1∑
t=0

(
1
2x⊤

t Ptxt + 1
2u⊤

t Qtut + x⊤
t Rtut + p⊤

t xt + q⊤
t ut

)
+ 1

2x⊤
τ Pτ xτ + p⊤

τ xτ

subject to xt+1 = Atxt + Btut, for t ∈ {0, . . . , τ − 1}, x0 = x̄0.

Namely, we have ht(xt, ut) = 1
2 x⊤

t Ptxt + 1
2 u⊤

t Qtut + x⊤
t Rtut + p⊤

t xt + q⊤
t ut and ft(xt, ut) = Atxt + Btut.

In that case, under appropriate conditions on the quadratic functions, Bellman’s equation (3) can be solved
analytically through a linear quadratic back-propagation (LQBP) as recalled in Lemma 1. Note that the
operation LQBP defined in (6) amounts to computing the Schur complement of a block of the Hessian of the
quadratic x, u → qt(x, u) + ct+1(ℓt(x, u)), namely, the block corresponding to the Hessian w.r.t. the control
variables (see, e.g., [11, Appendix A.5.5]). The proofs of Lemma 1 and Corollary 2 are standard and are given in
Appendix C.

Lemma 1. For linear functions ℓt and quadratic functions qt, ct+1 s.t. qt(x, ·) + ct+1(ℓt(x, ·)) is strongly convex
for any x, the procedure

LQBP : (ℓt, qt, ct+1)→

 ct : x→ min
u∈Rnu

{qt(x, u) + ct+1(ℓt(x, u))}
πt : x→ arg min

u∈Rnu

{qt(x, u) + ct+1(ℓt(x, u))}

 , (6)

can be implemented analytically as detailed in Algorithm 2.

If problem (1) consists of linear dynamics and quadratic costs that are strongly convex w.r.t. the control
variable, the procedure LQBP can be applied iteratively in a dynamic programming approach to give the solution
of the problem, as formally stated in Corollary 2.

Corollary 2. Consider problem (1) such that for all t ∈ {0, . . . , τ − 1}, ft is linear, ht is convex quadratic with
ht(x, ·) strongly convex for any x, and hτ is convex quadratic. Then, the solution of problem (1) is given by

u∗ = DynProg((ft)τ−1
t=0 , (ht)τ

t=0, x̄0, LQBP),

with DynProg and LQBP implemented in Algorithm 1 and Algorithm 2 respectively.

2.3 Nonlinear Control Algorithm Example
Nonlinear control algorithms based on nonlinear optimization use linear or quadratic approximations of the
dynamics and the costs at a current candidate sequence of controllers to apply a dynamic programming procedure
to the resulting problem ([6, 16, 30, 50, 53]). For example, the Iterative Linear Quadratic Regulator (ILQR)
algorithm uses linear approximations of the dynamics and quadratic approximations of the costs ([30]). Each
iteration of the ILQR algorithm is composed of the three steps below illustrated in Figure 6.

Iterative Linear Quadratic Regulator Iteration

1. Forward pass: Given a set of control variables u0, . . . , uτ−1, compute the trajectory x1, . . . , xτ as xt+1 =
ft(xt, ut) starting from x0 = x̄0, and the associated costs ht(xt, ut), hτ (xτ), for t ∈ {0, . . . , τ − 1}. Record
along the computations, i.e., for t ∈ {0, . . . , τ − 1}, the gradients of the dynamics and the gradients and
Hessians of the costs.

2. Backward pass: Compute the optimal policies associated with the linear quadratic control problem

min
y0,...yτ ∈Rnx

v0,...,vτ−1∈Rnu

τ−1∑
t=0

(
1
2y⊤

t Ptyt + 1
2v⊤

t Qtvt + y⊤
t Rtvt + p⊤

t yt + q⊤
t vt

)
+ 1

2y⊤
τ Pτ yτ + p⊤

τ yτ

subject to yt+1 = Atyt + Btvt, for t ∈ {0, . . . , τ − 1}, y0 = 0,

where Pt = ∇2
xtxt

ht(xt, ut) Qt = ∇2
utut

ht(xt, ut) Rt = ∇2
xtut

ht(xt, ut)
pt = ∇xt

ht(xt, ut) qt = ∇ut
ht(xt, ut)

At = ∇xtft(xt, ut)⊤ Bt = ∇utft(xt, ut)⊤.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 5

The problem above can be written compactly as

min
y0,...yτ ∈Rnx

v0,...,vτ−1∈Rnu

τ−1∑
t=0

qxt,ut

ht
(yt, vt) + qxτ

hτ
(yτ) (7)

subject to yt+1 = ℓxt,ut

ft
(yt, vt), for t ∈ {0, . . . , τ − 1}, y0 = 0,

where qxτ

hτ
(yτ) = 1

2 y⊤
τ Pτ yτ + p⊤

τ yτ and qxt,ut

ht
(yt, vt) = 1

2 y⊤
t Ptyt + 1

2 v⊤
t Qtvt + y⊤

t Rtvt + p⊤
t yt + q⊤

t vt are the
quadratic expansions of the costs and ℓxt,ut

ft
(yt, vt) = Atyt + Btvt is the linear expansion of the dynamics,

both expansions being defined around the current sequence of controls and associated trajectory. The optimal
policies associated to this problem are obtained by computing recursively, starting from cτ = qxτ

hτ
,

ct, πt = LQBP(ℓxt,ut

ft
, qxt,ut

ht
, ct+1) for t ∈ {τ − 1, . . . , 0},

where LQBP presented in Algorithm 2 outputs affine policies of the form πt : yt → Ktyt + kt.
3. Roll-out pass: Define the set of candidate policies as {πγ

t : y → Kty + γkt for γ ≥ 0}. The next sequence
of controllers is then given as unext

t = ut + vγ
t , where vγ

t is given by rolling out the policies πγ
t from yγ

0 = 0
along the linearized dynamics as

vγ
t = πγ

t (yγ
t), yt+1 = ℓxt,ut

ft
(yγ

t , vγ
t), for t ∈ {0, . . . , τ}

for γ found by a line-search such that
∑τ−1

t=0 (ht(xt + yγ
t , ut + vγ

t)− ht(xt, ut))+hτ (xτ +yγ
τ)−hτ (xτ) ≤ γc0(0),

with c0(0) the solution of the linear quadratic control problem (7).
The procedure is then repeated on the next sequence of control variables. Ignoring the line-search phase (namely,
taking γ = 1), each iteration can be summarized as computing unext = u + v where

v = DynProg((ℓxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ
t=0, y0, LQBP)

for y0 = 0, where DynProg is the dynamic programming procedure implemented in Algorithm 1. Note that for
convex costs ht such that ht(x, ·) is strongly convex, the subproblems (7) satisfy the assumptions of Corollary 2.

The iterations of the following nonlinear control algorithms can always be decomposed into the three passes
described above for the ILQR algorithm. The algorithms vary by (i) what approximations of the dynamics and
the costs are computed in the forward pass, (ii) how the policies are computed in the backward pass, (iii) how
the policies are rolled out.

3 Classical Optimization Oracle

Problem (1) is entirely determined by the choice of the initial state and a sequence of control variables, such
that the objective in (1) can be written in terms of the control variables u = (u0; . . . ; uτ−1) as

J (u) :=
τ−1∑
t=0

ht(xt, ut) + hτ (xτ)

s.t. xt+1 = ft(xt, ut) for t ∈ {0, . . . , τ − 1}, x0 = x̄0.

The objective can be decomposed into the costs and the control of τ steps of a sequence of dynamics defined as
follows.

Definition 3. We define the control of τ discrete time dynamics (ft : Rnx × Rnu → Rnx)τ−1
t=0 as the function

f [τ] : Rnx×Rτnu → Rτnx , which, given an initial point x0 ∈ Rnx and a sequence of controls u = (u0; . . . ; uτ−1) ∈
Rτnu , outputs the corresponding trajectory x1, . . . , xτ , i.e.,

f [τ](x0, u) := (x1; . . . ; xτ) (8)
s.t. xt+1 = ft(xt, ut) for t ∈ {0, . . . , τ − 1}.

Overall, problem (1) can be written as the minimization of a composition

min
u∈Rτnu

{J (u) = h ◦ g(u)} , where h(x, u) =
τ−1∑
t=0

ht(xt, ut) + hτ (xτ), g(u) = (f [τ](x̄0, u), u), (9)

for x = (x1; . . . ; xτ) and u = (u0; . . . ; uτ−1). The implementation of classical oracles for problem (9) relies on
the dynamical structure of the problem encapsulated in the control f [τ] of the discrete time dynamics (ft)τ−1

t=0 .

6 Iterative Linear Quadratic Optimization

3.1 Formulation
Classical optimization algorithms rely on the availability of oracles for the objective. Here, we consider these
oracles to compute the minimizer of an approximation of the objective around the current point with an optional
regularization term. Formally, at a point u ∈ Rτnu , given a regularization ν ≥ 0, for an objective of the form

min
u∈Rτnu

h ◦ g(u),

as in (9), we consider
i. a gradient oracle to use a linear expansion of the objective, and to output, for ν > 0,

arg min
v∈Rτnu

{
ℓu

h◦g(v) + ν

2∥v∥
2
2

}
= −ν−1∇(h ◦ g)(u), (10)

ii. a Gauss–Newton oracle to use a linear quadratic expansion of the objective, and to output

arg min
v∈Rτnu

{
q

g(u)
h (ℓu

g (v)) + ν

2∥v∥
2
2

}
= −(∇g(u)∇2h(g(u))∇g(u) + ν I)−1∇(h ◦ g)(u), (11)

iii. a Newton oracle to use a quadratic expansion of the objective, and to output

arg min
v∈Rτnu

{
qu

h◦g(v) + ν

2∥v∥
2
2

}
= −(∇2(h ◦ g)(u) + ν I)−1∇(h ◦ g)(u), (12)

where ℓx
f , qx

f are the linear and quadratic expansions of f around x as defined in the notations in (2).
Gauss–Newton and Newton oracles are generally defined without a regularization, i.e., for ν = 0. However,

in practice, a regularization may be necessary to ensure that Gauss–Newton and Newton oracles provide a
descent direction. Moreover, the reciprocal of the regularization, 1/ν, can play the role of a stepsize as detailed
in Appendix D. The regularization ν can then vary with the iterates similarly as in trust region methods ([41,
Chapter 4]). Lemma 4 presents how the computation of the above oracles can be decomposed into the dynamical
structure of the problem. The proof is detailed in Appendix C.

Lemma 4. Consider a nonlinear dynamical problem summarized as

min
u∈Rτnu

h ◦ g(u), where h(x, u) =
τ−1∑
t=0

ht(xt, ut) + hτ (xτ), g(u) = (f [τ](x̄0, u), u),

with f [τ] the control of τ dynamics (ft)τ−1
t=0 as defined in Definition 3.

Let u = (u0; . . . ; uτ−1) and f [τ](x̄0, u) = (x1; . . . ; xτ). Gradient (10), Gauss–Newton (11) and Newton (12)
oracles for h ◦ g amount to solving for v∗ = (v∗

0 ; . . . ; v∗
τ−1) linear quadratic control problems of the form

min
v0,...,vτ−1∈Rnu

y0,...,yτ ∈Rnx

τ−1∑
t=0

qt(yt, vt) + qτ (yτ) (13)

subject to yt+1 = ℓxt,ut

ft
(yt, vt) for t ∈ {0, . . . , τ − 1}, y0 = 0,

where for
i. the gradient oracle (10), qτ (yτ) = ℓxτ

hτ
(yτ) and, for 0 ≤ t ≤ τ − 1,

qt(yt, vt) = ℓxt,ut

ht
(yt, vt) + ν

2∥vt∥2
2,

ii. the Gauss–Newton oracle (11), qτ (yτ) = qxτ

hτ
(yτ) and, for 0 ≤ t ≤ τ − 1,

qt(yt, vt) = qxt,ut

ht
(yt, vt) + ν

2∥vt∥2
2,

iii. for the Newton oracle (12), qτ (yτ) = qxτ

hτ
(yτ) and, defining

λτ = ∇hτ (xτ), λt = ∇xt
ht(xt, ut) +∇xt

ft(xt, ut)λt+1 for t ∈ {τ − 1, . . . , 1}, (14)

we have, for 0 ≤ t ≤ τ − 1,

qt(yt, vt) = qxt,ut

ht
(yt, vt) + 1

2∇
2ft(xt, ut)[· , · , λt+1](yt, vt) + ν

2∥vt∥2
2,

where for f : Rnx × Rnu → Rnx , x ∈ Rnx , u ∈ Rnu , λ ∈ Rnx , we define

∇2f(x, u)[· , · , λ] : (y, v)→∇2
xxf(x, u)[y, y, λ] + 2∇2

xuf(x, u)[y, v, λ]+∇2
uuf(x, u)[v, v, λ]. (15)

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 7

From an optimization viewpoint, gradient, Gauss–Newton or Newton oracles are considered as black-boxes.
Second order methods such as Gauss–Newton or Newton methods generally require solving a linear system at a
cubic cost in the dimension of the problem ([39, Chapter 4]). Here, the dimension of the problem in the control
variables is τnu, with nu, the dimension of the control variables, usually small (see the numerical examples
in Section 6), but τ , the number of time steps, potentially large if, e.g., the discretization time step used to
define (1) from a continuous time control problem is small while the original time length of the continuous time
control problem is large. A cubic cost w.r.t. the number of time steps τ is then a priori prohibitive.

A closer look at the implementation of all the above oracles (10), (11), (12), shows that they all amount to
solving linear quadratic control problems as presented in Lemma 4. Hence, they can be solved by a dynamic
programming approach detailed in Section 3.2 at a cost linear w.r.t. the number of time steps τ . As a consequence,
if the dimensions nu, nx of the control and state variables are negligible compared to the horizon τ , the
computational complexities of Gauss–Newton and Newton oracles, detailed in Section 5 are of the same order as
the computational complexity of a gradient oracle. This observation was done by [16, 42] for a Newton step
and [50] for a Gauss–Newton step. [61] also presented how sequential quadratic programming methods can
naturally be cast in a similar way. Lemma 4 casts all classical optimization oracles in the same formulation,
including a gradient oracle.

The linear quadratic control problems can be solved by different procedures than dynamic programming such
as using Riccati-based or parallel implementations as detailed in Appendix G ([62]). We focus on their resolution
by dynamic programming to cast all algorithms in a common framework.

3.2 Implementation
Given Lemma 4, for f [τ](x̄0, u) the control of τ dynamics (ft)τ−1

t=0 defined in Definition 3, classical optimization
oracles for objectives of the form

J (u) = h ◦ g(u), where h(x, u) =
τ−1∑
t=0

ht(xt, ut) + hτ (xτ), g(u) = (f [τ](x̄0, u), u),

can be implemented by (i) instantiating the linear quadratic control problem (13) with the chosen approximations,
(ii) solving the linear quadratic control problem (13) by dynamic programming as detailed in Section 2. Precisely,
their implementation can be split into the following three phases.
1. Forward pass: All oracles start by gathering the information necessary for the step in a forward pass that

takes the generic form of Algorithm 5 and can be summarized as

J (u), (mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
= Forward(u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, of , oh)

that compute the objective J (u) associated to the given sequence of controls u and record approximations
(mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
of the dynamics and the costs up to the orders of and oh, respectively as

mxt,ut

ft
=
{

ℓxt,ut

ft
if of = 1

qxt,ut

ft
if of = 2

, mxt,ut

ht
=
{

ℓxt,ut

ht
if oh = 1

qxt,ut

ht
if oh = 2

, mxτ

hτ
=
{

ℓxτ

hτ
if oh = 1

qxτ

hτ
if oh = 2.

(16)

The orders of approximation of , oh for each algorithm are summarized in Figure 1.
2. Backward pass: Once approximations of the dynamics have been computed, a backward pass on the cor-

responding linear quadratic control problem (13) can be done as in the linear quadratic case presented in
Section 2. The backward passes of the gradient oracle in Algorithm 6, the Gauss–Newton oracle in Algorithm 7
and the Newton oracle in Algorithm 8 take generally the form

(πt)τ−1
t=0 , c0 = Backward((mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
, ν).

Namely, they take as input a regularization ν ≥ 0 and some approximations of the dynamics and the costs
(mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
computed in a forward pass, and return a set of policies and the final cost-to-go

corresponding to the subproblem (13).
3. Roll-out pass: Given the output of a backward pass defined above, the oracle is computed by rolling out the

policies along the linear trajectories defined in the subproblem (13). Formally, given a sequence of policies
(πt)τ−1

t=0 , the oracles are then given as v = (v0; . . . ; vτ−1) computed, for y0 = 0, by Algorithm 11 as

v = Roll(y0, (πt)τ−1
t=0 , (ℓxt,ut

ft
)τ−1
t=0).

8 Iterative Linear Quadratic Optimization

Here the policies (πt)τ−1
t=0 are output by one of the backward passes in Algorithm 6, Algorithm 7 or Algorithm 8.

For the Gauss–Newton and Newton oracles, an additional procedure checks whether the subproblems are
convex at each iteration as explained in more detail in Appendix E.

Gradient, Gauss–Newton, and Newton oracles are implemented by, respectively, Algorithm 12, Algorithm 13,
Algorithm 14. Additional line-searches are presented in Appendix D. The computational schemes of a gradient, a
Gauss–Newton and a Newton oracle are illustrated in Figures 5, 6 and 8 respectively.

Gradient back-propagation

For a gradient oracle (10), the procedure LQBP normally used to solve linear quadratic control problems
simplifies to a linear back-propagation, LBP, presented in Algorithm 3 that implements

LBP : (ℓf
t , ℓh

t , ct+1, ν)→

 ct : x→ min
u∈Rnu

{
ℓh

t (x, u) + ct+1(ℓf
t (x, u)) + ν

2∥u∥
2
2

}
πt : x→ arg min

u∈Rnu

{
ℓh

t (x, u) + ct+1(ℓf
t (x, u)) + ν

2∥u∥
2
2

}
 , (17)

for linear functions ℓf
t , ℓh

t , ct+1. Plugging into the overall dynamic programming procedure, Algorithm 3, the
linearizations of the dynamics and the costs, we get that the gradient oracle, Algorithm 6, computes affine
cost-to-go functions of the form ct(yt) = j⊤

t yt + j0
t with

jτ = ∇hτ (xτ), jt = ∇xt
ht(xt, ut) +∇xt

ft(xt, ut)jt+1 for t ∈ {0, . . . , τ − 1}.

Moreover, the policies are independent of the state variables, i.e., πt(yt) = kt, with

kt = −ν−1(∇utht(xt, ut) +∇utft(xt, ut)jt+1) = −ν−1∇ut(h ◦ g)(u).

The roll-out of these policies is independent of the dynamics and output directly the gradient up to a factor
−ν−1. Note that we naturally retrieve the gradient back-propagation algorithm ([24]).

4 Differential Dynamic Programming Oracle

The original differential dynamic programming algorithm was developed by [26] and revisited by, e.g., [32, 36,
38, 54]. The reader can verify from the aforementioned citations that our presentation matches the original
formulation in, e.g., the quadratic case, while offering a larger perspective on the method that incorporates, e.g.,
linear quadratic approximations. Such approaches have also been called direct multiple shooting by [8].

4.1 Rationale
Denoting h the total cost as in (9) and f [τ] the control in τ dynamics (ft)τ−1

t=0 , Differential Dynamic Programming
(DDP) oracles consist in solving approximately

min
v∈Rτnu

h(f [τ](x̄0, u + v), u + v),

by means of a dynamic programming procedure and using the resulting policies to update the current sequence
of controllers. For a consistent presentation with the classical optimization oracles presented in Section 3, we
consider a regularized formulation of the DDP oracles, that is,

min
v∈Rτnu

h(f [τ](x̄0, u + v), u + v) + ν

2∥v∥
2
2, (18)

for some regularization ν ≥ 0.
The objective in problem (18) can be rewritten as

h(f [τ](x̄0, u + v), u + v) = h(f [τ](x̄0, u)) + δ
f [τ](x̄0,u)
h (δx̄0,u

f [τ] (0, v), v), (19)

where for a function f , δx
f is the finite difference expression of f around x as defined in the notations in (2). In

particular, δx̄0,u
f [τ] (0, v) is the trajectory defined by the finite differences of the dynamics given as

δxt,ut

ft
(yt, vt) = ft(xt + yt, ut + vt)− ft(xt, ut).

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 9

The dynamic programming approach is then applied on the above dynamics. Namely, the goal is to solve

min
v0,...,vτ−1∈Rnu

y0,...,yτ ∈Rnx

τ−1∑
t=0

δxt,ut

ht
(yt, vt) + ν

2∥vt∥2
2 + δxτ

hτ
(yτ) (20)

subject to yt+1 = δxt,ut

ft
(yt, vt) for t ∈ {0, . . . , τ − 1}, y0 = 0,

by dynamic programming. Denote then c∗
t the cost-to-go functions associated to problem (20) for t ∈ {0, . . . τ}.

These cost-to-go functions satisfy the recursive equation

c∗
t (yt) = min

vt∈Rnu

{
δxt,ut

ht
(yt, vt) + ν

2∥vt∥2
2 + c∗

t+1(δxt,ut

ft
(yt, vt))

}
, (21)

starting from c∗
τ = δxτ

hτ
and such that our objective is to compute c∗

0(0). Since the dynamics δxt,ut

ft
are not linear

and the costs δxt,ut

ht
are not quadratic, there is no analytical solution for the subproblem (21). To circumvent this

issue, the cost-to-go functions are approximated as c∗
t (yt) ≈ ct(yt), where ct is computed from approximations of

the dynamics and the costs. The approximation is done around the nominal value of the subproblem (20) which
is v = 0 and corresponds to y = 0 and no change of the original objective in (19).

Denoting mf an expansion of a function f around the origin such that f(x) ≈ f(0) + mf (x), the cost-to-go
functions are computed with an approximate back-propagation B̂P of cost-to-go functions:

B̂P : δf
t , δh

t , ct+1 →

 ct : y → (δh
t +ct+1◦δf

t)(0, 0) + min
v∈Rnu

{
+mδh

t
(y, v) + mct+1◦δf

t
(y, v) + ν

2∥v∥
2
2

}
,

πt : y → arg min
v∈Rnu

{
mδh

t
(y, v) + mct+1◦δf

t
(y, v) + ν

2∥v∥
2
2

}
, (22)

applied to the finite differences δxt,ut

ft
→ δf

t and δxt,ut

ht
→ δh

t . A DDP oracle computes then a sequence of policies
by iterating in a backward pass, starting from cτ = mδxτ

hτ
,

ct, πt = B̂P(δxt,ut

ft
, δxt,ut

ht
, ct+1) for t ∈ {τ − 1, . . . , 0}. (23)

Given a set of policies, an approximate solution is given by rolling out the policies along the dynamics defining
problem (20), i.e., by computing v0, . . . , vτ−1 as

vt = πt(yt), yt+1 = δxt,ut

ft
(yt, vt) = ft(xt + yt, ut + vt)− ft(xt, ut) for t = 0, . . . , τ − 1. (24)

The main difference with the classical optimization oracles lies a priori in the computation of the policies in (23)
detailed below and in the roll-out pass that uses the finite differences of the dynamics. The constant part of the
cost-to-go functions is used for line-searches as detailed in Appendix D.

4.2 Detailed Derivation of the Backward Passes
Linear Approximation

If we consider a linear approximation for the composition of the cost-to-go function and the dynamics, we have

mct+1◦δx,u
ft

= ℓct+1◦δx,u
f

= ℓ
δx,u

f
(0,0)

ct+1 ◦ ℓδx,u
f

= ℓct+1 ◦ ℓx,u
f ,

where we denote simply ℓf = ℓ0
f the linear expansion of a function f around the origin.

Plugging this model into (22) and using linear approximations of the costs, the recursion (23) amounts to
computing, starting from cτ = ℓδxτ ,uτ

hτ
= ℓxτ ,uτ

hτ
,

ct(y) = δxt,ut

ht
(0, 0) + min

v∈Rnu
ℓδ

xt,ut
ht

(y, v) + ct+1(δxt,ut

ft
(0, 0)) + ℓct+1(ℓxt,ut

ft
(y, v)) + ν

2∥v∥
2
2,

= min
v∈Rnu

ℓxt,ut

ht
(y, v) + ct+1(ℓxt,ut

ft
(y, v)) + ν

2∥v∥
2
2,

where in the last line we used that the cost-to-go functions ct are necessarily affine, s.t. ct+1(y) = ct+1(0)+ℓct+1(y).
We retrieve then the same recursion as the one used for a gradient oracle (17), with the same policies. Since the
computed policies are constant, they are not affected by the dynamics along which a roll-out phase is performed.
In other words, the oracle returned by using linear approximations in a DDP approach is just a gradient oracle.

10 Iterative Linear Quadratic Optimization

Linear Quadratic Approximation

If we consider a linear quadratic approximation for the composition of the cost-to-go function and the dynamics,
we have

mct+1◦δfx,u = q
δx,u

f
(0,0)

ct+1 ◦ ℓδx,u
f

= qct+1 ◦ ℓx,u
f ,

where we denote simply qf = q0
f the quadratic expansion of a function f around the origin. Plugging this model

into (22) and using quadratic approximations of the costs, the recursion (23) amounts to computing, starting
from cτ = qδxτ ,uτ

hτ
= qxτ ,uτ

hτ
,

ct(y) = δxt,ut

ht
(0, 0) + min

v∈Rnu
qδ

xt,ut
ht

(y, v) + ct+1(δxt,ut

ft
(0, 0)) + q

δx,u
f

(0,0)
ct+1 ◦ ℓ

(0,0)
δx,u

f

(y, v) + ν

2∥v∥
2
2

= min
v∈Rnu

qxt,ut

ht
(y, v) + ct+1(0) + qct+1(ℓxt,ut

ft
(y, v)) + ν

2∥v∥
2
2. (25)

If the costs ht are convex for all t and qxt,ut

ht
(y, ·)+ ν

2∥ ·∥
2
2 is strongly convex for all t and all y, then the cost-to-go

functions ct are convex quadratics for all t, i.e., ct+1(y) = ct+1(0) + qct+1(y). In that case, the recursion (25)
simplifies as

ct(y) = min
v∈Rnu

qxt,ut

ht
(y, v) + ct+1(ℓxt,ut

ft
(y, v)) + ν

2∥v∥
2
2, (26)

and the policies are given by the minimizer of (26). The recursion (26) is then the same as the recursion done
when computing a Gauss–Newton oracle. Namely, the backward pass in this case is the backward pass of a
Gauss–Newton oracle. Though the output policies are the same, the output of the oracle will differ since the
roll-out phase does not follow the linearized trajectories in the DDP approach. The computational scheme of a
DDP approach with linear quadratic approximations presented in Figure 7 is then almost the same as the one of
a Gauss–Newton oracle presented in Figure 6, except that in the roll-out phase the linear approximations of the
dynamics are replaced by finite differences of the dynamics. This DDP approach amounts to the iterative Linear
Quadratic Regulator (iLQR) developed by [53].

Quadratic Approximation

If we consider a quadratic approximation for the composition of the cost-to-go function and the dynamics, we get

mct+1◦δx,u
f

= qct+1◦δx,u
f

= 1
2∇

2f(x, u)[· , · ,∇ct+1(0)] + qct+1 ◦ ℓx,u
f ,

where ∇2f(x, u)[· , · , λ] is defined in (15). Plugging this model into (22) and using quadratic approximations of
the costs, the recursion (23) amounts to, starting from cτ = qδxτ ,uτ

hτ
= qxτ ,uτ

hτ
,

ct(y) = δxt,ut

ht
(0, 0) + min

v∈Rnu
qδ

xt,ut
ht

(y, v) + ct+1(δxt,ut

ft
(0, 0)) + qct+1◦δx,u

ft
(y, v) + ν

2∥v∥
2
2 (27)

= min
v∈Rnu

qxt,ut

ht
(y, v) + ct+1(0) + qct+1 ◦ ℓxt,ut

ft
(y, v) + 1

2∇
2ft(xt, ut)[· , · ,∇ct+1(0)](y, v) + ν

2∥v∥
2
2.

Provided that the costs are convex and that qxt,ut

ht
(y, ·) + 1

2∇
2ft(xt, ut)[· , · ,∇ct+1(0)](y, ·) + ν

2∥ · ∥
2
2 is strongly

convex for all t and all y, the cost-to-go functions ct are convex quadratics for all t. In that case, the recursion (27)
simplifies as

ct(y) = min
v∈Rnu

qxt,ut

ht
(y, v) + ct+1(ℓxt,ut

ft
(y, v)) + 1

2∇
2ft(xt, ut)[· , · ,∇ct+1(0)](y, v) + ν

2∥v∥
2
2, (28)

and the policies are given by the minimizer of (28). The overall backward pass is detailed in Algorithm 9.
Compared to the backward pass of the Newton oracle in Algorithm 8, we note that the additional cost derived

from the curvatures of the dynamics is not computed the same way. Namely, the Newton oracle computes this
additional cost by using back-propagated adjoint variables in (14), while in the DDP approach the additional cost
is directly defined through the previously computed cost-to-go function. Figure 9 illustrates the computational
scheme of the implementation of DDP with quadratic approximations and can be compared to the computational
scheme of the Newton oracle in Figure 8.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 11

Note that, while we used second order Taylor expansions for the compositions and the costs, the approximate
cost-to-go-functions ct are not second order Taylor expansion of the true cost-to-go functions c∗

t , except for cτ .
Indeed, ct is computed as an approximate solution of the Bellman equation. The true Taylor expansion of the
cost-to-go function requires the gradient and the Hessian of the cost and the dynamic in (27) computed at the
minimizer of the subproblem. Here, since we only use an approximation of the minimizer, we do not have access
to the true gradient and Hessian of the cost-to-go function.

4.3 Implementation
The implementation of the DDP oracles follows the same steps as the ones given for classical optimization
oracles as detailed below. The implementation of a DDP oracle with linear quadratic approximations is given in
Algorithm 15 and illustrated in Figure 7. The implementation of a DDP oracle with quadratic approximations is
given in Algorithm 16 and illustrated in Figure 9.
1. Forward pass: As for the classical optimization methods, the oracles start by gathering the information

necessary for the backward pass using Algorithm 5 that computes

J (u), (mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
= Forward(u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, of , oh),

where of and oh define the order of the approximations (mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
of the dynamics and

the costs up to the orders of and oh as in (16).
2. Backward pass: As for the classical optimization oracles, the backward pass can generally be written

(πt)τ−1
t=0 , c0 = Backward((mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
, ν),

If linear approximations are used, the backward pass is given in Algorithm 6, if linear quadratic approximations
are used, the backward pass is given in Algorithm 7 and if quadratic approximations are used, the backward
pass is given in Algorithm 9.

3. Roll-out pass: The roll-out phase differs by using finite differences of the original dynamics of problem (20)
rather than the linearized dynamics. Formally, given a sequence of policies (πt)τ−1

t=0 , the oracles are then given
as v = (v0; . . . ; vτ−1) computed, for y0 = 0, by Algorithm 11 as

v = Roll(y0, (πt)τ−1
t=0 , (δxt,ut

ft
)τ−1
t=0),

where δxt,ut

ft
(yt, vt) = ft(xt + yt, ut + vt)− ft(xt, ut).

5 Computational Complexity

In Figure 1, we present a summary of the different algorithms presented in this manuscript. We added in
parentheses the names usually given for these methods. Additional line-search mechanisms are presented in
Appendix D. The overall implementations are detailed in Appendix E. We consider then the computational
complexities of the algorithms in a differentiable programming framework.

Formal Computational Complexity

We present in Table 1 the computational complexities of the algorithms following the implementations described
in Section 3 and Section 4 and detailed in Appendix E. We ignore the additional cost of the line-searches
which requires a theoretical analysis of the admissible stepsizes depending on the smoothness properties of the
dynamics and the costs. We consider for simplicity that the cost of evaluating a function f : Rd → Rn is of the
order of O(nd), as it is the case if f is linear. For the computational complexities of the core operation of the
backward pass, i.e, LQBP in Algorithm 2 or LBP in Algorithm 3, we simply give the leading computational
complexities, which, in the case of LQBP, are the matrix multiplications and inversions. The time complexities
differ depending on whether linear or quadratic approximations of the costs are used. In the latter case, matrices
of size nu × nu need to be inverted and matrices of size nx × nx need to be multiplied. However, all oracles have
a linear time complexity with respect to the horizon τ .

We note that the space complexities of the gradient descent and the Gauss–Newton method or the DDP
approach with linear quadratic approximations are essentially the same. On the other hand, the space complexity
of the Newton oracle is a priori larger.

12 Iterative Linear Quadratic Optimization

Dyn approx. Cost approx.

Forward pass
Algorithm 5

Backward pass Roll-out
Algorithm 11

Oracle

1st order

2nd order

1st order

2nd order

2nd order

BackwardGD
Algorithm 6

BackwardGN
Algorithm 7

BackwardNE
Algorithm 8

BackwardDDP
Algorithm 9

None

Linearized dyn.

Original dyn.

Linearized dyn.

Original dyn.

GD
Algorithm 12

GN (ILQR)
Algorithm 13

DDP-LQ (iLQR)
Algorithm 15

NE
Algorithm 14

DDP-Q (DDP)
Algorithm 16

Figure 1 Taxonomy of non-linear control oracles. GD stands for gradient Descent, GN for Gauss–
Newton, NE for Newton, DDP-LQ and DDP-Q stand for DDP with linear quadratic or quadratic
approx. The iterations of the algorithms use a line-search procedure presented in Algorithm 17 as
illustrated in Algorithm 18.

Computational Complexity in a Differentiable Programming Framework

The decomposition of each oracle between forward, backward and roll-out passes has the advantage to clarify the
discrepancies between each approach. However, a careful implementation of these oracles only requires storing
in memory the function and the inputs given at each time-step. Namely, the forward pass can simply keep in
memory ht, ft, xt, ut for t ∈ {0, . . . , τ}. The backward pass computes then, on the fly, the information necessary
to compute the policies. This amounts to a simple system of check-pointing, a strategy used in differentiable
programming to circumvent the memory cost of the reverse-mode of automatic differentiation ([24]).

Such an approach is detailed in Appendix F. In summary, by considering an implementation that simply
stores in memory the inputs and the programs that implement the functions, a Newton oracle and an oracle
based on a DDP approach with quadratic approximation have the same time and space complexities as their
linear quadratic counterparts up to constant factors. This remark was done by [40] for implementing a DDP
algorithm with quadratic approximations.

6 Experiments

The control environments considered are thoroughly described in Appendix H. The code is publicly available
at https://github.com/vroulet/ilqc. Additional experiments are presented in Appendix I, a comparison of all
algorithms is presented in Figure 25.

All the following plots are in log-scale where on the vertical axis we plot log
(
J (u(k))/J (u(0))

)
with J the

objective, u(k) the set of controls at iteration k. The acronyms (GD, GN, NE, DDP-LQ, DDP-Q) correspond to
the taxonomy of algorithms presented in Figure 1. Finally, the algorithms are stopped if no valid stepsizes have
been found by line-search beyond machine precision ε, or if the relative difference in terms of costs is smaller
than machine precision, where ε ≈ 10−16 as we ran these experiments in double precision. Hence, if a curve
stops, this means that the linesearch did not find a valid stepsize beyond this point.

6.1 Linear Quadratic Approximation
We compare first a gradient descent and nonlinear control algorithms with linear quadratic approximations, i.e.,
GN or DDP-LQ with directional or regularized steps. We make the following observations.
1. Cost along iterations (Figure 2)

GN and DDP-LQ always outperform GD by several order of magnitudes.

https://github.com/vroulet/ilqc

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 13

Table 1 Space and time complexities of the oracles of Sections 3 and 4. Acronyms are given in
Figure 1.

Time complexities of the forward pass in Algorithm 5

Function eval.
(of = oh = 0)

τ
(

nx
2+nxnu︸ ︷︷ ︸

ft

+ nx+nu︸ ︷︷ ︸
ht

)
= O(τ(nx

2+nxnu))

Lin. (GD)
(of = oh = 1)

τ
(

nx
2+nxnu︸ ︷︷ ︸
ft,∇ft

+ nx+nu︸ ︷︷ ︸
ht,∇ht

)
= O(τ(nx

2+nxnu))

Lin.-quad. (GN/DDP-LQ)
(of = 1, oh = 2)

τ
(

nx
2+nxnu︸ ︷︷ ︸
ft,∇ft

+ nx+nu︸ ︷︷ ︸
ht,∇ht

+ nx
2+nu

2+nxnu︸ ︷︷ ︸
∇2ht

)
= O(τ(nx+nu)2)

Quad. (NE/DDP-Q)
(of = oh = 2)

τ
(

nx
2+nxnu︸ ︷︷ ︸
ft,∇ft

+ (nx
2+nu

2+nxnu)nx︸ ︷︷ ︸
∇2ft

+ nx+nu︸ ︷︷ ︸
ht,∇ht

+ nx
2+nu

2+nxnu︸ ︷︷ ︸
∇2ht

)
= O(τnx(nx+nu)2)

Space complexities of the forward pass in Algorithm 5

Function eval.
(of = oh = 0)

0

Lin. (GD)
(of = oh = 1)

τ
(

nx
2+nxnu︸ ︷︷ ︸

∇ft

+ nx+nu︸ ︷︷ ︸
∇ht

)
= O(τ(nx

2+nxnu))

Lin.-quad. (GN/DDP-LQ)
(of = 1, oh = 2)

τ
(

nx
2+nxnu︸ ︷︷ ︸

∇ft

+ nx+nu︸ ︷︷ ︸
∇ht

+ nx
2+nu

2+nxnu︸ ︷︷ ︸
∇2ht

)
= O(τ(nx+nu)2)

Quad. (NE/DDP-Q)
(of = oh = 2)

τ
(

nx
2+nxnu︸ ︷︷ ︸

∇ft

+ (nx
2+nu

2+nxnu)nx︸ ︷︷ ︸
∇2ft

+ nx+nu︸ ︷︷ ︸
∇ht

+ nx
2+nu

2+nxnu︸ ︷︷ ︸
∇2ht

)
= O(τnx(nx+nu)2)

Time complexities of the backward passes in Algorithms 6, 7, 8, 9 and the roll-out in Algorithm 11

GD τ
(

nx
2+nxnu︸ ︷︷ ︸

Roll

+ nx
2+nxnu︸ ︷︷ ︸

LBP

)
= O(τ(nx

2+nxnu))

GN/DDP-LQ τ
(

nx
2+nxnu︸ ︷︷ ︸

Roll

+ nx
3+nu

3+nu
2nx︸ ︷︷ ︸

LQBP

)
= O(τ(nx+nu)3)

NE/DDP-Q τ
(

nx
2+nxnu︸ ︷︷ ︸

Roll

+ nx
3+nu

3+nu
2nx︸ ︷︷ ︸

LQBP

+ (nx
2+nu

2+nxnu)nx︸ ︷︷ ︸
∇f2

t
[· ,· ,λ]

)
= O(τ(nx+nu)3)

DDP-LQ generally performs better or on par with GN, for the same steps (directional or regularized).
For GN, regularized steps generally provide a more steady convergence than directional steps. The later do
not find a valid stepsize in the real car example, which involves highly nonlinear dynamics (see Appendix H).
However, once in a quadratically convergent phase the directional steps can provide faster convergence
than the regularized steps (see e.g. GN dir vs GN reg on the pendulum on a cart example).
For DDP-LQ, similar observations can be done. Only on the simple pendulum problem, directional steps
slightly outperform regularized steps

2. Cost along computational time (Figure 19)
In terms of time, regularized steps may require fewer evaluations during the line-search as they incorporate
previous stepsizes and may provide faster convergence in time.

3. Gradient norm along iterations (Figure 21)
Algorithms based on linear quadratic approximations generally display a late quadratic convergence in
terms of gradient norm. One exception is the realistic model of the car, where only the regularized steps
versions are able to make substantial progress along the iterations and such progress is only linear (in
log-log plot scale).

14 Iterative Linear Quadratic Optimization

6.2 Quadratic Approximation
We compare now nonlinear control algorithms with quadratic approximations, i.e., NE or DDP-Q.
1. Cost along iterations (Figure 3)

As for the linear-quadratic approximations, the DDP approach (here DDP-Q) generally outperforms or
performs on par with its Newton (NE) counterpart.
For Newton, the regularized steps generally outperform the directional steps.
For DDP-Q, the regularized steps outperform the directional steps on all examples but the first pendulum
examples.

2. Cost along computational time (Figure 20)
In terms of time, all algorithms appear to generally perform on par.

3. Gradient norm along iterations (Figure 22)
We generally observe quadratic convergence in gradient norm for all algorithms in late stage of training.
However, quadratic convergence of Newton generally appears later than DDP.

Acknowledgments

The authors deeply thank Alexander Liniger for his help on implementing the bicycle model of a car. The authors
also thank Dmitriy Drusvyatskiy, Krishna Pillutla and John Thickstun for fruitful discussions on the paper and
the code.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 15

101 103

Iterations

10 3

10 2

10 1

100

101

Co
st

Horizon = 25

101 103

Iterations
10 3

10 2

10 1

100

101

Co
st

Swinging up Pendulum

Horizon = 50

101 103

Iterations

10 2

10 1

100

101

Co
st

Horizon = 100

101 103 105

Iterations

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 25

101 103 105

Iterations

10 3

10 2

10 1

100

101

102

Co
st

Swinging up Pendulum on a Cart

Horizon = 50

101 103 105

Iterations

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 100

101 103

Iterations

10 1

100

101

102

Co
st

Horizon = 25

101 103

Iterations
10 2

10 1

100

101

102

Co
st

Simple Model of Car with Tracking Cost

Horizon = 50

101 103

Iterations
10 2

10 1

100

101

102

Co
st

Horizon = 100

100 101 102

Iterations

10 2

10 1

100

Co
st

Horizon = 25

100 101 102

Iterations

10 2

10 1

100

101

Co
st

Bicycle Model of Car with Contouring Cost

Horizon = 50

100 101 102

Iterations

10 2

10 1

100

101

Co
st

Horizon = 100

GD GN reg GN dir DDP-LQ reg DDP-LQ dir

Figure 2 Cost along iterations on various control problems detailed in Appendix H with algorithms
using linear (GD) or linear-quadratic approximations (GN, DDP-LQ, see Figure 1 for taxonomy details)
and directional (dir (43)) or regularized (reg (45)) steps.

16 Iterative Linear Quadratic Optimization

100 101 102

Iterations

10 3

10 2

10 1

100

101

Co
st

Horizon = 25

100 101 102

Iterations
10 3

10 2

10 1

100

101

Co
st

Swinging up Pendulum

Horizon = 50

100 101

Iterations

10 2

10 1

100

101

Co
st

Horizon = 100

101 103

Iterations

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 25

101 103

Iterations

10 3

10 2

10 1

100

101

102

Co
st

Swinging up Pendulum on a Cart

Horizon = 50

101 103

Iterations

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 100

100 101 102 103

Iterations

10 1

100

101

Co
st

Horizon = 25

100 101 102 103

Iterations

10 1

100

101

102

Co
st

Simple Model of Car with Tracking Cost

Horizon = 50

100 101 102 103

Iterations
10 1

100

101

102

Co
st

Horizon = 100

100 101 102 103

Iterations

10 2

10 1

100

Co
st

Horizon = 25

100 101 102 103

Iterations

10 2

10 1

100

101

Co
st

Bicycle Model of Car with Contouring Cost

Horizon = 50

100 101 102 103

Iterations

10 2

10 1

100

101

Co
st

Horizon = 100

NE reg NE dir DDP-Q reg DDP-Q dir

Figure 3 Cost along iterations on various control problems detailed in Appendix H with algorithms
using quadratic approximations (NE, DDP-Q, see Figure 1 for taxonomy details) and directional
(dir (43)) or regularized (reg (45)) steps.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 17

Appendix
The appendix is organized as follows.

1. Appendix A presents tensor notations used to describe algorithms with second-order information on the
dynamics.

2. Appendix B expands the discussion of related work.
3. Appendix C details the proofs of the results claimed in the main text.
4. Appendix D presents line-search mechanisms incorporated in the algorithms to ensure their efficiency.
5. Appendix E details all pseudocode algorithms with associated computational graphs in a differentiable

programming framework.
6. Appendix F gives additional complexities when implementing the oracles with checkpointing.
7. Appendix G presents alternative ways to compute oracles using the structure of the subproblems.
8. Appendix H details the control environments on which the algorithms are tested.
9. Appendix I presents additional experiments: the convergence of the algorithms in time, and the stepsize

selected along the iterations by a line-search procedure.

A Tensor Notation

A tensor A = (ai,j,k)1≤i≤d,1≤j≤p,1≤k≤n ∈ Rd×p×n is represented as a list of matrices A = (A1, . . . , An) where
Ak = (ai,j,k)1≤i≤d,1≤j≤p ∈ Rd×p for k ∈ {1, . . . n}. Given A ∈ Rd×p×n and P ∈ Rd×d′

, Q ∈ Rp×p′
, R ∈ Rn×n′ ,

we denote

A[P, Q, R] :=
(

n∑
k=1

Rk,1P ⊤AkQ, . . . ,

n∑
k=1

Rk,n′P ⊤AkQ

)
∈ Rd′×p′×n′

.

For A0 ∈ Rd0×p0×n0 , P ∈ Rd0×d1 , Q ∈ Rp0×p1 , R ∈ Rn0×n1 denote A1 = A0[P, Q, R] ∈ Rd1×p1×n1 . Then,
for S ∈ Rd1×d2 , T ∈ Rp1×p2 , U ∈ Rn1×n2 , we have A1[S, T, U] = A0[PS, QT, RU] ∈ Rd2×p2×n2 . If P, Q or
R are identity matrices, we use the symbol “ · ” in place of the identity matrix. For example, we denote
A[P, Q, In] = A[P, Q, ·] =

(
P ⊤A1Q, . . . , P ⊤AnQ

)
. If P, Q or R are vectors we consider the flattened object.

In particular, for x ∈ Rd, y ∈ Rp, we denote A[x, y, ·] =
(
x⊤A1y, . . . , x⊤Any

)⊤ ∈ Rn, rather than having
A[x, y, ·] ∈ R1×1×n. Similarly, for z ∈ Rn, we denote A[· , · , z] =

∑n
k=1 zkAk ∈ Rd×p. Such notations follow the

ones used by [39, Chapter 5] to study third-order derivatives.

B Related Work

Nonlinear control problems of the form (1) stem from the discretization of generic optimal control problems in
continuous time of the form

min
x(·),u(·)

∫ T

0
h(x(t), u(T)) + hT (x(T)) (29)

subject to ẋ(t) = f(x(t), u(t)), x(0) = x̄0,

Continuous optimal control problems of the form (29) can be tackled in various ways ([14]). One can approach
the problem from a dynamic programming perspective to derive the Hamilton–Jacobi–Bellman equation, a
partial differential equation in state space ([34]). Alternatively, one can derive necessary optimality conditions
for (29) to derive a boundary value problem. Such a method is referred to as an indirect method and amounts
to a “optimize then discretize” approach ([18]). Finally, problem (29) can be tackled by direct methods that
consider finite dimensional approximations of the original infinite dimensional problem (29). Direct methods
amount to a “discretize then optimize” approach ([14]), they can further be split into different approaches.
First, one may consider a finite representation of the continuous control u(t) as piecewise constant functions
whose values q1, . . . , qτ at each piece define the finite number of degrees of freedom. The problem still involves
an ODE in the state variable, ẋ(t) = f(x(t), uq1:τ (t)), albeit a simpler one. Tackling the problem with such a
partial discretization is referred to as a single shooting method ([8, 14]). Collocation methods ([58]) consider
discretizing both the states and controls, leading to a formulation like (1), that can benefit from advanced
numerical integration methods. Finally, multiple shooting ([8, 14]) combines both approaches. The system is split

18 Iterative Linear Quadratic Optimization

in multiple windows and for each window a single shooting method is used. We focus solely on the resulting
discrete time nonlinear control problems (1) and refer the interested reader to, e.g., [14] for an overview of the
approaches mentioned above.

One of the first approaches for nonlinear discrete time control problems (1) appear to be the Differential
Dynamic Programming (DDP) methods developed by [26] and further explored by [31, 36, 38]. [8] referred to
such approaches as direct multiple shooting. Numerous variants of DDP have been developed to account for
constraints or noise in the dynamics ([20, 30, 52, 54]).

An implementation of a Newton method for nonlinear control problems of the form (1) was developed after
the DDP approach by [16, 42]. A parallel implementation of a Newton step and sequential quadratic programming
methods were developed by [61, 62], which led to efficient implementations of interior point methods for linear
quadratic control problems under constraints by using the block band diagonal structure of the system of KKT
equations solved at each step ([63]). A detailed comparison of the DDP approach and the Newton method was
conducted by [32], who observed that the original DDP approach generally outperforms its Newton counterpart.
We extend this analysis by comparing regularized variants of the algorithms. Finally, the storage of second
order information for DDP and Newton can be alleviated with a careful implementation in a differentiable
programming framework as done in our implementation and noted earlier by [40].

Simpler approaches consisting in taking linear approximations of the dynamics and quadratic approximations
of the costs were implemented as part of public software ([55]). Two variants have been presented. The Iterative
Linear Quadratic Regulator (ILQR) algorithm as originally formulated by [30] amounts naturally to a Gauss–
Newton method ([50]). A variant that mixes linear quadratic approximations of the problem with a DDP
approach, named iterative Linear Quadratic Regulator (iLQR) was further analyzed empirically by [53]. Here,
we detail the line-searches for both approaches and present their regularized variants. We provide detailed
computational complexities of all aforementioned algorithms that illustrate the trade-offs between the approaches.

Nonlinear model predictive control methods generally use sparse linear algebra solvers at each iteration ([15])
using solvers like IPOPT ([59]) or SNOPT ([22]). For offline control problems like (1), such sparse linear algebra
solvers can also be used to compute the Gauss–Newton or Newton oracles seen as the solutions of a linear
quadratic problem with underlying sparse band diagonal structure as first observed by [61, 62]. These sparse
linear algebra solvers are an alternative to the dynamic programming procedures, presented in this manuscript,
that can be seen as solving Riccatti equations in discrete-time with finite horizon. On the other hand, these sparse
linear algebra solvers cannot be used as a black-box to implement DDP methods since they output directly the
control variables solutions of the subproblem and do not a priori give access to the policies. They can nevertheless
be adapted to record policies ([27, 56]). In this manuscript, we cast both classical optimization oracles and
DDP approaches in a common differentiable programming framework to highlight their common ground and
discrepancies, which would not be possible from a purely algebraic viewpoint. We aim at comparing these
approaches purely in terms of iterations to understand differences in behavior, and leave out the optimization
of these implementations in specific frameworks, using e.g. sparse linear algebra solvers to implement each
classical optimization oracle. This viewpoint was generalized to handle nonlinear inequalities in model predictive
control ([15]) or even generic graphs of computations ([51]). Alternative methods cast as sequential quadratic
programming techniques ([19, 25, 37, 57]) are also worth mentioning.

For our experiments, we adapted the bicycle model of a miniature car developed by [33] in Python. We
provide an implementation in Python, available at https://github.com/vroulet/ilqc for further exploration of
the algorithms. Similar implementations have been implemented in the trajax library ([12]). Numerous other
packages exist to implement nonlinear control algorithms such as CasAdi ([2]), Pyomo ([13]), JumP ([17]),
acados ([56]) that can take advantage of off-the-shelf interior point solvers such as IPOPT ([59]), or SNOPT ([22]).
Recently, [3] developed a new solver for quadratic programs with linear constraints using augmented Lagrangian.
This solver in turn led to new efficient nonlinear control algorithms such as prox-DDP ([27]).

C Proofs

This section gathers proofs of propositions given in the main text.

https://github.com/vroulet/ilqc

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 19

C.1 Linear Quadratic Control
Lemma 5. For linear functions ℓt and quadratic functions qt, ct+1 s.t. qt(x, ·) + ct+1(ℓt(x, ·)) is strongly convex
for any x, the procedure

LQBP : (ℓt, qt, ct+1)→

 ct : x→ min
u∈Rnu

{qt(x, u) + ct+1(ℓt(x, u))}
πt : x→ arg min

u∈Rnu

{qt(x, u) + ct+1(ℓt(x, u))}

 ,

can be implemented analytically as detailed in Algorithm 2.

Proof. Consider ℓt, qt, ct+1 to be parameterized as ℓt(x, u) = Ax + Bu, qt(x, u) = 1
2 x⊤Px + 1

2 u⊤Qu + x⊤Ru +
p⊤x + q⊤u, ct+1(x) = 1

2 x⊤Jt+1x + j⊤
t+1x + j0

t+1. The cost-to-go function at time t is

ct(x) = 1
2x⊤Px + p⊤x + j0

t+1

+ min
u∈Rnu

{
1
2(Ax + Bu)⊤Jt+1(Ax + Bu) + j⊤

t+1(Ax + Bu) + 1
2u⊤Qu + x⊤Ru + q⊤u

}
.

Since h(x, ·) + ct+1(ℓ(x, ·)) is strongly convex, we have that Q + B⊤Jt+1B ≻ 0. Therefore, the policy at time t is

πt(x) = −(Q + B⊤Jt+1B)−1[(R⊤ + B⊤Jt+1A)x + q + B⊤jt+1].

Using that minu∈Rnu u⊤Mu/2+m⊤x = −m⊤M−1m/2 where, here, M = Q+B⊤Jt+1B, m = (R⊤+B⊤Jt+1A)x+
q + B⊤jt+1, we get that the cost-to-go function at time t is given by

ct(x) = 1
2x⊤ (P + A⊤Jt+1A− (R + A⊤Jt+1B)(Q + B⊤Jt+1B)−1(R⊤ + B⊤Jt+1A)

)
x

+
(
p + A⊤jt+1 − (R + A⊤Jt+1B)(Q + B⊤Jt+1B)−1(q + B⊤jt+1)

)⊤
x

− 1
2(q + B⊤jt+1)⊤(Q + B⊤Jt+1B)−1(q + B⊤jt+1) + j0

t+1.

◀

Corollary 6. Consider problem (1) such that for all t ∈ {0, . . . , τ − 1}, ft is linear, ht is convex quadratic with
ht(x, ·) strongly convex for any x, and hτ is convex quadratic. Then, the solution of problem (1) is given by

u∗ = DynProg((ft)τ−1
t=0 , (ht)τ

t=0, x̄0, LQBP),

with DynProg as defined in (5) and LQBP implemented in Algorithm 2

Proof. Note that at time t ∈ {0, . . . , τ − 1} for a given x ∈ Rnx , if ct+1 is convex, then ct+1(ft(x, ·)) is convex as
the composition of a convex function and a linear function and ct+1(ft(x, ·)) + ht(x, ·) is then strongly convex as
the sum of a convex and a strongly convex function. Moreover, x, u→ ct+1(ft(x, u)) + ht(x, u) is jointly convex
since x, u→ ct+1(ft(x, u)) is the composition of a convex function with a linear function and ht is convex by
assumption. Therefore, ct : x → minu∈Rnu ct+1(ft(x, u)) + ht(x, u) is convex as the partial infimum of jointly
convex function. In summary, at time t ∈ {0, . . . , τ − 1}, if ct+1 is convex, then (i) ct+1(ft(x, ·)) + ht(x, ·) is
strongly convex, and (ii) ct is convex. This ensures that the assumptions of Lemma 1 are satisfied at each
iteration of Algorithm 1 (line 4) since cτ = hτ is convex. ◀

C.2 Oracle Decomposition
Before presenting the proof of Lemma 4, we present below a compact formulation of the first and second
order information of f [τ] with respect to the first and second order information of the dynamics (ft)τ−1

t=0 . The
decomposition done in this lemma is reused for the proof of Lemma 4.

Lemma 7. Consider the control f [τ] of τ dynamics (ft)τ−1
t=0 as defined in Definition 3 and an initial point

x0 ∈ Rnx . For x = (x1; . . . ; xτ) and u = (u0; . . . ; uτ−1), define

F (x, u) = (f0(x0, u0); . . . ; fτ−1(xτ−1, uτ−1)).

The gradient of the control f [τ] of the dynamics (ft)τ−1
t=0 on u ∈ Rτnu can be written

∇uf [τ](x0, u) = ∇uF (x, u)(I−∇xF (x, u))−1.

20 Iterative Linear Quadratic Optimization

The Hessian of the control f [τ] of the dynamics (ft)τ−1
t=0 on u ∈ Rτnu can be written

∇2
uuf [τ](x0, u) = ∇2

xxF (x, u)[N, N, M]+∇2
uuF (x, u)[· , · , M]+∇2

xuF (x, u)[N, ·, M]+∇2
uxF (x, u)[·, N, M],

where M = (I−∇xF (x, u))−1 and N = ∇uf [τ](x0, u)⊤.

Proof. Denote simply, for u ∈ Rτnu , ϕ(u) = f [τ](x0, u) with x0 a fixed initial state. By definition, the function
ϕ can be decomposed, for u ∈ Rτnu , as ϕ(u) = (ϕ1(u); . . . ; ϕτ (u)), such that

ϕt+1(u) = ft(ϕt(u), E⊤
t u) for t ∈ {0, . . . , τ − 1}, (30)

with ϕ0(u) = x0 and for t ∈ {0, . . . , τ − 1}, Et = et ⊗ Inu
is such that E⊤

t u = ut, with et the t + 1th canonical
vector in Rτ , ⊗ the Kronecker product and Inu

∈ Rnu×nu the identity matrix. By taking the derivative of (30),
we get, denoting xt = ϕt(u) for t ∈ {0, . . . , τ} and using that E⊤

t u = ut,

∇ϕt+1(u) = ∇ϕt(u)∇xt
ft(xt, ut) + Et∇ut

ft(xt, ut) for t ∈ {0, . . . , τ − 1}.

So, for v = (v0; . . . ; vτ−1) ∈ Rτnu , denoting ∇ϕ(u)⊤v = (y1; . . . ; yτ) s.t. ∇ϕt(u)⊤v = yt for t ∈ {1, . . . , τ}, we
have, with y0 = 0,

yt+1 = ∇xt
ft(xt, ut)⊤yt +∇ut

ft(xt, ut)⊤vt for t ∈ {0, . . . , τ − 1}. (31)

Denoting y = (y1; . . . ; yτ), we have then

(I−A)y = Bv, i.e., ∇ϕ(u)⊤v = (I−A)−1Bv,

where A =
∑τ−1

t=1 ete
⊤
t+1 ⊗At with At = ∇xt

ft(xt, ut)⊤ for t ∈ {1, . . . , τ − 1} and B =
∑τ

t=1 ete
⊤
t ⊗Bt−1 with

Bt = ∇ut
ft(xt, ut)⊤ for t ∈ {0, . . . , τ − 1}, i.e.

A =



0 A1 0 . . . 0
...

.
...

. . . 0
...

. . . Aτ−1
0 0


, B =


B0 0 . . . 0

0
.

...
...

. 0
0 . . . 0 Bτ−1

 .

By definition of F in the claim, one easily check that A = ∇xF (x, u)⊤ and B = ∇uF (x, u)⊤. Therefore, we get

∇uf [τ](x0, u) = ∇ϕ(u) = ∇uF (x, u)(I−∇xF (x, u))−1.

For the Hessian, note that for g : Rd → Rp, f : Rp → R, x ∈ Rd, we have ∇2(f ◦ g)(x) = ∇g(x)∇2f(x)∇g(x)⊤ +
∇2g(x)[· , · ,∇f(x)] ∈ Rd×d. If f : Rp → Rn, we have

∇2(f ◦ g)(x) = ∇2f(x)[∇g(x)⊤,∇g(x)⊤, ·] +∇2g(x)[· , · ,∇f(x)] ∈ Rd×d×n.

Applying this on ft ◦ gt for gt(u) = (ϕt(u), E⊤
t u), we get from (30), using that ∇gt(u) = (∇ϕt(u), Et),

∇2ϕt+1(u) = ∇2ϕt(u)[· , · ,∇xt
ft(xt, ut)]

+∇2
xtxt

ft(xt, ut)[∇ϕt(u)⊤,∇ϕt(u)⊤, ·] +∇2
utut

ft(xt, ut)[E⊤
t , E⊤

t , ·]

+∇2
xtut

ft(xt, ut)[∇ϕt(u)⊤, E⊤
t , ·] +∇2

utxt
ft(xt, ut)[E⊤

t ,∇ϕt(u)⊤, ·],

for t ∈ {0, . . . , τ − 1}, with ∇2ϕ0(u) = 0. Therefore, for v = (v0; . . . ; vτ−1), w = (w0; . . . ; wτ−1) ∈ Rτnu ,
µ = (µ1; . . . ; µτ) ∈ Rτnx , we get

∇2ϕ(u)[v, w, µ] =
τ−1∑
t=0
∇2ϕt+1(u)[v, w, µt+1]

=
τ−1∑
t=0

(
∇2

xtxt
ft(xt, ut)[yt, zt, λt+1] +∇2

utut
ft(xt, ut)[vt, wt, λt+1] (32)

+∇2
xtut

ft(xt, ut)[yt, wt, λt+1] +∇2
utxt

ft(xt, ut)[vt, zt, λt+1]
)

,

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 21

where y = (y1; . . . ; yτ) = ∇ϕ(u)⊤v, z = (z1; . . . ; zτ) = ∇ϕ(u)⊤w, with y0 = z0 = 0 and λ = (λ1; . . . ; λτ) ∈ Rτnx

is defined by

λt = ∇xt
ft(xt, ut)λt+1 + µt for t ∈ {1, . . . , τ − 1}, λτ = µτ .

On the other hand, denoting Ft(x, u) = ft(xt, ut) for t ∈ {0, . . . , τ − 1}, the Hessian of F with respect to the
variables u can be decomposed as

∇2
uuF (x, u)[v, w, λ] =

τ−1∑
t=0
∇2

uuFt(x, u)[v, w, λt+1] =
τ−1∑
t=0
∇2

utut
ft(xt, ut)[vt, wt, λt+1].

The Hessian of F with respect to the variable x can be decomposed as

∇2
xxF (x, u)[y, z, λ] =

τ−1∑
t=0
∇2

xxFt(x, u)[y, z, λt+1] =
τ−1∑
t=1
∇2

xtxt
ft(xt, ut)[yt, zt, λt+1].

Finally, the second cross-derivatives of F w.r.t. x and u can be decomposed as

∇2
xuF (x, u)[y, w, λ] =

τ−1∑
t=0
∇2

xuFt(x, u)[y, w, λt+1] =
τ−1∑
t=1
∇2

xtut
ft(xt, ut)[yt, wt, λt+1].

From (32), we then get

∇2ϕ(u)[v, w, µ] = ∇2
xxF (x, u)[y, z, λ]+∇2

uuF (x, u)[v, w, λ]+∇2
xuF (x, u)[y, w, λ]+∇2

uxF (x, u)[v, z, λ].

Finally, by noting that y = (∇uF (x, u)(I−∇xF (x, u))−1)⊤v, z = (∇uF (x, u)(I−∇xF (x, u))−1)⊤w, and
λ = (I−∇xF (x, u))−1µ, the claim is shown. ◀

Lemma 8. Consider a nonlinear dynamical problem summarized as

min
u∈Rτnu

h ◦ g(u), where h(x, u) =
τ−1∑
t=0

ht(xt, ut) + hτ (xτ), g(u) = (f [τ](x̄0, u), u),

with f [τ] the control of τ dynamics (ft)τ−1
t=0 as defined in Definition 3.

Let u = (u0; . . . ; uτ−1) and f [τ](x̄0, u) = (x1; . . . ; xτ). Gradient (10), Gauss–Newton (11) and Newton (12)
oracles for h ◦ g amount to solving for v∗ = (v∗

0 ; . . . ; v∗
τ−1) linear quadratic control problems of the form

min
v0,...,vτ−1∈Rnu

y0,...,yτ ∈Rnx

τ−1∑
t=0

qt(yt, vt) + qτ (yτ)

subject to yt+1 = ℓxt,ut

ft
(yt, vt) for t ∈ {0, . . . , τ − 1}, y0 = 0,

where for
i. the gradient oracle (10), qτ (yτ) = ℓxτ

hτ
(yτ) and, for 0 ≤ t ≤ τ − 1,

qt(yt, vt) = ℓxt,ut

ht
(yt, vt) + ν

2∥vt∥2
2,

ii. the Gauss–Newton oracle (11), qτ (yτ) = qxτ

hτ
(yτ) and, for 0 ≤ t ≤ τ − 1,

qt(yt, vt) = qxt,ut

ht
(yt, vt) + ν

2∥vt∥2
2,

iii. for the Newton oracle (12), qτ (yτ) = qxτ

hτ
(yτ) and, defining

λτ = ∇hτ (xτ), λt = ∇xt
ht(xt, ut) +∇xt

ft(xt, ut)λt+1 for t ∈ {τ − 1, . . . , 1},

we have, for 0 ≤ t ≤ τ − 1,

qt(yt, vt) = qxt,ut

ht
(yt, vt) + 1

2∇
2ft(xt, ut)[· , · , λt+1](yt, vt) + ν

2∥vt∥2
2,

where for f : Rnx × Rnu → Rnx , x ∈ Rnx , u ∈ Rnu , λ ∈ Rnx , we define

∇2f(x, u)[· , · , λ] : (y, v)→∇2
xxf(x, u)[y, y, λ] + 2∇2

xuf(x, u)[y, v, λ]+∇2
uuf(x, u)[v, v, λ].

22 Iterative Linear Quadratic Optimization

Proof. In the following, we denote for simplicity ϕ(u) = f [τ](x̄0, u). The optimization oracles can be rewritten
as follows.
1. The gradient oracle (10) is given by

v∗ = arg min
v∈Rτnu

{
∇h(g(u))⊤∇g(u)⊤v + ν

2∥v∥
2
2

}
. (33)

2. The Gauss–Newton oracle (11) is given by

v∗ = arg min
v∈Rτnu

{
1
2v⊤∇g(u)∇2h(g(u))∇g(u)⊤v +∇h(g(u))⊤∇g(u)⊤v + ν

2∥v∥
2
2

}
. (34)

3. The Newton oracle (12) is given by

v∗ = arg min
v∈Rτnu

{
1
2v⊤∇g(u)∇2h(g(u))∇g(u)⊤v + 1

2∇
2g(u)[v, v,∇h(g(u))] +∇h(g(u))⊤∇g(u)⊤v + ν

2∥v∥
2
2

}
.

(35)

We have, denoting x = ϕ(u),

∇h(g(u))⊤∇g(u)⊤v = ∇xh(x, u)⊤∇ϕ(u)⊤v +∇uh(x, u)⊤v

v⊤∇g(u)∇2h(g(u))∇g(u)⊤v = v⊤∇ϕ(u)∇2
xxh(x, u)∇ϕ(u)⊤v +v⊤∇2

uuh(x, u)v +2v⊤∇ϕ(u)∇2
xuh(x, u)v

∇2g(u)[v, v,∇h(g(u))] = ∇2ϕ(u)[v, v,∇xh(x, u)].

For v = (v0; . . . ; vτ−1) ∈ Rτnu , denoting y = ∇ϕ(u)⊤v = (y1; . . . ; yτ), with y0 = 0, we have then

∇h(g(u))⊤∇g(u)⊤v =
τ−1∑
t=0

[
∇xtht(xt, ut)⊤yt+∇utht(xt, ut)⊤vt

]
+∇hτ (xτ)⊤yτ (36)

=
τ−1∑
t=0

ℓxt,ut

ht
(yt, vt)+ℓxτ

hτ
(yτ). (37)

Following the proof of Lemma 7, we have that y = ∇ϕ(u)⊤v = (y1; . . . ; yτ) satisfies

yt+1 = ∇xtft(xt, ut)⊤yt +∇utft(xt, ut)⊤vt = ℓxt,ut

ft
(yt, vt), for t ∈ {0, . . . , τ − 1}, (38)

with y0 = 0. Hence, plugging (37) and (38) into (33) we get the claim for the gradient oracle.
The Hessians of the total cost are block diagonal with, e.g., ∇2

uuh(x, u) being composed of τ diagonal blocks
of the form ∇2

utut
ht(xt, ut) for t ∈ {0, . . . , τ − 1}. Therefore, we have

1
2v⊤∇g(u)∇2h(g(u))∇g(u)⊤v

=
τ−1∑
t=0

[
1
2y⊤

t ∇2
xtxt

ht(xt, ut)yt+
1
2v⊤

t ∇2
utut

ht(xt, ut)vt+y⊤
t ∇2

xtut
ht(xt, ut)vt

]
+1

2y⊤
τ ∇2hτ (xτ)yτ .

The linear quadratic approximation in (34) can then be written as

1
2v⊤∇g(u)∇2h(g(u))∇g(u)⊤v +∇h(g(u))⊤∇g(u)⊤v =

τ−1∑
t=0

qxt,ut

ht
(yt, vt) + qxτ

hτ
(yτ). (39)

Hence, plugging (39) and (38) into (34) we get the claim for the Gauss–Newton oracle.
For the Newton oracle, denoting µ=∇xh(x, u) = (∇x1h1(x1, u1); . . . ;∇xτ−1hτ−1(xτ−1, uτ−1);∇hτ (xτ)), and

defining adjoint variables λt as

λτ = ∇hτ (xτ) λt = ∇xtht(xt, ut) +∇xtft(xt, ut)λt+1 for t ∈ {1, . . . , τ − 1},

we have, as in the proof of Lemma 7,

∇2ϕ(u)[v, v,∇xh(x, u)] =
τ−1∑
t=0
∇2ϕt+1(u)[v, v, µt+1]

=
τ−1∑
t=0

(
∇2

xtxt
ft(xt, ut)[yt, yt, λt+1] +∇2

utut
ft(xt, ut)[vt, vt, λt+1]

+ 2∇2
xtut

ft(xt, ut)[yt, vt, λt+1]
)

. (40)

Hence, plugging (39), (40) and (38) into (35) we get the claim for the Newton oracle. ◀

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 23

D Line-search

So far, we defined procedures that, given a command and some regularization parameter, output a direction that
minimizes an approximation of the objective or approximately minimizes a shifted objective. Given access to
such procedures, the next command can be computed in several ways. The main criterion is to ensure that the
value of the objective decreases along the iterations, which is generally done by a line-search.

In the following, we only consider oracles based on linear quadratic or quadratic approximations of the
objective such as Gauss–Newton and Newton, and refer the reader to [41] for classical line-searches for gradient
descent.

D.1 Rule
We start by considering the implementation of line-searches for classical optimization oracles which can again
exploit the dynamical structure of the problem and are mimicked by differential dynamic programming approaches.
We consider, as in Section 3, that we have access to an oracle for an objective J , that, given a command
u ∈ Rτnu and any regularization ν ≥ 0, outputs

Oracleν(J)(u) = arg min
v∈Rτnu

mu
J (v) + ν

2∥v∥
2
2, (41)

where mu
J is a linear quadratic or quadratic expansion of the objective J around u s.t. J (u+v) ≈ J (u)+mu

J (v).
Given such an oracle, we can define a new candidate command that decreases the value of the objective in several
ways.

Directional Step

The next iterate can be defined along the direction provided by the oracle, as long as this direction is a descent
direction. Namely, the next iterate can be computed as

unext = u + γv, with v = Oracleν(J)(u) for ν ≥ 0 s.t. ∇J (u)⊤v < 0, (42)

where the stepsize γ is chosen to satisfy, e.g., an Armijo condition ([41, Chapter 3]), that is,

J (u + γv) ≤ J (u) + γ

2∇J (u)⊤v. (43)

In this case, the search is usually initialized at each step with γ = 1. If condition (43) is not satisfied for γ = 1,
the stepsize is decreased by a factor ρdec < 1 until condition (43) is satisfied. If a stepsize γ = 1 is accepted,
then the linear quadratic or quadratic algorithms may exhibit a quadratic local convergence ([41, Chapter 3,
10]). Alternative line-search criterions such as Wolfe’s curvature condition or trust-region methods can also be
implemented ([41, Chapter 3]).

Regularized Step

Given a current iterate u ∈ Rτnu , we can find a regularization such that the current iterate plus the direction
output by the oracle decreases the objective. Namely, the next command can be computed as

unext = u + vγ , where vγ = Oracle1/γ(J)(u) = arg min
v∈Rτnu

mu
J (v) + 1

2γ
∥v∥2

2, (44)

where the parameter γ > 0 acts as a stepsize that controls how large should be the step (the smaller the
parameter γ, the smaller the step vγ). The stepsize γ can then be chosen to satisfy

J (u + vγ) ≤ J (u) + mu
J (vγ) + 1

2γ
∥vγ∥2

2, (45)

which ensures a sufficient decrease of the objective to, e.g., prove convergence to stationary points ([47]). In
practice, as for the line-search on the descent direction, given an initial stepsize for the iteration, the stepsize
is either selected or reduced by a factor ρdec until condition (45) is satisfied. However, here, we initialize the
stepsize at each iteration as ρincγprev where γprev is the stepsize selected at the previous iteration and ρinc > 1
is an increasing factor. By trying a larger stepsize at each iteration, we may benefit from larger steps in some

24 Iterative Linear Quadratic Optimization

regions of the optimization path. Note that such an approach is akin to trust region methods which increase the
radius of the trust region at each iteration depending on the success of each iteration ([41]).

In practice, we observed that, when using regularized steps, acceptable stepsizes for condition (45) tend
to be arbitrarily large as the iterations increase. Namely, we tried choosing ρinc = 10 and observed that the
acceptable stepsizes tended to plus infinity with such a procedure. To better capture this tendency, we consider
regularizations that may depend on the current state and of the form ν(u) ∝ ∥∇h(x, u)∥2, i.e., stepsizes of
the form γ(u) = γ̄/∥∇h(x, u)∥2. The line-search is then performed on γ̄ only. Intuitively, as we are getting
closer to a stationary point, quadratic models are getting more accurate to describe the objective. By scaling
the regularization with respect to ∥∇h(x, u)∥2, which is a measure of stationarity, we may better capture such
behavior. Note that for ν = 0, we retrieve the iteration with a descent direction of stepsize γ = 1 described
above.

D.2 Implementation
Directional Step

The Armijo condition (43) can be computed directly from the knowledge of a gradient oracle and the chosen
oracle (such as Gauss–Newton or Newton). We present here the implementation of the line-search in terms of
the dynamical structure of the problem. Denote

(πt)τ−1
t=0 , c0 = Backward((mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
, ν)

the policies and the value of the cost-to-go function output by the backward pass of the considered oracle, i.e.,
Gauss–Newton or Newton.

By definition, c0(0) is the minimum of the corresponding linear quadratic control problem (13). Moreover, the
linear quadratic control problem can be summarized as a quadratic problem of the form minv mJ (v) + ν

2∥v∥
2
2 =

minv
1
2 v⊤(Q + ν I)v +∇J (u)⊤v with Q a quadratic that is either the Hessian of J for a Newton oracle or an

approximation of it for a Gauss–Newton oracle. Therefore, we have that, for a Newton or a Gauss–Newton oracle
v = Oracle1/γ(J),

1
2∇J (u)⊤v = −1

2∇J (u)⊤(Q + ν I)−1∇J (u) = min
v∈Rτnu

mJ (v) + ν

2∥v∥
2
2 = c0(0).

Therefore, the right-hand part of condition (43) can be given by the value of the cost-to-go function c0(0). On
the other hand, sequences of controllers of the form γv can be defined by modifying the policies output in the
backward pass as shown in the following lemma adapted from [32, Theorem 1].

Lemma 9. Given a sequence of affine policies (πt)τ−1
t=0 , linear dynamics (ℓt)τ−1

t=0 and an initial state y0 = 0,
denote v∗ = Roll(y0, (πt)τ−1

t=0 , (ℓt)τ−1
t=0) and πγ

t : y → γπt(0) +∇πt(0)⊤y for t = 0, . . . , τ − 1. We have that

γv∗ = vγ , where vγ = Roll(y0, (πγ
t)τ−1

t=0 , (ℓt)τ−1
t=0).

Proof. Define (yγ
t)τ−1

t=0 as yγ
t+1 = ℓt(yγ

t , πt(yγ
t)) for t ∈ {0, . . . , τ − 1} with yγ

0 = 0. We have that yγ
1 is linear w.r.t.

γ. Proceeding by induction, we have that yγ
t is linear w.r.t. γ using the form of πγ

t and the fact that ℓt is linear.
Therefore, vγ

t = πγ
t (yγ

t) is linear w.r.t. γ which gives the claim. ◀

Therefore, computing the next sequence of controllers by moving along a descent direction as in (42) according
to an Armijo condition (43) amounts to computing, with Algorithm 17,

unext = LineSearch(u, (ht)τ
t=0, (ft)τ−1

t=0 , (ℓxt,ut

ft
)τ−1
t=0 , Pol),

where Pol : γ →
(

(πγ
t : y → γπt(0) +∇πt(0)⊤y)τ−1

t=0
cγ

0 : y → γc0(y)

)
(πt)τ−1

t=0 , c0 = Backward((mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
, ν), for ν ≥ 0 s.t. c0(0) < 0,

where Backward ∈ {BackwardGN, BackwardNE} is given in Algorithm 7 or Algorithm 8.
In practice, in our implementation of the backward passes in Algorithm 7, Algorithm 8, the returned initial

cost-to-go function is either negative if the step is well-defined or infinite if it is not. To find a regularization that
ensures a descent direction, i.e., c0(0) < 0, it suffices thus to find a feasible step. In our implementation, we first

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 25

try to compute a descent direction without regularization (ν = 0), then try a small regularization ν = 10−6,
which we increase by 10 until a finite negative cost-to-go function c0(0) is returned. See Algorithm 18 for an
instance of such implementation.

From the above discussion, it is clear that one iteration of the Iterative Linear Quadratic Regulator algorithm
described in Section 2.3 uses a Gauss–Newton oracle without regularization to move along the direction of the
oracle by using an Armijo condition. The overall iteration is given in Algorithm 18, where we added a procedure
to ensure that the output direction is a descent direction. All other algorithms, with or without regularization
can be written in a similar way using a forward, a backward pass, and multiple roll-out phases until the next
sequence of controllers is found.

Regularized Step

For regularized steps, the line-search (45) requires computing mu
J (vγ) + 1

2γ ∥v
γ∥2

2. This is by definition the
minimum of the sub-problem that is computed by dynamic programming. This minimum can therefore be
accessed as mu

J (vγ)+ 1
2γ ∥v

γ∥2
2 = c0(0) for c0 output by the backward pass with a regularization ν = 1/γ. Overall,

the next sequence of controls is then provided through the line-search procedure given in Algorithm 17 as

unext = LineSearch(u, (ht)τ
t=0, (ft)τ−1

t=0 , (ℓxt,ut

ft
)τ−1
t=0 , Pol),

where Pol : γ → Backward((mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
, 1/γ),

where Backward ∈ {BackwardGN, BackwardNE} is given in Algorithm 7 or Algorithm 8.

Line-search for Differential Dynamic Programming Approaches

The line-search for DDP approaches as presented by, e.g., [32, Section 2.2] based on [26], mimics the one done
for the classical optimization oracles except that the policies are rolled out on the original dynamics. Namely,
the usual line-search consists in applying Algorithm 17 as follows

unext = LineSearch(u, (ht)τ
t=0, (ft)τ−1

t=0 , (δxt,ut

ft
)τ−1
t=0 , Pol)

where Pol : γ →
(

(πγ
t : y → γπt(0) +∇πt(0)⊤y)τ−1

t=0 ,

cγ
0 : y → γc0(y)

)
(πt)τ−1

t=0 , c0 = Backward((mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
, ν) for ν ≥ 0 s.t. c0(0) < 0,

where Backward ∈ {BackwardGN, BackwardDDP} is given by Algorithm 7 or Algorithm 9. As for the classical
optimization oracles, a direction is first computed without regularization and if the resulting direction is not a
descent direction a small regularization is added to ensure that c0(0) < 0.

We also consider line-searches based on selecting an appropriate regularization. Namely, we consider line-
searches of the form

unext = LineSearch(u, (ht)τ
t=0, (ft)τ−1

t=0 , (δxt,ut

ft
)τ−1
t=0 , Pol),

where Pol : γ → Backward((mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
, 1/γ),

where Backward ∈ {BackwardGN, BackwardDDP} is given by Algorithm 7 or Algorithm 9.

E Detailed Computational Scheme

We detail here the algorithms presented in Figure 1. Recall that our objective is

J (u) =
τ−1∑
t=0

ht(xt, ut) + hτ (xτ)

s.t. xt+1 = ft(xt, ut) for t ∈ {0, . . . , τ − 1}, x0 = x̄0,

that can be summarized as J (u) = h(g(u)), where, for u = (u0; . . . ; uτ−1), x = (x1; . . . ; xτ),

h(x, u) =
τ−1∑
t=0

ht(xt, ut) + hτ (xτ), g(u) = (f [τ](x̄0, u), u), f [τ](x0, u) = (x1; . . . ; xτ)
s.t. xt+1 = ft(xt, ut) for t ∈ {0, . . . , τ − 1}.

26 Iterative Linear Quadratic Optimization

... ...

= Objective

Figure 4 Computational scheme of the discrete time control problem (1).

The computational graph of the objective is illustrated in Figure 4.
We present nonlinear control algorithms from a functional viewpoint by introducing finite difference, linear

and quadratic expansions of the dynamics and the costs presented in the notations in (2).
For a function f : Rnx ×Rnu → Rp, with p = 1 (for the costs) or p = nx (for the dynamics), these expansions

read for x, u ∈ Rnx × Rnu ,

δx,u
f : y, v → f(x + y, u + v)− f(x, u), ℓx,u

f : y, v → ∇xf(x, u)⊤y +∇uf(x, u)⊤v (46)

qx,u
f : y, v → ∇xf(x, u)⊤y +∇uf(x, u)⊤v + 1

2∇
2
xxf(x, u)[y, y, ·] + 1

2∇
2
uuf(x, u)[v, v, ·] +∇2

xuf(x, u)[y, v, ·]

For λ ∈ Rp, we denote shortly

1
2∇

2f(x, u)[· , · , λ] : (y, v)→ 1
2∇

2
xxf(x, u)[y, y, λ] + 1

2∇
2
uuf(x, u)[v, v, λ] +∇2

xuf(x, u)[y, v, λ].

In the algorithms, we consider storing in memory linear or quadratic functions by storing the associated
vectors, matrices or tensors defining the linear or quadratic functions. For example, to store the linear expansion
ℓx

f or the quadratic expansion qx
f of a function f : Rd → Rp around a point x, we consider storing ∇f(x) ∈ Rd×p

and ∇2f(x) ∈ Rd×d×p. In the backward or roll-out passes, we consider that having access to the linear or
quadratic functions, means having access to the associated matrices/tensors defining the operations as presented
in, e.g., Algorithm 2. The functional viewpoint helps to isolate the main technical operations in the procedures
LQBP in Algorithm 2 or LBP in Algorithm 3 and to identify the discrepancies between, e.g., the Newton oracle
in Algorithm 14 and a DDP oracle with quadratic approximations presented in Algorithm 16. For a presentation
of the algorithms in a purely algebraic viewpoint, we refer the reader to, e.g., [32, 50, 61].

In Algorithms 7, 8, 9, we a priori need to check whether the subproblems defined by the Bellman recursion are
strongly convex or not. Namely, in Algorithms 7, 8, 9, we need to check that qt(x, ·) + ct+1(ℓt(x, ·)) is strongly
convex for any x. With the notations of Algorithm 2, this amounts checking that Q + B⊤Jt+1B ≻ 0. This can be
done by checking the positivity of the minimum eigenvalue of Q + B⊤Jt+1B. In our implementation, we simply
check that

j0
t − j0

t+1 = −1
2(q + B⊤jt+1)⊤(Q + B⊤Jt+1B)−1(q + B⊤jt+1) < 0. (47)

If condition (47) is not satisfied then necessarily Q + B⊤Jt+1B ̸⪰ 0. We chose to use condition (47) since this
quantity is directly available and computing the eigenvalues of Q+B⊤Jt+1B ≻ 0 can slow down the computations.
Moreover, if criterion (47) is satisfied for all t ∈ {0, . . . , τ − 1}, this means that, for the Gauss–Newton and
the Newton methods, the resulting direction is a descent direction for the objective. Algorithm 4 details the
aforementioned verification step.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 27

Algorithm 1 Dynamic programming procedure[
DynProg : (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, BP→ (u∗

0; . . . ; u∗
τ−1)

]
.

1: Inputs: Dynamics (ft)τ−1
t=0 , costs (ht)τ

t=0, initial state x̄0, procedure BP
2: Initialize cτ = hτ

3: for t = τ − 1, . . . , 0 do
4: Compute ct, πt = BP(ft, ht, ct+1), store πt ▷ BP = LQBP (Algorithm 2) for linear quadratic control
5: end for
6: Initialize x∗

0 = x̄0
7: for t = 0, . . . , τ − 1 do
8: Compute u∗

t = πt(x∗
t), x∗

t+1 = ft(x∗
t , u∗

t)
9: end for

10: Output: Optimal command u = (u∗
0; . . . ; u∗

τ−1) for problem (1)

Algorithm 2 Analytic solution of Bellman’s equation (6) for linear dynamics, quadratic costs[
LQBP : ℓt, qt, ct+1 → ct, πt

]
1: Inputs:

1. Linear function ℓt parameterized asℓt(x, u) = Atx + Btu

2. Quadratic function qt parameterized as qt(x, u) = 1
2 x⊤Ptx + 1

2 u⊤Qtu + x⊤Rtu + p⊤
t x + q⊤

t u

3. Quadratic function ct+1 parameterized as ct+1(x) = 1
2 x⊤Jt+1x + j⊤

t+1x + j0
t+1

2: Define the cost-to-go function ct : x→ 1
2 x⊤Jtx + j⊤

t x + j0
t with

Jt = Pt + A⊤
t Jt+1At − (Rt + A⊤

t Jt+1Bt)(Qt + B⊤
t Jt+1Bt)−1(R⊤

t + B⊤
t Jt+1At)

jt = pt + A⊤
t jt+1 − (Rt + A⊤

t Jt+1Bt)(Qt + B⊤
t Jt+1Bt)−1(qt + B⊤

t jt+1),

j0
t = j0

t+1 −
1
2(qt + B⊤

t jt+1)⊤(Qt + B⊤
t Jt+1Bt)−1(qt + B⊤

t jt+1)

3: Define the policy πt : x→ Ktx + kt with

Kt = −(Qt + B⊤
t Jt+1Bt)−1(R⊤

t + B⊤
t Jt+1At), kt = −(Qt + B⊤

t Jt+1Bt)−1(qt + B⊤
t jt+1)

4: Output: Cost-to-go ct and policy πt at time t

Algorithm 3 Analytic solution of Bellman’s equation (17) for linear dynamics, linear regularized costs[
LBP : ℓf

t , ℓh
t , ct+1, ν → ct, πt

]
1: Inputs:

1. Linear function ℓf parameterized asℓf
t (x, u) = Atx + Btu

2. Linear function ℓh parameterized as ℓh
t (x, u) = p⊤

t x + q⊤
t u

3. Affine function ct+1 parameterized as ct+1(x) = j⊤
t+1x + j0

t+1
4. Regularization ν ≥ 0

2: Define ct : x→ j⊤
t x + j0

t with jt = pt + A⊤
t jt+1, j0

t = j0
t+1 − ∥qt + B⊤

t jt+1∥2
2/(2ν).

3: Define πt : x→ kt with kt = −(qt + B⊤
t jt+1)/ν.

4: Output: Cost-to-go ct and policy πt at time t

28 Iterative Linear Quadratic Optimization

Algorithm 4 Check if subproblems given by qt(y, ·) + ct+1(ℓt(y, ·)) are valid for solving Bellman’s equation (6)
[CheckSubProblem : ℓt, qt, ct+1 → valid ∈ {True, False}]

1: Option: Check strong convexity of subproblems or check only if the result gives a descent direction
2: Inputs:

1. Linear function ℓt parameterized asℓt(x, u) = Atx + Btu,
2. Quadratic function qt parameterized as qt(x, u) = 1

2 x⊤Ptx + 1
2 u⊤Qtu + x⊤Rtu + p⊤

t x + q⊤
t u

3. Quadratic function ct+1 parameterized as ct+1(x) = 1
2 x⊤Jt+1x + j⊤

t+1x + j0
t+1.

3: if check strong convexity then
4: Compute the eigenvalues λ1 ≤ . . . ≤ λnu

of Qt + B⊤
t Jt+1Bt

5: if λ1 > 0 then valid = True else valid = False
6: else if check descent direction then
7: Compute j0

t − j0
t+1 = − 1

2 (qt + B⊤
t jt+1)⊤(Qt + B⊤

t Jt+1Bt)−1(qt + B⊤
t jt+1)

8: if j0
t − j0

t+1 < 0 then valid = True else valid = False
9: end if

10: Output: valid

Algorithm 5 Forward pass[
Forward : u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, of , oh → J (u), (mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ

]
1: Inputs: Command u = (u0; . . . ; uτ−1), dynamics (ft)τ−1

t=0 , costs (ht)τ
t=0, initial state x̄0, order of the

information to collect on the dynamics of ∈ {0, 1, 2} and the costs oh ∈ {0, 1, 2}
2: Initialize x0 = x̄0, J (u) = 0
3: for t = 0, . . . τ − 1 do
4: Compute ht(xt, ut), update J (u)← J (u) + ht(xt, ut)
5: if oh ≥ 1 then Compute and store ∇ht(xt, ut) defining ℓxt,ut

ht
as in (46)

6: if oh = 2 then Compute and store ∇2ht(xt, ut) defining, with ∇ht(xt, ut), qxt,ut

ht
as in (46)

7: Compute xt+1 = ft(xt, ut)
8: if of ≥ 1 then Compute and store ∇ft(xt, ut) defining ℓxt,ut

ft
as in (46)

9: if of = 2 then Compute and store ∇2ft(xt, ut) defining, with ∇ft(xt, ut), qxt,ut

ft
as in (46)

10: end for
11: Compute hτ (xτ), update J (u)← J (u) + hτ (xτ)
12: if oh ≥ 1 then Compute and store ∇hτ (xτ) defining ℓxτ

hτ
as in (46)

13: if oh = 2 then Compute and store ∇2hτ (xτ) defining, with ∇hτ (xτ), qxτ

hτ
as in (46)

14: Output: Total cost J (u)
15: Stored: (if of and oh non-zeros) Approximations (mxt,ut

ft
)τ−1
t=0 , (mxt,ut

ht
)τ−1
t=0 , mxτ

hτ
defined by

mxt,ut

ft
=
{

ℓxt,ut

ft
if of = 1

qxt,ut

ft
if of = 2

, mxt,ut

ht
=
{

ℓxt,ut

ht
if oh = 1

qxt,ut

ht
if oh = 2

, mxτ

hτ
=
{

ℓxτ

hτ
if oh = 1

qxτ

hτ
if oh = 2

Algorithm 6 Backward pass for gradient oracle[
BackwardGD : (ℓxt,ut

ft
)τ−1
t=0 , (ℓxt,ut

ht
)τ−1
t=0 , ℓxτ

hτ
, ν)→ (πt)τ−1

t=0 , c0
]

1: Inputs: Linear expansions of the dynamics (ℓxt,ut

ft
)τ−1

t=0 , linear expansions of the costs (ℓxt,ut

ht
)τ−1

t=0 , ℓxτ

hτ
,

regularization ν > 0
2: Initialize cτ = ℓxτ

hτ

3: for t = τ − 1, . . . 0 do
4: Define ℓt = ℓxt,ut

ft
, qt : yt, vt → ℓxt,ut

ht
(yt, vt) + ν

2∥vt∥2
2

5: Compute ct, πt = LQBP(ℓt, qt, ct+1) = LBP(ℓxt,ut

ft
, ℓxt,ut

ht
, ct+1, ν) where LBP is given in Algorithm 3

6: end for
7: Outputs: Policies (πt)τ−1

t=0 , cost-to-go function at initial time c0

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 29

Algorithm 7 Backward pass for Gauss–Newton oracle[
BackwardGN : (ℓxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
, ν)→ (πt)τ−1

t=0 , c0
]

1: Inputs: Linear expansions of the dynamics (ℓxt,ut

ft
)τ−1

t=0 , quadratic expansions of the costs (qxt,ut

ht
)τ−1

t=0 , qxτ

hτ
,

regularization ν ≥ 0
2: Initialize cτ = qxτ

hτ

3: for t = τ − 1, . . . 0 do
4: Define ℓt = ℓxt,ut

ft
, qt : yt, vt → qxt,ut

ht
(yt, vt) + ν

2∥vt∥2
2,

5: if CheckSubProblem(ℓt, qt, ct+1) is True then
6: Compute ct, πt = LQBP(ℓt, qt, ct+1) with LQBP given in Algorithm 2
7: else
8: πs : x→ 0 for s ≤ t, c0 : x→ −∞, break
9: end if

10: end for
11: Outputs: Policies (πt)τ−1

t=0 , cost-to-go function at initial time c0

Algorithm 8 Backward pass for Newton oracle[
BackwardNE : (qxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
, ν)→ (πt)τ−1

t=0 , c0
]

1: Inputs: Quadratic expansions of the dynamics (qxt,ut

ft
)τ−1
t=0 , quadratic expansions of the costs (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
,

regularization ν ≥ 0
2: Initialize cτ = qxτ

hτ
, λτ = ∇hτ (xτ)

3: for t = τ − 1, . . . 0 do
4: Define ℓt = ℓxt,ut

ft
, qt : (yt, vt)→ qxt,ut

ht
(yt, vt) + ν

2∥vt∥2
2 + 1

2∇
2ft(xt, ut)[· , · , λt+1](yt, vt)

5: Compute λt = ∇xt
ht(xt, ut) +∇xt

ft(xt, ut)λt+1
6: if CheckSubProblem(ℓt, qt, ct+1) is True then
7: Compute ct, πt = LQBP(ℓt, qt, ct+1) with LQBP given in Algorithm 2
8: else
9: πs : x→ 0 for s ≤ t, c0 : x→ −∞, break

10: end if
11: end for
12: Outputs: Policies (πt)τ−1

t=0 , cost-to-go function at initial time c0

Algorithm 9 Backward pass for a DDP approach with quadratic approximations[
BackwardDDP : (qxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
, ν)→ (πt)τ−1

t=0 , c0
]

1: Inputs: Quadratic expansions on the dynamics (qxt,ut

ft
)τ−1
t=0 , quadratic expansions on the costs (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
,

regularization ν ≥ 0
2: Initialize cτ = qxτ

hτ

3: for t = τ − 1, . . . 0 do
4: Define ℓt = ℓxt,ut

ft
, qt : yt, vt → qxt,ut

ht
(yt, vt) + ν

2∥yt∥2
2 + 1

2∇
2ft(xt, ut)[· , · ,∇ct+1(0)](yt, vt)

5: if CheckSubProblem(ℓt, qt, ct+1) is True then
6: Compute ct, πt = LQBP(ℓt, qt, ct+1) with LQBP given in Algorithm 2
7: else
8: πs : x→ 0 for s ≤ t, c0 : x→ −∞, break
9: end if

10: end for
11: Outputs: Policies (πt)τ−1

t=0 , cost-to-go function at initial time c0

30 Iterative Linear Quadratic Optimization

Algorithm 10 Backward pass for Newton oracle with function storage
1: Inputs: Stored functions (ft)τ−1

t=0 , costs (ht)τ
t=0, inputs (ut)τ−1

t=0 with associated trajectory (xt)τ
t=0

2: Compute the quadratic expansion qxτ

hτ
of the final cost and the derivative ∇hτ (xτ) of the final cost on xτ

3: Set cτ = qxτ

hτ
, λτ = ∇hτ (xτ)

4: for t = τ − 1, . . . 0 do
5: Compute the linear approximation ℓxt,ut

ft
of the dynamic around xt, ut

6: Compute the quadratic approximation qxt,ut

ht
of the cost around xt, ut

7: Compute the Hessian of xt, ut → ft(xt, ut)⊤λt+1 on xt, ut which gives 1
2∇

2ft(xt, ut)[· , · , λt+1].
8: Define ℓt = ℓxt,ut

ft
, qt : (yt, vt)→ qxt,ut

ht
(yt, vt) + ν

2∥vt∥2
2 + 1

2∇
2ft(xt, ut)[· , · , λt+1](yt, vt)

9: Compute λt = ∇xt
ht(xt, ut) +∇xt

ft(xt, ut)λt+1
10: if CheckSubProblem(ℓt, qt, ct+1) is True then
11: Compute ct, πt = LQBP(ℓt, qt, ct+1)
12: else
13: πs : x→ 0 for s ≤ t, c0 : x→ −∞, break
14: end if
15: end for
16: Outputs: Policies (πt)τ−1

t=0 , cost-to-go function at initial time c0

Algorithm 11 Roll-out on dynamics[
Roll : y0, (πt)τ−1

t=1 , (ϕt)τ−1
t=0 → v

]
1: Inputs: Initial state y0, sequence of policies (πt)τ−1

t=0 , dynamics to roll-on (ϕt)τ−1
t=0

2: for t = 0, . . . , τ − 1 do
3: Compute and store vt = πt(yt), yt+1 = ϕt(yt, vt).
4: end for
5: Output: Sequence of controllers v = (v0; . . . ; vτ−1)

Algorithm 12 Gradient oracle[
GD : u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, ν → v

]
1: Inputs: Command u = (u0; . . . ; uτ−1), dynamics (ft)τ−1

t=0 , costs (ht)τ
t=0, initial state x̄0, regularization ν>0

2: Compute with Algorithm 5

J (u), (ℓxt,ut

ft
)τ−1
t=0 , (ℓxt,ut

ht
)τ−1
t=0 , ℓxτ

hτ
= Forward(u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, of = 1, oh = 1)

3: Compute with Algorithm 6

(πt)τ−1
t=0 , c0 = BackwardGD((ℓxt,ut

ft
)τ−1
t=0 , (ℓxt,ut

ht
)τ−1
t=0 , qxτ

hτ
, ν)

4: Compute with Algorithm 11

v = Roll(0, (πt)τ−1
t=0 , (ℓxt,ut

ft
)τ−1
t=0)

5: Output: Gradient direction v = arg minṽ∈Rτnu

{
ℓu

h◦g(ṽ) + ν
2∥ṽ∥

2
2

}
= −ν−1∇(h ◦ g)(u)

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 31

Algorithm 13 Gauss–Newton oracle (ILQR)[
GN : u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, ν → v

]
1: Inputs: Command u=(u0; . . . ; uτ−1), dynamics (ft)τ−1

t=0 , costs (ht)τ
t=0, initial state x̄0, regularization ν≥0

2: Compute with Algorithm 5

J (u), (ℓxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
= Forward(u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, of = 1, oh = 2)

3: Compute with Algorithm 7

(πt)τ−1
t=0 , c0 = BackwardGN((ℓxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
, ν)

4: Compute with Algorithm 11

v = Roll(0, (πt)τ−1
t=0 , (ℓxt,ut

ft
)τ−1
t=0)

5: Output: If c0(0) = +∞, returns infeasible, otherwise returns Gauss–Newton direction v =
arg minṽ∈Rτnu

{
q

g(u)
h (ℓu

g (ṽ)) + ν
2∥ṽ∥

2
2

}
= −(∇g(u)∇2h(x, u)∇g(u) + ν I)−1∇(h ◦ g)(u)

Algorithm 14 Newton oracle[
NE : u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, ν → v

]
1: Inputs: Command u=(u0; . . . ; uτ−1), dynamics (ft)τ−1

t=0 , costs (ht)τ
t=0, initial state x̄0, regularization ν≥0

2: Compute with Algorithm 5

J (u), (qxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
= Forward(u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, of = 2, oh = 2)

3: Compute with Algorithm 8

(πt)τ−1
t=0 , c0 = BackwardNE((qxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
, ν)

4: Compute with Algorithm 11

v = Roll(0, (πt)τ−1
t=0 , (ℓxt,ut

ft
)τ−1
t=0)

5: Output: If c0(0) = +∞, returns infeasible, otherwise returns Newton direction v =
arg minṽ∈Rτnu

{
qu

h◦g(ṽ) + ν
2∥ṽ∥

2
2

}
= −(∇2(h ◦ g)(u) + ν I)−1∇(h ◦ g)(u)

Algorithm 15 Differential dynamic programming oracle with linear quadratic approximations (iLQR)[
DDP-LQ : u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, ν → v

]
1: Inputs: Command u=(u0; . . . ; uτ−1), dynamics (ft)τ−1

t=0 , costs (ht)τ
t=0, initial state x̄0, regularization ν≥0

2: Compute with Algorithm 5

J (u), (ℓxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
= Forward(u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, of = 1, oh = 2)

3: Compute with Algorithm 7

(πt)τ−1
t=0 , c0 = BackwardGN((ℓxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
, ν)

4: Compute with Algorithm 11, for δxt,ut

ft
(yt, vt) = f(xt + yt, ut + vt)− f(xt, ut),

v = Roll(0, (πt)τ−1
t=0 , (δxt,ut

ft
)τ−1
t=0)

5: Output: If c0(0) = +∞, returns infeasible, otherwise returns DDP oracle with linear-quadratic approxi-
mations v

32 Iterative Linear Quadratic Optimization

Algorithm 16 Differential dynamic programming oracle with quadratic approximations (DDP)[
DDP-Q : u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, ν → v

]
1: Inputs: Command u=(u0; . . . ; uτ−1), dynamics (ft)τ−1

t=0 , costs (ht)τ
t=0, initial state x̄0, regularization ν≥0

2: Compute with Algorithm 5

J (u), (qxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
= Forward(u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, of = 2, oh = 2)

3: Compute with Algorithm 9

(πt)τ−1
t=0 , c0 = BackwardDDP((qxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
, ν)

4: Compute with Algorithm 11, for δxt,ut

ft
(yt, vt) = f(xt + yt, ut + vt)− f(xt, ut),

v = Roll(0, (πt)τ−1
t=0 , (δxt,ut

ft
)τ−1
t=0)

5: Output: If c0(0) = +∞, returns infeasible, otherwise returns DDP oracle with quadratic approximations
v

Algorithm 17 Line-search[
LineSearch : u, (ht)τ

t=0, (ft)τ−1
t=0 , (ϕt)τ−1

t=0 , (Pol : γ → (πγ
t)τ−1

t=0 , cγ
0)→ unext]

1: Option: directional step or regularized step
2: Inputs: Current controls u, costs (ht)τ

t=0, initial state x̄0, original dynamics (ft)τ−1
t=0 , dynamics to roll out on

(ϕt)τ−1
t=0 , family of policies and corresponding costs given by γ → (πγ

t)τ−1
t=0 , cγ

0 , decreasing factor ρdec ∈ (0, 1),
increasing factor ρinc > 1, previous stepsize γprev

3: Compute J (u) = Forward(u, (ft)τ−1
t=0 , (ht)τ

t=0, x̄0, of = 0, oh = 0)
4: if directional step then
5: Initialize γ = 1
6: else if regularized step then
7: Compute ∇h(x, u) for x = f [τ](x̄0, u)
8: Initialize γ = ρincγprev/∥∇h(x, u)∥2
9: end if

10: Initialize y0 = 0, accept = False, minimal stepsize γmin = 10−12

11: while not accept do
12: Get πγ

t , cγ
0 = Pol(γ)

13: Compute vγ = Roll(y0, (πγ
t)τ−1

t=1 , (ϕt)τ−1
t=0)

14: Set unext = u + vγ

15: Compute J (unext) = Forward(unext, (ft)τ−1
t=0 , (ht)τ

t=0, x̄0, of = 0, oh = 0)
16: if J (unext)− J (u) ≤ cγ

0(0) then set accept = True else set γ → ρdecγ

17: if γ ≤ γmin then break
18: end while
19: if regularized step then γ := γ∥∇h(x, u)∥2
20: Output: Next sequence of controllers unext, store value of the stepsize selected γ

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 33

Algorithm 18 Iterative Linear Quadratic Regulator/Gauss–Newton step with line-search on descent directions

1: Inputs: Command u, dynamics (ft)τ−1
t=0 , costs (ht)τ−1

t=0 , initial state x̄0
2: Compute with Algorithm 5

J (u), (ℓxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
= Forward(u, (ft)τ−1

t=0 , (ht)τ
t=0, x̄0, of = 1, oh = 2)

3: Compute with Algorithm 7

(πt)τ−1
t=0 , c0 = BackwardGN((ℓxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
, 0)

4: Set ν = νinit with, e.g., νinit = 10−6

5: while c0(0) = +∞ do
6: Compute (πt)τ−1

t=0 , c0 = BackwardGN((ℓxt,ut

ft
)τ−1
t=0 , (qxt,ut

ht
)τ−1
t=0 , qxτ

hτ
, ν)

7: Set ν → ρincν with, e.g., ρinc = 10
8: end while
9: Define Pol : γ →

(
(πγ

t : y → γπt(0) +∇πt(0)⊤y)τ−1
t=0 ,

cγ
0 : y → γc0(y)

)
10: Compute with Algorithm 17

unext = LineSearch(u, (ht)τ
t=0, (ft)τ−1

t=0 , (ℓxt,ut

ft
)τ−1
t=0 , Pol)

11: Output: Next sequence of controllers unext

34 Iterative Linear Quadratic Optimization

... ...

......

Input function

or procedure

Linear function Store in memory

Figure 5 Computational scheme of a gradient oracle.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 35

... ...

... ...

... ...

Input function

or procedure

Linear function Quadratic function Store in memory

Figure 6 Computational scheme of a Gauss–Newton oracle (ILQR).

36 Iterative Linear Quadratic Optimization

... ...

... ...

... ...

Input function

or procedure

Linear function Quadratic function Store in memory

Figure 7 Computational scheme of a DDP oracle with linear quadratic approximations (iLQR).

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 37

... ...

...

...

... ...

......

Input function

or procedure

Linear function Quadratic function Store in memory

Figure 8 Computational scheme of a Newton oracle.

38 Iterative Linear Quadratic Optimization

... ...

...

...

... ...

Input function

or procedure

Linear function Quadratic function Store in memory

Figure 9 Computational scheme of a DDP oracle with quadratic approximations. (DDP)

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 39

Table 2 Space and time complexities of the oracles when storing functions as in, e.g., Algorithm 10.

Time complexities of the forward pass

All cases τ
(

nx
2+nxnu︸ ︷︷ ︸

ft

+ nx+nu︸ ︷︷ ︸
ht

)
= O(τ(nx

2+nxnu))

Space complexities of the forward pass

Function eval. 0
All other cases τ

(
nx

2+nxnu︸ ︷︷ ︸
ft

+ nx+nu︸ ︷︷ ︸
ht

)
= O(τ(nx

2+nxnu))

Time complexities of the backward passes

GD τ
(

nx
2+nxnu︸ ︷︷ ︸

∇ft

+ nx+nu︸ ︷︷ ︸
∇ht

+ nx
2+nxnu︸ ︷︷ ︸

Roll

+ nx
2+nxnu︸ ︷︷ ︸

LBP

)
= O(τ(nx

2+nxnu))

GN/DDP-LQ τ
(

nx
2+nxnu︸ ︷︷ ︸

∇ft

+ nx+nu︸ ︷︷ ︸
∇ht

+ nx
2+nu

2+nxnu︸ ︷︷ ︸
∇2ht

)
+ τ
(

nx
2+nxnu︸ ︷︷ ︸

Roll

+ nx
3+nu

3+nu
2nx︸ ︷︷ ︸

LQBP

)
= O(τ(nx+nu)3)

NE/DDP-Q τ
(

nx
2+nxnu︸ ︷︷ ︸

∇ft

+ nx+nu︸ ︷︷ ︸
∇ht

+ nx
2+nu

2+nxnu︸ ︷︷ ︸
∇2ht

+ nx
2+nu

2+nxnu︸ ︷︷ ︸
∇2(f⊤

t
λ)

)
+ τ
(

nx
2+nxnu︸ ︷︷ ︸

Roll

+ nx
3+nu

3+nu
2nx︸ ︷︷ ︸

LQBP

)
= O(τ(nx+nu)3)

F Computational Complexity in a Differentiable Programming Framework

We detail here how to alleviate intermediate storing of second order information to lower the computational cost
of oracles based on quadratic approximations.

The time complexities of the forward pass presented in Section 5, corresponding to the computations of the
gradients of the dynamics or the costs and Hessians of the costs, are then incurred during the backward pass. A
major difference lies in the computation of the quadratic information of the dynamic required in quadratic oracles
such as a Newton oracle or a DDP oracle with quadratic approximations. Indeed, a closer look at Algorithm 8 and
Algorithm 9 show that only the Hessians of scalar functions of the form x, u→ f(x, u)⊤λ need to be computed,
which comes at a cost (nx + nu)2. In comparison, the cost of computing the second order information of f

is O((nx + nu)2nx). As an example, Algorithm 10 presents an implementation of a Newton step using stored
functions and inputs.

The computational complexities of the oracles when the dynamics and the costs functions are stored in
memory are presented in Table 2. We consider for simplicity that the memory cost of storing the information
necessary to evaluate a function f : Rd → Rn is nd as it is the case for a linear function f .

G Alternative Resolution of Linear-Quadratic Control Problem

We presented the implementation of all algorithms in a unified viewpoint with dynamic programming as the
core subroutine. For classical optimization steps such as Gauss–Newton or Newton, once the problem has been
instantiated, as done in Lemma 13, the resulting quadratic optimization subproblem can be solved in several
other ways. We present such alternatives for completeness.

G.1 Block Band Diagonal Underlying Structure
The subproblems we are interested to solve are linear quadratic control problems of the form

min
x0,...,xτ ∈Rnx

u0,...,uτ−1∈Rnu

τ−1∑
t=0

(
1
2x⊤

t Ptxt + 1
2u⊤

t Qtut + x⊤
t Rtut + p⊤

t xt + q⊤
t ut

)
+ 1

2x⊤
τ Pτ xτ + p⊤

τ xτ

subject to xt+1 = Atxt + Btut, for t ∈ {0, . . . , τ − 1}, x0 = x̄0.

40 Iterative Linear Quadratic Optimization

By introducing Lagrange multipliers (λt)τ
t=0 for the constraints, the problem can be stated as follows.

min
x0,...,xτ ∈Rnx

u0,...,uτ−1∈Rnu

sup
λ0,...,λτ ∈Rnx

L((xt)τ
t=0, (ut)τ−1

t=0 , (λt)τ
t=0)

for L((xt)τ
t=0, (ut)τ−1

t=0 , (λt)τ
t=0)

=
τ−1∑
t=0

(
1
2x⊤

t Ptxt + 1
2u⊤

t Qtut + x⊤
t Rtut + p⊤

t xt + q⊤
t ut + λ⊤

t+1(xt+1 −Atxt −Btut)
)

+ λ⊤
0 (x0 − x̄0) + 1

2x⊤
τ Pτ xτ + p⊤

τ xτ .

The optimality conditions, a.k.a. KKT conditions, are

x0 − x̄0 = 0 (∂λ0L = 0)

Ptxt + Rtut + pt −A⊤
t λt+1 + λt = 0 t ∈ {0, . . . , τ − 1} (∂xt

L = 0)

Qtut + R⊤
t xt + qt −B⊤

t λt+1 = 0 t ∈ {0, . . . , τ − 1} (∂ut
L = 0)

xt+1 −Atxt −Btut = 0 t ∈ {0, . . . , τ − 1} (∂λt+1L = 0)
Pτ xτ + pτ + λτ = 0 (∂xτ

L = 0).

As noted by [62], these equations can be ordered as

x0 = x̄0 (∂λ0L = 0)

λ0 + P0x0 + R0u0 −A⊤
0 λ1 = −p0 (∂x0L = 0)

R⊤
0 x0 + Q0u0 −B⊤

0 λ1 = −q0 (∂u0L = 0)
−A0x0 −B0u0 + x1 = 0 (∂λ1L = 0)

λ1 + P1x1 + R1u1 −A⊤
1 λ2 = −p1 (∂x1L = 0)

R⊤
1 x1 + Q1u1 −B⊤

1 λ2 = −q1 (∂u1L = 0)
...

λτ + Pτ xτ = −pτ (∂xτ
L = 0).

Written in matrix form the system to be solved is

0 I

I P0 R0 −A0
R⊤

0 Q0 −B⊤
0

−A0 −B0 0 I

I P1 R1 −A1
R⊤

1 Q1 −B⊤
1

−A1 −B1 0
. . .

.
. . . I

I Pτ





λ0
x0
u0
λ1
x1
u1
λ2
...

λτ

xτ


=



−s0
−p0
−q0
−s1
−p1
−q1
−s2

...
−sτ

−pτ


,

where s0 = −x̄0 and st = 0 are simply introduced for readability.
The system above is band block diagonal, which hints why it can be solved efficiently by various methods. If

all blocks were of size 1, that is, nx = nu = 1, the system would amount to a band diagonal matrix M with
bandwidth sup{|i − j| : Mij > 0} = 2. Gaussian eliminations of band-diagonal n × n matrices of bandwidth
k are well-known to have a complexity of the order O(nk2). In our case, since the blocks are not of size one,
implementations of Gaussian elimination-like algorithms would incur an O(dim3

x) or O(dim3
u) to inverse each

block.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 41

G.2 Riccati-Based Implementation
Implementation

The system of equations presented above suggest some elimination strategies ([44, 62]). For example, the control
variables ut can be eliminated from the system of equations as we have

ut = −Q−1
t R⊤

t xt −Q−1
t qt + Q−1

t B⊤
t λt+1.

After eliminating the control variables, the optimality conditions read

x0 = x̄0 (∂λ0L = 0)

Ctxt −D⊤
t λt+1 + λt = ct t ∈ {0, . . . , τ − 1} (∂xtL = 0)

xt+1 −Dtxt − Et+1λt+1 = et+1 t ∈ {0, . . . , τ − 1} (∂λt+1L = 0)
Pτ xτ + λτ = −pτ (∂xτ

L = 0).

for

Ct = Pt −RtQ
−1
t R⊤

t ,

Dt = At + BtQt−1R⊤
t ,

Et+1 = BtQ
−1
t B⊤

t ,

ct = −pt + RtQ
−1
t qt,

et+1 = −BtQ
−1
t qt.

The corresponding system of equations to solve is then band diagonal of the following form, denoting e0 =
x̄0, cτ = −pτ ,

0 I

I C0 −D⊤
0

−D0 −E1 I

I C1
. . .

.
−Eτ I

I Pτ





λ0
x0
λ1
x1
...

λτ

xτ


=



e0
c0
e1
c1
...

eτ

cτ


.

We can show by induction that the Lagrange multipliers necessarily satisfy

λt = Ftxt + ft for all t ∈ {1, . . . , τ − 1},

for some matrices Ft and vectors ft. For t = τ , we already know that λτ = −Pτ xτ − pτ . Assume the property is
true at time t + 1, then

λt+1 = Ft+1(Atxt + Btut) + ft+1 = Ft+1(Atxt −BtQ
−1
t R⊤

t xt −BtQ
−1
t qt + BtQ

−1
t B⊤

t λt+1) + ft+1.

Rearranging the terms, we get that

λt+1 = (I − Ft+1Et+1)−1(Ft+1Ptxt + Ft+1et+1 + ft+1).

Injecting this expression in the optimality conditions associated to xt (that is the line ∂xt
L = 0), we get

λt = (D⊤
t (I − Ft+1Et+1)−1Ft+1Pt − Ct)xt + ct + D⊤

t (I − Ft+1Et+1)−1(Ft+1et+1 + ft+1).

Hence, we can express λt = Ftxt + ft with

Ft = (D⊤
t (I − Ft+1Et+1)−1Ft+1Pt − Ct), ft = ct + D⊤

t (I − Ft+1Et+1)−1(Ft+1et+1 + ft+1). (48)

Similarly, given Ft+1, ft+1 such that λt+1 = Ft+1xt+1 + ft+1, we can compute an expression of the optimal xt+1
in terms of xt from the optimality condition on λt+1. Namely, we have

xt+1 −Dtxt − Et+1Ft+1xt+1 + Et+1ft+1 = et+1,

42 Iterative Linear Quadratic Optimization

and so

xt+1 = (I − Et+1Ft+1)−1(Dtxt − Et+1ft+1 + et+1). (49)

The whole resolution consists then in
1. Computing Ft, ft from t = τ to 0 using (48) starting from Fτ = Pτ , fτ = pτ .
2. Computing the optimal x0, . . . , xτ starting from x0 = x̄0 and using (49) from t = 0, . . . , τ − 1.

Computational Complexity

Compared to the implementation by dynamic programming, we retrieve a linear complexity with respect to the
horizon τ (only two passes on the dynamics), and cubic in the control and state dimensions. One finds that the
computational complexity of the method presented above, taking into account the symmetry of some matrices,
([62]) is of the order

τ

(
7nx

3 + 4nx
2nu + 4nxnu

2 + 1
3nu

3
)

.

In comparison, the computational complexity of a dynamic programming-based approach is ([62])

τ

(
3nx

3 + 5nx
2nu + 3nxnu

3 + 1
3nu

3
)

+ O(τ(nx
2 + nu

2)).

While the method presented in this section may be slightly more computationally expansive than a dynamic
programming approach, it may be easier to use in a parallel context as recalled below.

G.3 Parallel Implementation
Rather than eliminating the set of control variables, one can consider eliminating blocks of variables to enable
parallel implementations of such methods as presented by [62]. Briefly, the approach consists in considering a
system reduced to the variables at L + 1 time steps, i.e., (λti

, xti
, uti

)L
i=0 for t0 = 0 and tL = τ . Intermediate

variables between time-steps, that is (λti+j , xti+j , uti+j)ti+1−1
j=1 are eliminated by appropriate computations to

reduce the system as a set of 3(P + 1)− 1 equations, akin to the original system,

0 I

I P̃ 0 R̃0 −Ã0

R̃⊤
0 Q̃0 −B̃⊤

0
−Ã0 −B̃0 0 I

I P̃ 1 R̃1 −Ã1

R̃⊤
1 Q̃1 −B̃⊤

1

−Ã1 −B̃1 0
. . .

.
. . . I

I P̃ L





λt0

xt0

ut0

λt1

xt1

ut1

λt2
...

λtL

xtL


=



−s̃t0

−p̃t0

−q̃t0

−s̃t1

−p̃t1

−q̃t1

−s̃t2
...
−s̃tL

−p̃tL


,

The matrices M̃ j for M ∈ {A, B, P, Q, R} can be computed as functions of the intermediate results at that stage,
that is a function of Mtj+1, . . . , Mtj−1 for M ∈ {A, B, P, Q, R}, see [62] for detailed expressions. Solving the
reduced system above is naturally less computationally expensive than computing the original system, while the
computations of the reduced system, that is, the computations of M̃ j for M ∈ {A, B, P, Q, R} can be done in
parallel.

G.4 Matrix-free Solver
Finally, rather than considering computing Newton or Gauss–Newton steps by exploiting the structure of the
problem, one can directly use the access to hessian-vector products in a differentiable programming framework.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 43

Implementation

Consider the case of a Newton step, which requires computing

∇2J (u)−1∇J (u),

for J the objective defined in Section 3. Rather than computing the Hessian, and inverting it, this oracle can be
computed by solving for v such that

∇2J (u)v = ∇J (u),

which can be done approximately by an iterative method such as a conjugate gradient method or a generalized
minimal residual method ([41]), provided that we have access only to the linear operator v 7→ ∇2J (u)v. This
can be done efficiently in a differentiable programming framework as recalled below.

Automatic differentiation naturally gives access to the gradient ∇J (u) of the objective at some inputs
u by means of the reverse mode of automatic differentiation. For a function g : Rn → Rm, its directional
derivative at u along a direction v, that is the derivative of t 7→ g(u + tv) at t = 0, denoted ∂g(u)[v], can
be computed by forward mode automatic differentiation. The linear operator v 7→ ∇2J (u)v amounts to the
directional derivative of the gradient, that is, ∇2J (u)v = ∂(∇J)(u)[v]. It can then be computed by forward
mode automatic differentiation on top of reverse mode automatic differentiation at approximately twice the
computational cost of the gradient ([24]).

Computational Complexity

The overall computational cost of computing the Newton oracle depends then on the condition number of the
Hessian κ = σmax(∇2J (u))/σmin(∇2J (u)) as

O

(
min

{
τnu,

√
κ− 1√
κ + 1

log(ε−1)
}
T (∇2J (u)))

)
= O

(
min

{
τnu,

√
κ− 1√
κ + 1

log(ε−1)
}

τ(nx
2 + nu

2)
)

operations, where T (∇2J (u))) denotes the cost of computing the Hessian-vector product v 7→ ∇2J (u))v in a
differentiable programming framework and can be approximated roughly as T (∇2J (u))) = O(τ(nx

2 + nu
2)).

Overall, such “matrix-free” methods, which circumvent the need to compute actually the Hessian, have a priori
a quadratic complexity and not linear complexity w.r.t. the horizon if the matrix is ill-conditioned. On the other
hand, the complexity of such methods remains quadratic in the state dimension.

A similar approach can be used to compute Gauss–Newton steps by using the Jacobian vector product of the
function that at controls associate the trajectory. For problems with a single final cost, Gauss–Newton methods
can also benefit from considering their dual formulation as shown by [47].

We present in Appendix I numerical comparisons of such matrix-free implementations to the implementation
by dynamic programming. Note that by using matrix-free solvers in a differentiable programming framework
we can cast any nonlinear control as a generic numerical optimization problem amenable to solutions with
off-the-shelf programs such as IPOPT ([59]).

H Experimental Detail

We describe in detail the continuous time systems studied in the experiments. The code is available at https:
//github.com/vroulet/ilqc. Numerical constants are detailed at the end for reference. All algorithms are run
with double precision.

H.1 Discretization
In the following, we denote by z(t) the state of a system at time t. Given a control u(t) at time t, we consider
time-invariant dynamical systems governed by a differential equation of the form

ż(t) = f(z(t), u(t)), for t ∈ [0, T],

where f models the physics of the movement and is described below for each model.

https://github.com/vroulet/ilqc
https://github.com/vroulet/ilqc

44 Iterative Linear Quadratic Optimization

Given a continuous time dynamic, the discrete time dynamics are given by a discretization method such that
the states follow dynamics of the form

zt+1 = f(zt, ut) for t ∈ {0, . . . τ − 1},

for a sequence of controls u0, . . . , uτ−1. One discretization method is the Euler method, which, for a time-step
∆ = T/τ , is

f(zt, ut) = zt + ∆f(zt, ut).

Alternatively, we can consider a Runge–Kutta method of order 4 that defines the discrete-time dynamics as

f(zt, ut) = zt + ∆
6 (k1 + k2 + k3 + k4)

where k1 = f(zt, ut) k2 = f(zt + ∆k1/2, ut)
k3 = f(zt + ∆k2/2, ut) k4 = f(zt + ∆k3, ut),

where we consider the controls to be piecewise constant, i.e., constant on time intervals of size ∆. We can also
consider a Runge–Kutta method with varying control inputs such that, for ut = (vt, vt+1/3, vt+2/3),

f(zt, ut) = zt + ∆
6 (k1 + k2 + k3 + k4)

where k1 = f(zt, vt) k2 = f(zt + ∆k1/2, vt+1/3)
k3 = f(zt + ∆k2/2, vt+1/3) k4 = f(zt + ∆k3, vt+2/3).

H.2 Swinging up a Pendulum

H.2.1 Fixed Pendulum
We consider the problem of controlling a fixed pendulum such that it swings up as illustrated in Figure 10.
Namely, the dynamics of a pendulum are given as

ml2θ̈(t) = −mlg sin θ(t)− µθ̇(t) + u(t),

with θ the angle of the rod, m the mass of the blob, l the length of the blob, µ a friction coefficient, g the
gravitational constant, and u a torque applied to the pendulum (which defines the control we have on the system).
Denoting the angle speed ω = θ̇ and the state of the system x = (θ; ω), the continuous time dynamics are

f : (x = (θ; ω), u)→
(

ω

− g
l sin θ − µ

ml2 ω + 1
ml2 u

)
,

such that the continuous time system is defined by ẋ(t) = f(x(t), u(t)). After discretization by an Euler method,
we get discrete time dynamics ft(xt, ut) = f(xt, ut) of the form, for xt = (θt; ωt) and ∆ the discretization step,

f(xt, ut) = xt + ∆f(xt, ut) =
(

θt + ∆ωt

ωt + ∆
(
− g

l sin θt − µ
ml2 ωt + 1

ml2 ut

)) .

A classical task is to enforce the pendulum to swing up and stop without using too much torque at each time
step, i.e., for x̄0 = (0; 0), the costs we consider are, for some non-negative parameters λ ≥ 0, ρ ≥ 0,

ht(xt, ut) = λ∥ut∥2
2 for t ∈ {0, . . . , τ − 1}, hτ (xτ) = (π − θτ)2 + ρ∥ωτ∥2

2.

H.2.2 Pendulum on a Cart
We consider here controlling a pendulum on a cart as illustrated in Figure 11. This system is described by the
angle θ of the pendulum with the vertical and the position zx of the cart on the horizontal axis. Contrary to
the previous example, here we do not control directly the angle of the pendulum we only control the system

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 45

Figure 10 Fixed pendulum. Figure 11 Pendulum on a cart.

with a force u that drives the acceleration of the cart. The dynamics of the system satisfy (see [35] for detailed
derivations)

(M + m)z̈x + ml cos θθ̈ = −bżx + mlθ̇2 sin θ + u

ml cos θz̈x + (I + ml2)θ̈ = −mgl sin θ, (50)

where M is the mass of the cart, m is the mass of the pendulum rod, I is the pendulum rod moment of inertia,
l is the length of the rod, and b is the viscous friction coefficient of the cart. The system of equations can be
written in matrix form and solved to express the angle and position accelerations as(

z̈x

θ̈

)
=
(

M + m ml cos θ

ml cos θ I + ml2

)−1(−bżx + mlθ̇2 sin θ + u

−mgl sin θ

)
= 1

I(M + m) + ml2M + m2l2 sin2 θ

(
I + ml2 −ml cos θ

−ml cos θ M + m

)(
−bżx + mlθ̇2 sin θ + u

−mgl sin θ

)
.

The discrete dynamical system follows using an Euler discretization scheme or a Runge Kutta method. We
consider the task of swinging up the pendulum and keeping it vertical for a few time steps while constraining the
movement of the cart on the horizontal line. Formally, we consider the following cost, defined for xt = (zx, θ, ζx, ω),
where ζx, ω represent the discretizations of żx and θ̇ respectively,

h(xt, ut) =
{

ρ2(max((zx − z̄+
x)3, 0) + max((zx + z̄−

x)3, 0)) + λu2
t + (θ + π)2 + ρ1ω2 if t ≥ t̄

ρ2(max((zx − z̄+
x)3, 0) + max((zx + z̄−

x)3, 0)) + λu2
t if t < t̄,

where ρ1, ρ2, λ are some non-negative parameters, t̄ is a time step after which the pendulum needs to stay
vertically inverted and z̄+

x , z̄−
x are bounds that restrain the movement of the cart along the whole horizontal line.

H.3 Autonomous Car Racing
We consider the control of a car on a track through two different dynamical models: a simple one where the
orientation of the car is directly controlled by the steering angle, and a more realistic one that takes into account
the tire forces to control the orientation of the car. In the following, we present the dynamics, a simple tracking
cost, and a contouring cost enforcing the car to race the track at a reference speed or as fast as possible.

H.3.1 Dynamic
H.3.1.1 Simple Model

A simple model of the car is described in Figure 12. The state of the car is decomposed as z(t)=(x(t),y(t),θ(t),v(t)),
where (dropping the dependency w.r.t. time for simplicity)
1. x, y denote the position of the car on the plane,
2. θ denotes the angle between the orientation of the car and the horizontal axis, a.k.a. the yaw,
3. v denotes the longitudinal speed.

The car is controlled through u(t) = (a(t), δ(t)), where
1. a is the longitudinal acceleration of the car,
2. δ is the steering angle.
For a car of length L, the continuous time dynamics are then

ẋ = v cos θ ẏ = v sin θ θ̇ = v tan(δ)/L v̇ = a. (51)

46 Iterative Linear Quadratic Optimization

Figure 12 Simple model of a car. Figure 13 Bicycle model of a car.

H.3.1.2 Bicycle Model

We consider the model presented by [33] recalled below and illustrated in Figure 13. In this model, the state of
the car at time t is decomposed as z(t) = (x(t), y(t), θ(t), vx(t), vy(t), ω(t)) where
1. x, y denote the position of the car on the plane,
2. θ denotes the angle between the orientation of the car and the horizontal axis, a.k.a. the yaw,
3. vx denotes the longitudinal speed,
4. vy denotes the lateral speed,
5. ω denotes the derivative of the orientation of the car, a.k.a. the yaw rate.
The control variables are analogous to the simple model, i.e., u(t) = (a(t), δ(t)), where
1. a is the PWM duty cycle of the car, this duty cycle can be negative to take into account braking,
2. δ is the steering angle.
These controls act on the state through the following forces.
1. A longitudinal force on the rear wheels, denoted Fr,x modeled using a motor model for the DC electric motor

as well as a friction model for the rolling resistance and the drag

Fr,x = (Cm1 − Cm2vx)a− Cr0 − Crdv2
x,

where Cm1, Cm2, Cr0, Crd are constants estimated from experiments, see Appendix H.
2. Lateral forces on the front and rear wheels, denoted Ff,y, Fy,r respectively, modeled using a simplified Pacejka

tire model

Ff,y = Df sin(Cf arctan(Bf αf)) where αf = δ − arctan2
(

ωlf + vy

vx

)
Fr,y = Dr sin(Cr arctan(Brαr)) where αr = arctan2

(
ωlr − vy

vx

)
where αf , αr are the slip angles on the front and rear wheels respectively, lf , lr are the distance from the
center of gravity to the front and the rear wheel respectively and the constants Br, Cr, Dr, Bf , Cf , Df define
the exact shape of the semi-empirical curve, presented in Figure 14.
The continuous time dynamics are then

ẋ = vx cos θ − vy sin θ v̇x = 1
m

(Fr,x − Ff,y sin δ) + vyω (52)

ẏ = vx sin θ + vy cos θ v̇y = 1
m

(Fr,y + Ff,y cos δ)− vxω

θ̇ = ω ω̇ = 1
Iz

(Ff,ylf cos δ − Fr,ylr),

where m is the mass of the car and Iz is the inertia.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 47

−2 0 2
αf or αr

−0.2

−0.1

0.0

0.1

0.2
Pacejka Tire model

Ff,y

Fr,y

Figure 14 Pacejka model of the friction on the tires as a function of the slip angles

H.3.2 Cost
H.3.2.1 Track

We consider tracks that are given as a continuous curve, namely a cubic spline approximating a set of points. As
a result, for any time t, we have access to the corresponding point x̂(t), ŷ(t) on the curve. The track we consider
is a simple track illustrated in Figure 15.

H.3.2.2 Tracking Cost

A simple cost on the states is

ct(zt) = ∥xt − x̂(∆vreft)∥2
2 + ∥yt − ŷ(∆vreft)∥2

2 for t = 1, . . . , τ, (53)

for zt = (xt, yt), where ∆ is some discretization step and vref is some reference speed. The cost above is the one
we choose for the simple model of a car. The disadvantage of such a cost is that it enforces the car to follow the
track at a constant speed which may not be physically possible. We consider in the following a contouring cost
as done by [33].

H.3.2.3 Ideal Cost

Given a track parameterized in continuous time, an ideal cost is to enforce the car to be as close as possible to
the track, while moving along the track as fast as possible. Formally, define the distance from the car at position
(x, y) to the track defined by the curve x̂(t), ŷ(t) as

d(x, y) = min
t∈R

√
((x− x̂(t))2 + (y − ŷ(t))2.

Denoting t∗ = t(x, y) = arg mint∈R (x− x̂(t))2 + (y− ŷ(t))2, the reference time on the track for a car at position
(x, y), the distance d(x, y) can be expressed as

d(x, y) = sin(θ(t∗)) (x− x̂(t∗))− cos(θ(t∗)) (y − ŷ(t∗)) ,

where θ(t) = ∂ŷ(t)
∂x̂(t) is the angle of the track with the x-axis. The distance d(x, y) is illustrated in Figure 16. An

ideal cost for the problem is then defined as h(z) = h(x, y) = d(x, y)2 − t(x, y), which enforces the car to be
close to the track by minimizing d(x, y)2, and also encourages the car to go as far as possible by adding the term
−t(x, y).

H.3.2.4 Contouring and Lagging Cost

The computation of t∗ involves solving an optimization problem and is not practical. As [33], we rather augment
the states with a flexible reference time. Namely, we augment the state of the car by adding a variable s whose
objective is to approximate the reference time t∗. The cost is then decomposed into the contouring cost and the
lagging cost illustrated in Figure 17 and defined as

ec(x, y, s) = sin(θ(s)) (x− x̂(s))− cos(θ(s)) (y − ŷ(s))
el(x, y, s) = − cos(θ(s)) (x− x̂(s))− sin(θ(s)) (y − ŷ(s)) .

48 Iterative Linear Quadratic Optimization

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Sp
ee

d

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Sp
ee

d

Figure 15 Simple and complex tracks used with a trajectory computed on the bicycle model (52).

Figure 16 Dis-
tance to the track.

Figure 17 Approx.
by contouring and lag-
ging costs.

Figure 18 Border
costs.

Rather than encouraging the car to make the most progress on the track, we enforce them to keep a reference
speed. Namely, we consider an additional penalty of the form ∥ṡ− vref∥2

2 where vref is a parameter chosen in
advance. For the reference time s not to go backward in time, we add a log-barrier term −ε log(ṡ) for ε = 10−6.

Finally, we let the system control the reference time through its second order derivative s̈. Overall this means
that we augment the state variable by adding the variables s and ν := vs and that we augment the control
variable by adding the variable α := as such that the discretized problem is written for, e.g., the bicycle model, as

min
(a0,δ0,α0),...,(aτ−1,δτ−1,ατ−1)

τ−1∑
t=0

ρcec(xt, yt, st)2 + ρlel(xt, yt, st)2 + ρv∥vs,t − vref∥2
2 − ε log νt

s.t. xt+1, yt+1, θt+1, vx,t+1, vy,t+1, ωt+1 = f(xt, yt, θ,vx,t, vy,t, ωt, δt, at)
st+1 = st + ∆νt, νt+1 = νt + ∆αt

z0 = ẑ0 s0 = 0 ν0 = vref,

where f is a discretization of the continuous time dynamics, ∆ is a discretization step and ẑ0 is a given initial
state where z0 regroups all state variables at time 0 (i.e. all variables except a0, δ0).

This cost is defined by the parameters ρc, ρl, ρv, vref which are fixed in advance. The larger the parameter ρc,
the closer the car to the track. The larger the parameter ρl, the closer the car to its reference time s. In practice,
we want the reference time to be a good approximation of the ideal projection of the car on the track so ρl

should be chosen large enough. On the other hand, varying ρc allows having a car that is either conservative and
potentially slow or a car that is fast but inaccurate, i.e., far from the track. The most important aspect of the
trajectory is to ensure that the car remains inside the borders of the track defined in advance.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 49

H.3.2.5 Border Cost

To enforce the car to remain inside the track defined by some borders, we penalize the approximated distance of
the car to the border when it goes outside the border as eb(x, y, s) = ein

b (x, y, s) + eout
b (x, y, s) with

ein
b (x, y, s) = max((w + din(x, y, s))3, 0) din(x, y, s) = −(z − zin(s))⊤nin(s) (54)

eout
b (x, y, s) = max((w + dout(x, y, s))3, 0) dout(x, y, s) = (z − zout(s))⊤nout(s)

for z = (x, y), where nin(s) and nout(s) denote the normal at the borders at time s and w is the width of the car.
In practice, we use a smooth approximation of the max function in (54). The normals nin(s) and nout(s) can
easily be computed by differentiating the curves defining the inner and outer borders. These costs are illustrated
in Figure 18.

H.3.2.6 Constrained Control

We constrain the steering angle to be between [−π/3, π/3] by parameterizing the steering angle as

δ(δ̃) = 2
3 arctan(δ̃) for δ̃ ∈ R.

Similarly, we constrain the acceleration a to be between [c, d] (with c = −0.1, d = 1.), by parameterizing it as

a(ã) = (d− c) sig(4ã/(d− c)) + c

with sig : x→ 1/(1 + e−x) the sigmoid function. The final set of control variables is then ã, δ̃, α.

H.3.2.7 Control Cost

For both trajectory costs, we add a square regularization on the control variables of the system, i.e., the cost on
the control variables is λ∥ut∥2

2 for some λ ≥ 0 where ut are the control variables at time t.

H.3.2.8 Overall Contouring Cost

The whole problem with contouring cost is then

min
(ã0,δ̃0,α0),...,(ãτ−1,δ̃τ−1,α̃τ−1)

τ−1∑
t=0

[
ρcec(xt, yt, st)2 + ρlel(xt, yt, st)2 + ρv∥vs,t − vref∥2

2 − ε log(νt)

+ ρbeb(xt, yt, st)2 + λ(ã2
t + δ̃2

t + α2
t)
]

(55)

s.t. xt+1, yt+1, θt+1, vx,t+1, vy,t+1, ωt+1 = f(xt, yt, θt, vx,t, vy,t, ωt, δt(δ̃t), at(ãt))
st+1 = st + ∆νt, νt+1 = νt + ∆αt

z0 = ẑ0 s0 = 0 ν0 = vref,

with parameters ρc, ρl, ρv, vref, ρb, λ and f given in (52).

H.4 Numerical Constant
The code is available at https://github.com/vroulet/ilqc. We add for ease of reference, the hyperparameters
used for each setting.

Pendulum

1. mass m = 1,
2. gravitational constant g = 10,
3. length of the blob l = 1,
4. friction coefficient µ = 0.01,
5. speed regularization λ = 0.1,
6. control regularization ρ = 10−6,
7. total time of the movement T = 2, discretization step ∆ = T/τ for varying τ

8. Euler discretization scheme.

https://github.com/vroulet/ilqc

50 Iterative Linear Quadratic Optimization

Pendulum on a cart

1. mass of the rod m = 0.2,
2. mass of the cart M = 0.5,
3. viscous coefficient b = 0.1,
4. moment of inertia I = 0.006,
5. length of the rod 0.3,
6. speed regularization λ1 = 0.1,
7. barrier parameter ρ2 = 10−6.,
8. control regularization ρ = 10−6,
9. total time of the movement T = 2.5, discretization step ∆ = T/τ for varying τ ,

10. stay put time t̄ = τ − ⌊0.6/∆⌋,
11. barriers z̄+ = 2, z̄− = −2,
12. Euler discretization scheme.

Simple car with tracking cost

1. length of the car L = 1,
2. reference speed vref = 3,
3. initial speed vinit = 1,
4. control regularization λ = 10−6,
5. total time of the movement T = 2,
6. simple track,
7. Euler discretization scheme.

Bicycle model of a car with a contouring objective

1. Cm1 = 0.287, Cm2 = 0.0545,
2. Cr0 = 0.0518, Crd = 0.00035,
3. Br = 3.3852, Cr = 1.2691, Dr = 0.1737, lr = 0.033
4. Bf = 2.579, Cf = 1.2, Df = 0.192, lf = 0.029
5. m = 0.041, Iz = 27.8 · 10−6

6. contouring error penalty ρc = 0.1,
7. lagging error penalty ρl = 10,
8. reference speed penalty ρv = 0.1,
9. barrier error penalty ρb = 0.,

10. reference speed vref = 3,
11. initial speed vinit = 1,
12. control regularization λ = 10−6,
13. total time of the movement T = 1,
14. simple track,
15. Runge–Kutta discretization scheme.

I Additional Experiment

I.1 Time Comparison
Figures 19 and 20 present the convergence of the algorithms presented in 2 and 3 in time rather than in iterations.

I.2 Stepsize Selection
In Figure 23, we plot the stepsizes taken by algorithms using linear-quadratic approximations for the pendulum
and the simple model of a car.
1. On the pendulum example, the stepsizes used by directional steps quickly tend to 1 which means that

the algorithms (GN or DDP-LQ) are then taking the largest possible stepsize for this strategy and may
exhibit quadratic convergence. On the other hand, for the regularized steps, on the pendulum example, the

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 51

regularization (i.e. the reciprocal of the stepsizes) quickly converges to 0, which means that, as the number of
iterations increases, the regularized and directional steps coincide.

2. For the car example, the step sizes for the directional steps slowly increase to one. We note yet that while
stepsizes taken by DDP-LQ and GN are similar, DDP-LQ displays a faster convergence in terms of gradient
norm. For the regularized steps, the regularizations (i.e. the reciprocal of the stepsizes) tend to remain low
and stable. As for the directional steps, the regularizations taken by regularized steps are similar between
DDP-LQ and GN, yet DDP-LQ displays faster convergence in terms of gradient norm.
In Figure 24, we compare the stepsizes taken by the methods using quadratic approximations.

1. In terms of directional steps, DDP-Q appears to take relatively large steps while its NE counterpart displays
more variations on, e.g., the pendulum example. For both algorithms, the stepsizes tend to oscillate for the
car example, never steadily taking full steps (stepsize of 1) closer to convergence.

2. In terms of regularized steps, DDP-Q tends to take larger steps (smaller regularizations) than its Newton
counterpart, in particular on the car example.

I.3 Comparison of Inner Solver
As presented in Appendix G, we may consider using directly Hessian-vector products to solve the linear quadratic
controls arising from the computation of Gauss–Newton and Newton steps. In Figure 27, we plotted the ratio
of time between an implementation using dynamic programming and an implementation using matrix-free
solvers for varying dimensions of the state, the control and various horizons on synthetic linear quadratic control
problems. Namely, for each triplet (nx, nu, τ), we generated five linear quadratic control problems, solved each
problem as if those were nonlinear dynamics for which we are computing a Gauss–Newton step, by using each of
the aforementioned methods. We then averaged the time needed for each method over the five instances and
computed the ratio of time between an implementation by dynamic programming and an implementation by
matrix-free solvers. These values are recorded in a heatmap in 27, where blue cells correspond to instances
where dynamic programming is faster than the matrix-free program and red cells correspond to instances where
dynamic programming is slower than its counterpart.

The matrix-free solver approach can readily be implemented in any differentiable programming framework
such as CasADI ([2]) which takes advantage of the differentiable dynamic programming framework to cast
nonlinear control problems as numerical optimization problems fed into off-the-shelf solvers like IPOPT ([59]).

The results presented in 27 show that for small state dimensions, the dynamic programming approach is
generally faster. As soon as the state dimension exceeds a few dozen dimensions, the matrix-free approach is
generally faster. This observation matches the computation complexities delineated in Appendix G and Section 5
as the matrix-free approach a priori scales quadratically in terms of the state dimension while the dynamic
programming approach scales cubically.

Beyond the time comparisons, each approach has different advantages. The matrix-free approach enables
simple introduction of constraints in control variables by casting the whole problem as an optimization problem
solved by interior-point methods. On the other-hand, the dynamic programming approach can be adapted to
differential dynamic programming procedures as explained in this manuscript.

We already presented in Section 6 numerical comparisons in iterations of classical optimization methods
(Gauss–Newton or Newton) against their differential dynamic programming counterparts (iLQR or DDP). By
using matrix-free solvers instead of dynamic programming procedures to implement Gauss–Newton or Newton
steps, these behaviors in iterations would not change. The comparisons in time presented in Figure 19 and
Figure 20 can change by using matrix-free solvers as suggested by the heatmaps presented in Figure 27. However,
the qualitative conclusions presented in this manuscript remain the same and suggest that differential dynamic
programming methods may offer overall gains over classical optimization algorithms.

52 Iterative Linear Quadratic Optimization

100 101 102

Time

10 3

10 2

10 1

100

101

Co
st

Horizon = 25

100 101 102

Time
10 3

10 2

10 1

100

101

Co
st

Swinging up Pendulum

Horizon = 50

100 101 102

Time

10 2

10 1

100

101

Co
st

Horizon = 100

100 101 102 103

Time

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 25

101 103

Time

10 3

10 2

10 1

100

101

102

Co
st

Swinging up Pendulum on a Cart

Horizon = 50

101 103

Time

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 100

100 101 102 103

Time

10 1

100

101

102

Co
st

Horizon = 25

100 101 102 103

Time
10 2

10 1

100

101

102

Co
st

Simple Model of Car with Tracking Cost

Horizon = 50

100 101 102 103

Time
10 2

10 1

100

101

102

Co
st

Horizon = 100

100 101 102 103

Time

10 2

10 1

100

Co
st

Horizon = 25

100 101 102 103

Time

10 2

10 1

100

101

Co
st

Bicycle Model of Car with Contouring Cost

Horizon = 50

101 103

Time

10 2

10 1

100

101

Co
st

Horizon = 100

GD GN reg GN dir DDP-LQ reg DDP-LQ dir

Figure 19 Cost along computational time on various control problems (see Appendix H) with
algorithms using linear (GD) or linear-quadratic approximations (GN, DDP-LQ, see Figure 1 for
taxonomy details) and directional (dir (43)) or regularized (reg (45)) steps.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 53

100 101

Time

10 3

10 2

10 1

100

101

Co
st

Horizon = 25

100 101

Time
10 3

10 2

10 1

100

101

Co
st

Swinging up Pendulum

Horizon = 50

100 101

Time

10 2

10 1

100

101

Co
st

Horizon = 100

100 101 102 103

Time

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 25

101 103

Time

10 3

10 2

10 1

100

101

102

Co
st

Swinging up Pendulum on a Cart

Horizon = 50

101 103 105

Time

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 100

100 101 102 103

Time

10 1

100

101

Co
st

Horizon = 25

100 101 102 103

Time

10 1

100

101

102

Co
st

Simple Model of Car with Tracking Cost

Horizon = 50

101 103

Time
10 1

100

101

102

Co
st

Horizon = 100

101 103

Time

10 2

10 1

100

Co
st

Horizon = 25

101 103 105

Time

10 2

10 1

100

101

Co
st

Bicycle Model of Car with Contouring Cost

Horizon = 50

101 103 105

Time

10 2

10 1

100

101

Co
st

Horizon = 100

NE reg NE dir DDP-Q reg DDP-Q dir

Figure 20 Cost along computational time on various control problems (see Appendix H) with
algorithms using quadratic approximations (NE, DDP-Q, see Figure 1 for taxonomy details) and
directional (dir (43)) or regularized (reg (45)) steps.

54 Iterative Linear Quadratic Optimization

101 103

Iterations

10 12

10 9

10 6

10 3

100

Gr
ad

ie
nt

 N
or

m
Horizon = 25

101 103

Iterations

10 11

10 8

10 5

10 2

Gr
ad

ie
nt

 N
or

m

Swinging up Pendulum

Horizon = 50

101 103

Iterations

10 11

10 9

10 7

10 5

10 3

10 1

Gr
ad

ie
nt

 N
or

m

Horizon = 100

101 103 105

Iterations

10 9

10 6

10 3

100

103

Gr
ad

ie
nt

 N
or

m

Horizon = 25

101 103 105

Iterations

10 8

10 5

10 2

101

104

Gr
ad

ie
nt

 N
or

m
Swinging up Pendulum on a Cart

Horizon = 50

101 103 105

Iterations

10 9

10 6

10 3

100

103

Gr
ad

ie
nt

 N
or

m

Horizon = 100

101 103

Iterations

10 9

10 6

10 3

100

Gr
ad

ie
nt

 N
or

m

Horizon = 25

101 103

Iterations

10 9

10 7

10 5

10 3

10 1

101

Gr
ad

ie
nt

 N
or

m

Simple Model of Car with Tracking Cost

Horizon = 50

101 103

Iterations

10 9

10 7

10 5

10 3

10 1

101

Gr
ad

ie
nt

 N
or

m
Horizon = 100

100 101 102

Iterations

10 9

10 7

10 5

10 3

10 1

101

Gr
ad

ie
nt

 N
or

m

Horizon = 25

100 101 102

Iterations

10 9

10 6

10 3

100

Gr
ad

ie
nt

 N
or

m

Bicycle Model of Car with Contouring Cost

Horizon = 50

100 101 102

Iterations

10 9

10 6

10 3

100

Gr
ad

ie
nt

 N
or

m

Horizon = 100

GD GN reg GN dir DDP-LQ reg DDP-LQ dir

Figure 21 Gradient norm along iterations on various control problems (see Appendix H) with
algorithms using linear (GD) or linear-quadratic approximations (GN, DDP-LQ, see Figure 1 for
taxonomy details) and directional (dir (43)) or regularized (reg (45)) steps.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 55

100 101 102

Iterations

10 15

10 12

10 9

10 6

10 3

100

Gr
ad

ie
nt

 N
or

m
Horizon = 25

100 101 102

Iterations

10 16

10 13

10 10

10 7

10 4

10 1

Gr
ad

ie
nt

 N
or

m

Swinging up Pendulum

Horizon = 50

100 101

Iterations

10 16

10 13

10 10

10 7

10 4

10 1

Gr
ad

ie
nt

 N
or

m

Horizon = 100

101 103

Iterations

10 12

10 9

10 6

10 3

100

103

Gr
ad

ie
nt

 N
or

m

Horizon = 25

101 103

Iterations

10 10

10 7

10 4

10 1

102

105

Gr
ad

ie
nt

 N
or

m
Swinging up Pendulum on a Cart

Horizon = 50

101 103

Iterations

10 9

10 6

10 3

100

103

Gr
ad

ie
nt

 N
or

m

Horizon = 100

100 101 102 103

Iterations

10 13

10 10

10 7

10 4

10 1

102

Gr
ad

ie
nt

 N
or

m

Horizon = 25

100 101 102 103

Iterations

10 12

10 9

10 6

10 3

100

Gr
ad

ie
nt

 N
or

m

Simple Model of Car with Tracking Cost

Horizon = 50

100 101 102 103

Iterations

10 12

10 9

10 6

10 3

100

103

Gr
ad

ie
nt

 N
or

m
Horizon = 100

100 101 102 103

Iterations

10 13

10 10

10 7

10 4

10 1

102

Gr
ad

ie
nt

 N
or

m

Horizon = 25

100 101 102 103

Iterations

10 13

10 10

10 7

10 4

10 1

102

Gr
ad

ie
nt

 N
or

m

Bicycle Model of Car with Contouring Cost

Horizon = 50

100 101 102 103

Iterations

10 13

10 10

10 7

10 4

10 1

102

Gr
ad

ie
nt

 N
or

m

Horizon = 100

NE reg NE dir DDP-Q reg DDP-Q dir

Figure 22 Gradient norm along iterations on various control problems (see Appendix H) with
algorithms using quadratic approximations (NE, DDP-Q, see Figure 1 for taxonomy details) and
directional (dir (43)) or regularized (reg (45)) steps.

56 Iterative Linear Quadratic Optimization

100 101

Iterations

10 2

10 1

100

St
ep

siz
e

Horizon = 25

100 101

Iterations

10 7

10 5

10 3

10 1

St
ep

siz
e

Swinging up Pendulum

Horizon = 50

100 101

Iterations

10 6

10 4

10 2

100

St
ep

siz
e

Horizon = 100

100 101

Iterations

10 8

10 5

10 2

101

104

St
ep

siz
e

Horizon = 25

100 101

Iterations

10 15

10 10

10 5

100

105

1010

St
ep

siz
e

Horizon = 50

100 101

Iterations

10 13

10 7

10 1

105

1011

1017

St
ep

siz
e

Horizon = 100

100 101 102

Iterations

10 2

10 1

100

St
ep

siz
e

Horizon = 25

100 101

Iterations

10 2

10 1

100

St
ep

siz
e

Simple Model of Car with Tracking Cost

Horizon = 50

100 101 102 103

Iterations

10 2

10 1

100

St
ep

siz
e

Horizon = 100

100 101 102

Iterations

10 12

10 9

10 6

10 3

100

103

St
ep

siz
e

Horizon = 25

100 101 102

Iterations

10 12

10 8

10 4

100

104

St
ep

siz
e

Horizon = 50

100 101 102

Iterations

10 14

10 10

10 6

10 2

102

St
ep

siz
e

Horizon = 100

GN dir DDP-LQ dir GN reg DDP-LQ reg

Figure 23 Stepsizes taken along the iterations on various control problems (see Appendix H) with
algorithms using linear (GD) or linear-quadratic approximations (GN, DDP-LQ, see Figure 1 for
taxonomy details) and directional (dir (43)) or regularized (reg (45)) steps.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 57

100 101 102

Iterations

10 3

10 2

10 1

100

St
ep

siz
e

Horizon = 25

100 101 102

Iterations

10 5

10 3

10 1

St
ep

siz
e

Swinging up Pendulum

Horizon = 50

100 101

Iterations

10 5

10 4

10 3

10 2

10 1

100

St
ep

siz
e

Horizon = 100

100 101

Iterations

10 5

10 3

10 1

101

103

St
ep

siz
e

Horizon = 25

100 101

Iterations

10 14

10 10

10 6

10 2

102

St
ep

siz
e

Horizon = 50

100 101

Iterations

10 13

10 9

10 5

10 1

103

St
ep

siz
e

Horizon = 100

100 101 102 103

Iterations

10 4

10 3

10 2

10 1

100

St
ep

siz
e

Horizon = 25

100 101 102 103

Iterations

10 5

10 4

10 3

10 2

10 1

100

St
ep

siz
e

Simple Model of Car with Tracking Cost

Horizon = 50

100 101 102 103

Iterations

10 5

10 3

10 1

St
ep

siz
e

Horizon = 100

100 101 102

Iterations

10 9

10 6

10 3

100

103

106

St
ep

siz
e

Horizon = 25

100 101 102

Iterations

10 8

10 5

10 2

101

104

St
ep

siz
e

Horizon = 50

100 101 102 103

Iterations

10 12

10 8

10 4

100

104

St
ep

siz
e

Horizon = 100

NE dir DDP-Q dir NE reg DDP-Q reg

Figure 24 Stepsizes taken along the iterations on various control problems (see Appendix H) with
algorithms using quadratic approximations (NE, DDP-Q, see Figure 1 for taxonomy details) and
directional (dir (43)) or regularized (reg (45)) steps.

58 Iterative Linear Quadratic Optimization

101 103

Iterations

10 3

10 2

10 1

100

101

Co
st

Horizon = 25

101 103

Iterations
10 3

10 2

10 1

100

101

Co
st

Swinging up Pendulum

Horizon = 50

101 103

Iterations

10 2

10 1

100

101

Co
st

Horizon = 100

101 103 105

Iterations

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 25

101 103 105

Iterations

10 3

10 2

10 1

100

101

102

Co
st

Swinging up Pendulum on a Cart

Horizon = 50

101 103 105

Iterations

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 100

101 103

Iterations

10 1

100

101

102

Co
st

Horizon = 25

101 103

Iterations
10 2

10 1

100

101

102

Co
st

Simple Model of Car with Tracking Cost

Horizon = 50

101 103

Iterations
10 2

10 1

100

101

102

Co
st

Horizon = 100

100 101 102 103

Iterations

10 2

10 1

100

Co
st

Horizon = 25

100 101 102 103

Iterations

10 2

10 1

100

101

Co
st

Bicycle Model of Car with Contouring Cost

Horizon = 50

100 101 102 103

Iterations

10 2

10 1

100

101

Co
st

Horizon = 100

GN reg
GN dir

DDP-LQ reg
DDP-LQ dir

NE reg
NE dir

DDP-Q dir
DDP-Q reg

GD

Figure 25 Cost along iterations on various control problems (see Appendix H) with the algorithms
presented in Figure 1 and directional (dir (43)) or regularized (reg (45)) steps.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 59

100 101 102

Time

10 3

10 2

10 1

100

101

Co
st

Horizon = 25

100 101 102

Time
10 3

10 2

10 1

100

101

Co
st

Swinging up Pendulum

Horizon = 50

100 101 102

Time

10 2

10 1

100

101

Co
st

Horizon = 100

100 101 102 103

Time

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 25

101 103

Time

10 3

10 2

10 1

100

101

102

Co
st

Swinging up Pendulum on a Cart

Horizon = 50

101 103 105

Time

10 3

10 2

10 1

100

101

102

Co
st

Horizon = 100

100 101 102 103

Time

10 1

100

101

102

Co
st

Horizon = 25

100 101 102 103

Time
10 2

10 1

100

101

102

Co
st

Simple Model of Car with Tracking Cost

Horizon = 50

101 103

Time
10 2

10 1

100

101

102

Co
st

Horizon = 100

101 103

Time

10 2

10 1

100

Co
st

Horizon = 25

101 103 105

Time

10 2

10 1

100

101

Co
st

Bicycle Model of Car with Contouring Cost

Horizon = 50

101 103 105

Time

10 2

10 1

100

101

Co
st

Horizon = 100

GN reg
GN dir

DDP-LQ reg
DDP-LQ dir

NE reg
NE dir

DDP-Q dir
DDP-Q reg

GD

Figure 26 Cost along computational time on various control problems (see Appendix H) with the
algorithms presented in Figure 1 and directional (dir (43)) or regularized (reg (45)) steps.

60 Iterative Linear Quadratic Optimization

2 4 8 16 32 64 12
8

Control Dim.

2
4

8
16

32
64

12
8

St
at

e
Di

m
.

Horizon 8

2 4 8 16 32 64 12
8

Control Dim.

2
4

8
16

32
64

12
8

St
at

e
Di

m
.

Horizon 16

2 4 8 16 32 64 12
8

Control Dim.

2
4

8
16

32
64

12
8

St
at

e
Di

m
.

Horizon 32

2 4 8 16 32 64 12
8

Control Dim.

2
4

8
16

32
64

12
8

St
at

e
Di

m
.

Horizon 64

2 4 8 16 32 64 12
8

Control Dim.

2
4

8
16

32
64

12
8

St
at

e
Di

m
.

Horizon 128

2 4 8 16 32 64 12
8

Control Dim.

2
4

8
16

32
64

12
8

St
at

e
Di

m
.

Horizon 256

10 1 100 101 102

Dyn. Prog. Time / Matrix Free Time

Figure 27 Comparison of time needed to solve synthetic linear quadratic control problems with
either a matrix-free implementation or a dynamic programming implementation as presented in this
manuscript. Blue cells indicate that dynamic programming is faster than matrix-free procedures, while
red cells indicate the opposite.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 61

References

1 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems, 2015. https://tensorflow.org/.

2 Joel A. E. Andersson, Joris Gillis, Greg Horn, James Rawlings, and Moritz Diehl. CasADi – A software framework
for nonlinear optimization and optimal control. Math. Program. Comput., 11:1–36, 2019.

3 Antoine Bambade, Sarah El-Kazdadi, Adrien Taylor, and Justin Carpentier. Prox-QP: Yet another quadratic
programming solver for robotics and beyond. RSS 2022-Robotics: Science and Systems, 2022.

4 Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor. Comput. Sci., 22(3):317–330, 1983.
5 Atilim Gunes Baydin, Barak Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic

differentiation in machine learning: a survey. J. Mach. Learn. Res., 18: article no. 153 (43 pages), 2018.
6 Richard Bellman. Introduction to the mathematical theory of control processes. Vol. II: Nonlinear processes, volume

40-II of Mathematics in Science and Engineering. Academic Press Inc., 1971.
7 John Betts. Practical methods for optimal control and estimation using nonlinear programming. Society for Industrial

and Applied Mathematics, 2010.
8 Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct solution of optimal control problems.

IFAC Proceedings Volumes, 17(2):1603–1608, 1984.
9 Jerome Bolte and Edouard Pauwels. A mathematical model for automatic differentiation in machine learning. In

Proceedings of the 34rd International Conference on Neural Information Processing Systems. Curran Associates,
Inc., 2020.

10 Stephen Boyd and Lieven Vandenberghe. Semidefinite programming relaxations of non-convex problems in control
and combinatorial optimization. In Communications, Computation, Control, and Signal Processing, pages 279–287.
Springer, 1997.

11 Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press, 2004.
12 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George

Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations
of Python+NumPy programs, 2018. version 0.3.13, https://github.com/google/jax.

13 Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird, Bethany L. Nicholson, John D. Siirola,
Jean-Paul Watson, and David L. Woodruff. Pyomo–optimization modeling in python, volume 67 of Springer
Optimization and Its Applications. Springer, third edition, 2021.

14 Moritz Diehl, Hans Georg Bock, Holger Diedam, and P.-B. Wieber. Fast direct multiple shooting algorithms for
optimal robot control. In Fast motions in biomechanics and robotics: optimization and feedback control, volume 340
of Lecture Notes in Control and Information Sciences, pages 65–93. Springer, 2006.

15 Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. Efficient numerical methods for nonlinear MPC and
moving horizon estimation. In Nonlinear model predictive control: towards new challenging applications, volume 384
of Lecture Notes in Control and Information Sciences, pages 391–417. Springer, 2009.

16 Joseph Dunn and Dimitri Bertsekas. Efficient dynamic programming implementations of Newton’s method for
unconstrained optimal control problems. J. Optim. Theory Appl., 63(1):23–38, 1989.

17 Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language for mathematical optimization. SIAM
Rev., 59(2):295–320, 2017.

18 Farbod Farshidian, Michael Neunert, Alexander W. Winkler, Gonzalo Rey, and Jonas Buchli. An efficient optimal
planning and control framework for quadrupedal locomotion. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 93–100. IEEE, 2017.

19 Janick V. Frasch, Sebastian Sager, and Moritz Diehl. A parallel quadratic programming method for dynamic
optimization problems. Math. Program. Comput., 7(3):289–329, 2015.

20 Markus Giftthaler, Michael Neunert, Markus Stäuble, Jonas Buchli, and Moritz Diehl. A family of iterative
Gauss-Newton shooting methods for nonlinear optimal control. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1–9. IEEE, 2018.

21 Jean Charles Gilbert. Automatic differentiation and iterative processes. Optim. Methods Softw., 1(1):13–21, 1992.
22 Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An SQP algorithm for large-scale constrained

optimization. SIAM Rev., 47(1):99–131, 2005.
23 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.
24 Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic differentia-

tion. Society for Industrial and Applied Mathematics, 2008.

https://tensorflow.org/
https://github.com/google/jax

62 Iterative Linear Quadratic Optimization

25 Boris Houska and Moritz Diehl. A quadratically convergent inexact SQP method for optimal control of differential
algebraic equations. Optim. Control Appl. Methods, 34(4):396–414, 2013.

26 David Jacobson and David Mayne. Differential Dynamic Programming. Elsevier, 1970.
27 Wilson Jallet, Antoine Bambade, Etienne Arlaud, Sarah El-Kazdadi, Nicolas Mansard, and Justin Carpentier.

Proxddp: Proximal constrained trajectory optimization. 2023.
28 Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun. Information theoretic

regret bounds for online nonlinear control. Adv. Neural Inf. Process. Syst., 33:15312–15325, 2020.
29 Yann LeCun. A theoretical framework for back-propagation. In 1988 Connectionist Models Summer School, CMU,

Pittsburg, PA, 1988.
30 Weiwei Li and Emanuel Todorov. Iterative linearization methods for approximately optimal control and estimation

of non-linear stochastic system. Int. J. Control, 80(9):1439–1453, 2007.
31 Li-Zhi Liao and Christine Shoemaker. Convergence in unconstrained discrete-time differential dynamic programming.

IEEE Trans. Autom. Control, 36(6):692–706, 1991.
32 Li-Zhi Liao and Christine Shoemaker. Advantages of differential dynamic programming over Newton’s method for

discrete-time optimal control problems. Technical report, Cornell University, 1992.
33 Alexander Liniger, Alexander Domahidi, and Manfred Morari. Optimization-based autonomous racing of 1: 43 scale

RC cars. Optim. Control Appl. Methods, 36(5):628–647, 2015.
34 Pierre-Louis Lions. Generalized Solutions of Hamilton-Jacobi Equations. Pitman, 1982.
35 Mohamed Magdy, Abdallah El Marhomy, and Mahmoud A. Attia. Modeling of inverted pendulum system with

gravitational search algorithm optimized controller. Ain Shams Engineering Journal, 10(1):129–149, 2019.
36 David Mayne and Elijah Polak. First-order strong variation algorithms for optimal control. J. Optim. Theory Appl.,

16(3):277–301, 1975.
37 Florian Messerer, Katrin Baumgärtner, and Moritz Diehl. Survey of sequential convex programming and generalized

Gauss–Newton methods. ESAIM, Proc. Surv., 71:64–88, 2021.
38 Donald Murray and Sidney Yakowitz. Differential dynamic programming and Newton’s method for discrete optimal

control problems. J. Optim. Theory Appl., 43(3):395–414, 1984.
39 Yurii Nesterov. Lectures on convex optimization. Springer, 2018.
40 John Nganga and Patrick Wensing. Accelerating Second-Order Differential Dynamic Programming for Rigid-Body

Systems. IEEE Robotics and Automation Letters, 6(4):7659–7666, 2021.
41 Jorge Nocedal and Stephen Wright. Numerical optimization. Springer, 2006.
42 J. Pantoja. Differential dynamic programming and Newton’s method. Int. J. Control, 47(5):1539–1553, 1988.
43 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, pages 8026–8037. Curran Associates, Inc., 2019.

44 Elijah Polak. Computational methods in optimization: a unified approach, volume 77 of Mathematics in Science and
Engineering. Academic Press Inc., 1971.

45 Christopher Rao, Stephen Wright, and James Rawlings. Application of interior-point methods to model predictive
control. J. Optim. Theory Appl., 99(3):723–757, 1998.

46 Benjamin Recht. A tour of reinforcement learning: The view from continuous control. Annual Review of Control,
Robotics, and Autonomous Systems, 2:253–279, 2019.

47 Vincent Roulet, Siddhartha Srinivasa, Dmitriy Drusvyatskiy, and Zaid Harchaoui. Iterative linearized control: stable
algorithms and complexity guarantees. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 5518–5527. JMLR, 2019.

48 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

49 Jürgen Schmidhuber. Making the world differentiable: on using self supervised fully recurrent neural networks for
dynamic reinforcement learning and planning in non-stationary environments. Technical report, Inst. für Informatik,
1990.

50 Athanasios Sideris and James Bobrow. An efficient sequential linear quadratic algorithm for solving nonlinear
optimal control problems. In Proceedings of the 2005 American Control Conference, pages 2275–2280. IEEE, 2005.

51 Akshay Srinivasan and Emanuel Todorov. Graphical Newton. https://arxiv.org/abs/1508.00952, 2015.
52 Yuval Tassa, Tom Erez, and William Smart. Receding horizon differential dynamic programming. Adv. Neural Inf.

Process. Syst., 20, 2007.
53 Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors through online

trajectory optimization. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
4906–4913. IEEE, 2012.

54 Yuval Tassa, Nicolas Mansard, and Emanuel Todorov. Control-limited differential dynamic programming. In 2014

https://arxiv.org/abs/1508.00952

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel & Zaid Harchaoui 63

IEEE International Conference on Robotics and Automation (ICRA), pages 1168–1175. IEEE, 2014.
55 Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In International

Conference on Intelligent Robots and Systems (IROS), pages 5026–5033. IEEE, 2012.
56 Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Jonathan Frey, Niels van Duijkeren, Andrea Zanelli,

Branimir Novoselnik, Thivaharan Albin, Rien Quirynen, and Moritz Diehl. acados — a modular open-source
framework for fast embedded optimal control. Math. Program. Comput., 14:147–183, 2022.

57 Robin Verschueren, Niels van Duijkeren, Rien Quirynen, and Moritz Diehl. Exploiting convexity in direct optimal
control: a sequential convex quadratic programming method. In 2016 IEEE 55th Conference on Decision and
Control (CDC), pages 1099–1104. IEEE, 2016.

58 Oskar Von Stryk. Numerical solution of optimal control problems by direct collocation. Springer, 1993.
59 Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-search algorithm for

large-scale nonlinear programming. Math. Program., 106:25–57, 2006.
60 Paul Werbos. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting.

Wiley-Interscience, 1994.
61 Stephen Wright. Solution of discrete-time optimal control problems on parallel computers. Parallel Comput.,

16(2-3):221–237, 1990.
62 Stephen Wright. Partitioned dynamic programming for optimal control. SIAM J. Optim., 1(4):620–642, 1991.
63 Stephen Wright. Structured interior point methods for optimal control. In Proceedings of the 30th IEEE Conference

on Decision and Control, pages 1711–1716. IEEE, 1991.
64 Stephen Wright. Interior point methods for optimal control of discrete time systems. J. Optim. Theory Appl.,

77(1):161–187, 1993.
65 Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep Learning. Cambridge University

Press, 2023.

	Introduction
	From Linear Quadratic Control Problem to Nonlinear Control Algorithm
	Dynamic Programming
	Linear Dynamic, Quadratic Cost
	Nonlinear Control Algorithm Example

	Classical Optimization Oracle
	Formulation
	Implementation

	Differential Dynamic Programming Oracle
	Rationale
	Detailed Derivation of the Backward Passes
	Implementation

	Computational Complexity
	Experiments
	Linear Quadratic Approximation
	Quadratic Approximation

	Acknowledgments
	Tensor Notation
	Related Work
	Proofs
	Linear Quadratic Control
	Oracle Decomposition

	Line-search
	Rule
	Implementation

	Detailed Computational Scheme
	Computational Complexity in a Differentiable Programming Framework
	Alternative Resolution of Linear-Quadratic Control Problem
	Block Band Diagonal Underlying Structure
	Riccati-Based Implementation
	Parallel Implementation
	Matrix-free Solver

	Experimental Detail
	Discretization
	Swinging up a Pendulum
	Autonomous Car Racing
	Numerical Constant

	Additional Experiment
	Time Comparison
	Stepsize Selection
	Comparison of Inner Solver

