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Abstract

A classical approach for solving discrete time nonlinear control on a finite horizon consists
in repeatedly minimizing linear quadratic approximations of the original problem around
current candidate solutions. While widely popular in many domains, such an approach has
mainly been analyzed locally. We provide detailed convergence guarantees to stationary
points as well as local linear convergence rates for the Iterative Linear Quadratic Regulator
(ILQR) algorithm and its differential dynamic programming variant (iLQR). For problems
without costs on control variables, we observe that global convergence to minima can be
ensured provided that the linearized discrete time dynamics are surjective, costs on the state
variables are gradient dominated. We further detail quadratic local convergence when the
costs are self-concordant. We show that surjectivity of the linearized dynamics hold for
appropriate discretization schemes given the existence of a feedback linearization scheme.
We present complexity bounds of algorithms based on linear quadratic approximations
through the lens of generalized Gauss-Newton methods. Our analysis uncovers several
convergence phases for regularized generalized Gauss-Newton algorithms.
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1. Introduction

We consider nonlinear control problems in discrete time of the form

T—1
ot R Z he(ze, ut) + he(z7) (1)
xg,...,er ER™® t=0

subject to  xpy1 = fi(wy,ug) fort € {0,...,7—1}, o = T,

where at the time index t, x; is the state of the system, u; is the control applied to the
system, f; is the discretized nonlinear dynamic, h; is the cost applied to the system state
and the control variable, and Zg is a given fixed initial state.

Problems of the form (1) have been tackled in various ways, from direct approaches
using nonlinear optimization (Jacobson and Mayne, 1970; Bock and Plitt, 1984; Pantoja,
1988; Dunn and Bertsekas, 1989; Wright, 1990, 1991a; Rao et al., 1998; Betts, 2010) to
convex relaxations using semidefinite optimization (Boyd and Vandenberghe, 1997). Nu-
merous packages exist for such problems such as CasAdi (Andersson et al., 2018), Py-
omo (Bynum et al., 2021), JumP (Dunning et al., 2017), IPOPT (Wé&chter and Biegler,
2006), or SNOPT (Gill et al., 2005), Crocoddyl (Jallet et al., 2023), acados (Verschueren
et al., 2021). A popular approach of the former category proceeds by computing at each
iteration the linear quadratic regulator associated to a linear quadratic approximation of
the problem around the current candidate solutions (Jacobson and Mayne, 1970; Li and
Todorov, 2004; Sideris and Bobrow, 2005; Tassa et al., 2012). The resulting feedback pol-
icy can then be applied on the linearized dynamics as in the Iterative Linear Quadratic
Regulator (ILQR) algorithm (Rawlings et al., 2017, Section 8.8.5), (Li and Todorov, 2004;
Sideris and Bobrow, 2005). Alternatively, the feedback policy can be applied on the origi-
nal dynamics, as in the iterative Linear Quadratic Regulator (iLQR) algorithm (Rawlings
et al., 2017, Sectin 8.8.6), (Tassa et al., 2012), akin to a Differential Dynamic Program-
ming (DDP) approach (Mayne, 1966). To avoid confusion, we name this second approach
Iterative Dynamic Differentiable Programming (IDDP).

Motivation. FEmpirically, these approaches often exhibit fast convergence to efficient or
optimal controllers which explain their popularity in applied control (Tassa et al., 2012; Gift-
thaler et al., 2018) and the renewed interest for linear quadratic control in neuro-dynamic
programming and reinforcement learning (Fazel et al., 2018; Recht, 2019; Kakade et al.,
2020; Simchowitz and Foster, 2020; Westenbroek et al., 2021). The empirical performance
of the ILQR and IDDP algorithms are illustrated in Fig. 1. The first problem considered
in Fig. 1 consists in swinging up a pendulum to a vertical position in finite time, the sec-
ond problem consists in controlling a simple model of a car to be at predefined positions
at given times. The detailed experimental setting is presented in Appendix I. Most im-
portantly, the costs consists in quadratic state costs bounded below by 0, i.e., of the form
he(zs,us) = (v — 2¢) T Q¢ (s — @) for Qg positive definite and &; a reference state. In Fig. 1,
we plot (¥ / (9 in log-scale, where ¢(*) > 0 denotes the total cost at iteration k computed
by means of a gradient descent, an ILQR algorithm or an IDPP algorithm, and ¢(©) denotes
an initial cost given by initializing the control variables at 0. We observe that both the
ILQR and the IDDP algorithms converge to an optimal cost, i.e., ¢®) — 0. Moreover, both
algorithms outperform a simple gradient descent and appear to exhibit a fast convergence
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Figure 1: Cost along iterations of ILQR, IDDP and Gradient Descent (GD) on two discrete
time nonlinear control problems detailed in Section 5.

after some iterations. The empirical behavior illustrated in Fig. 1 does not hold for any
nonlinear control problem as illustrated in Appendix I with a more realistic model of a car
taken from Liniger et al. (2015). Yet, the examples presented in Fig. 1 are surprising from
an optimization viewpoint as the problems considered escape the usual paradigm of convex
or linear optimization.

The empirical efficiency of ILQR and IDDP on some nonlinear control problems as the
ones illustrated in Fig. 1 motivates then the following questions.

1. What conditions on a discrete time nonlinear control problem ensure algorithms such
as ILQR and IDDP converge to a globally optimal solution?

2. What convergence behaviors can we expect from these algorithms?

We first present generic convergence results for the ILQR and IDDP algorithms that
ensure their global convergence to stationary points and local convergence to minima in
Theorems 2 and 3. However, the aforementioned convergence results do not explain the
convergence to global minima observed in Fig. 1.

We then turn our attention to nonlinear control problems without control costs and
with time-invariant dynamics f, i.e., problems of the form

]

i h 2

oL iDL t(we) (2)
zg,...,xr ER™® t=1

subject to  x¢y1 = f(z,uy) fort € {0,...,7—1}, Ty = Tg.

Considering time-invariant dynamics make clearer the relationship with the underlying con-
tinuous dynamical system. Generalizations to time-variant systems are pointed out when
applicable. However, problems of the form (2) conserve the main challenge of generic dis-
crete time control problems (1), that is, the nonlinearity of the dynamics, which prevent
us from using classical results from convex analysis even if the state costs are convex. The
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nonlinearity of the dynamics distinguish problems (2) from the linear quadratic settings
recently studied by, e.g., (Fazel et al., 2018; Zhang et al., 2019, 2020; Sun and Fazel, 2021,
Lin et al., 2021) for which global convergence of policy methods have been shown by means
of algebraic considerations. The absence of costs on controls variables restrict the problem
class compared to problems of the form (1). However, this also allows focussing on the
properties of the dynamics to understand the properties of non-convex problems (2) and
pave the way to analyze generic problems of the form (1).

Approach. Our analysis stems from observing that, for strongly convex costs, global
convergence of the ILQR or IDDP algorithms is ensured if the linearized dynamics, i.e., the
mappings v +— V, f(z,u) v, are surjective, where V, f(z,u)" € R"*" is the Jacobian of
the dynamic with respect to the control variable on a state x for a given control u. To
quantify the convergence of the ILQR and IDDP algorithms, we consider the existence of a
parameter o such that

Ve,u € R"™ x R™,  opin(Vuf(z,u)) >0 >0, (3)

where oyin(Vuf(z,u)) = infaerne ||V f(z, u)All2/||Al|2 is the minimal singular value of the
gradient of the discrete time dynamics f w.r.t. the control variable. Eq. (3) ensures the in-
jectivity of A — V, f(x,u)\ which is equivalent to the surjectivity of v — V, f(x,u) v. Our
main theorem is then stated below for strongly convex costs provided adequate smoothness
assumptions on the costs and the dynamics.

Theorem 1 In problem (2), consider costs hy that are strongly convexr with Lipschitz-
continuous gradients and Lipschitz-continuous Hessians and a dynamic f that is Lipschitz-
continuous with Lipschitz-continuous gradients. If the linearized dynamics are surjective,
i.e., [ satisfies (3), then a regularized ILQR or IDDP algorithm converges to a global
minimum with a local quadratic convergence rate.

Our analysis is based on decomposing the problem at several scales. At the scale of the
trajectory, the objective can be seen as the composition of a total cost function and a func-
tion, which, given a sequence of controls, outputs the corresponding trajectory. From an
optimization viewpoint, the ILQR or the IDDP algorithms, which use linear quadratic ap-
proximations of the objective, amount then to generalized Gauss-Newton algorithms (Sideris
and Bobrow, 2005; Diehl and Messerer, 2019; Messerer et al., 2021). One contribution of
this work is then to detail the convergence rates of regularized generalized Gauss-Newton
algorithms for the composition of an outer strongly convex function and an inner function
with non-singular transpose Jacobians.

Both algorithms take advantage of the dynamical structure of the problem to implement
a step of a Gauss-Newton algorithm. Similarly, the convergence guarantees for the ILQR
or IDDP algorithms can be detailed using the properties of the problem at the scale of a
single time step. In particular, condition (3) entails a simple condition on the dynamic to
ensure global convergence.

Finally, the dynamic itself can further be decomposed at the scale of the discretization
method used to define the discrete time control problem. Condition (3) may then be ensured
by considering a multi-rate sampling method, i.e., sampling the control variables at a higher
rate than the sampling of the costs on the state variables. By combining all aforementioned
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scales, we obtain worst-case convergence guarantees to global optima for the ILQR and
IDDP algorithms.

Outline. We start by presenting classical nonlinear control algorithms for problem (2),
i.e., the Iterative Linear Quadratic Regulator (ILQR) and the iterative Linear Quadratic
Regulator (IDDP) algorithms, in Sec. 2.1 and Sec. 2.2, and cast them as closed-box oracles.
We provide convergence guarantees to stationary points of both algorithms for generic prob-
lems of the form (1), as well as linear local convergence guarantees in Sec. 2.3. We analyze
the properties of problem (2) with respect to the dynamics f in terms of smoothness and
surjectivity of the linearized dynamics in Sec. 3.1. We further decompose the properties of
the dynamic f with respect to the underlying discretization scheme in Sec. 3.2. We analyze
the convergence of the ILQR and IDDP algorithms in, respectively, Sec. 4.2, Sec. 4.3. In
particular, in Sec. 4.2.1, we demonstrate the global convergence of the ILQR algorithm pro-
vided that the costs are gradient dominated, the dynamics have surjective linearizations (3)
and both costs and dynamics are smooth. We show the local quadratic convergence of the
ILQR algorithm provided that the costs are self-concordant, the dynamics have surjective
linearizations (3) and both costs and dynamics satisfy appropriate smoothness conditions
in Sec. 4.2.2. Theorem 1 is detailed for the ILQR algorithm in Sec. 4.2.3 and convergence
of the IDDP algorithm is analyzed in Sec. 4.3. Numerical experiments are presented in
Section 5 to assess the theoretical findings. We discuss related work in Section 6.

Additional numerical illustrations of the ILQR and IDDP algorithms can be found in
the companion report (Roulet et al., 2022) and reproduced or further explored by using the
companion toolbox https://github.com/vroulet/ilqc.

Summary of contributions. For problems of the form (1), we demonstrate global con-
vergence to stationary points and local linear convergence to minima of both ILQR and
IDDP algorithms under usual regularity assumptions (Theorems 2, 3). For problems of the
form (2), we make the following contributions.

1. We present sufficient conditions for global convergence to a minimum of the problem
through the lens of a gradient-dominating property of the objective. Namely, we show
that a gradient-dominating property of the objective can be decomposed into the
properties of the discrete time dynamic and ensured for appropriate discretization
schemes (Lemma 6, Theorem 10).

2. We prove that the ILQR algorithm converges globally to a minimum if the cost is
smooth, gradient dominated, and if the dynamic is smooth with non-singular transpose
Jacobians (3) (Theorem 13).

3. We prove that the ILQR algorithm converges locally with a quadratic rate if the cost is
smooth and self-concordant, and if the dynamic is smooth with non-singular transpose
Jacobians (3) (Theorem 18).

4. We show and detail the global and local convergence to minima of both ILQR and
IDDP algorithms for smooth and strongly convex costs and smooth dynamic with
non-singular transpose Jacobians (3) (Theorems 21 and 24).

5. Inspired from the theoretical findings, we also present a line-search variant of the ILQR.
algorithm that keep the same global and local convergence guarantees to minima, while
not requiring any knowledge of problems constants (Corollary 23).
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Notations. For a sequence of vectors z1, ...,z € R™ we denote by semicolons their con-
catenation s.t. = (z1;...;2;) € R™=. For a multivariate function f : R? — R™, we denote
V(@) = (0, fi(2))ieq1,...dyjef1,..n} € R the transpose of the Jacobian of f on z. For
fiRIXRP = R", 2 € RY, y € RP, we denote V. f(2,y) = (02, f5(x,y))ieq1,...apjef1,..n} €
R4*™ the partial transpose Jacobian of f w.r.t. 2 on (z,y). For f : R? — R, we denote
f* = mingcga f(z). For f : R - R h:R"® - R, and v € R?, we denote the linear
expansion of f around x and the quadratic expansion of h around x as, respectively,

X i 1
Fry— Vi) 'y, ¢ :y— Vh(z) y+ QyTV2h(x)y.

For f : RY — R™, we denote [ ;= SUP, yerd wty |f (@)= f(y)ll2/||z—yll2 the Lipschitz-continuity
constant of f. For amatrix A € R¥" we denote by || A|l2 = omax(A) = supyern || AN|2/[|A]l2
and omin(A) = infyern || AA||2/[|A]|2 the largest and smallest singular values of A respec-
tively.

2. Nonlinear Control Algorithms

The objective in (1) only depends on the control variables u = (ug;...;u;—1) € R™ and
can be written as

7—1

)= hilws,up) + he(zr) (4)
t=0
st @1 = fi(wg,uy), forte{0,...,7 —1}, To = Tg.

Problem (1) consists then in minimizing J. In the following, we always asumme that
J has at least one minimizer w*. The classical ILQR ((Li and Todorov, 2004; Sideris and
Bobrow, 2005)), and IDDP algorithms (Tassa et al., 2012) compute the next iterate as
Upext = w + Oracle, (J)(u), for given control variables u. Here, Oracle,(J) is an oracle,
which, given a regularization parameter v and control variables w, outputs a direction
Oracle, (J)(u). The original ILQR or IDDP algorithms did not incorporate an additional
regularization (Li and Todorov, 2004; Tassa et al., 2012). Our implementation is a variant
that leads to non-asymptotic convergence guarantees of these algorithms (Roulet et al.,
2019).

2.1 Iterative Linear Quadratic Regulator

Given control variables w = (uo;...;ur—1) with associated trajectory zi,...,z,, and a
regularization v > 0, an Iterative Linear Quadratic Regulator (ILQR) algorithm computes
the next command by computing the Linear Quadratic Regulator (LQR) associated with a
quadratic approximation of the costs and a linear approximation of the dynamics around
the current trajectory.
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Formally, the next iterate is computed as upext = u + LQR,(J)(u), where

LQR (j)(u) _ arg min 7'2_:1 (pt>T <yt> _i_} (%)T <Pt Rt> <yt> + Z”,UtHZ
v V0yennsty 1 ERM S \ Gt vt 2 \ vt Rl Qi) \v 2 2

1
+ pIyT + iy:PTyT (5)

s.t. Yt+1 :Atyt"’_Btvh fOI' t e {0,...,7'— 1},y0 :0,
with P, = V2 _ h(z;), pr = Vi he(z;),

Py =V2 bz, wg), pr= Vahe(ze, ue), for t € {0,...,7 — 1},
Q: = Vitutht(%,ut), Gt = YV, he(zy, up), fort € {0,...,7 — 1},
R, = Vzmht(azt,ut) fort €{0,...,7 — 1},
Ay =V, fi(ze,u) ", By = Vi, filze,ug) | fort € {0,...,7 —1}.

The minimum above is well-defined as long as either the costs are convex, or the regular-
ization v is large enough. The implementation of the ILQR oracle is presented in Algo. 1.
Its computational scheme is illustrated in Fig. 2.

Problem (5) is first instantiated in a forward pass by collecting all first order or second
order information on the dynamics and the costs necessary to pose problem (5).

Problem (5) is then solved by dynamic programming (Bertsekas, 2017). Namely, the
cost-to-go ¢;(y¢) from a state y, at time t is computed recursively in a backward pass as,
starting from ¢, (y;) = 54, Pryr + plyr,

ce(y) = min Tz:l s ! Ys +1 Ys ! P R Ys +5HU H2
T\t Ve Vr—1 ERM qs Vg 2 \vg R;,r Qs Vs o 17812

s=t

1
+ 07 yr + 57 Prys

s.t. ysy1 = Asys + Bsvs, for s e {t,...,7 — 1},

p\ ' (v L(y\' (P R\ (v v

. t t t t t t 2

_ z - A B

v ERn {<Qt> <vt> * 2 (Ut> <RtT Qt) <'Ut> * 2 lvellz + crrr (Aeyit tvt)}
(6)

1 .
= §ytTJtyt +y g, (7)

where Ji, j; are computed recursively in line 10 of Algo. 1. The optimal control at time ¢
from state y; is then given by an affine policy

pe\ ' (v 1y (P R\ (v v

. t t t t t t 2

= arg min + - + — |5 + ¢ Ay +Bv

o =z (2) () +32) (R 1) () gttt
= Ky + ky, (8)

where Ky, ky are computed in line 11 of Algo. 1. The cost-to-go functions and policies are
well-defined as long as all costs h; are convex or if the regularization v is large enough (see
e.g. (Roulet et al., 2022)).



ROULET, SRINIVASA, FAZEL, HARCHAOUI

The solution of the LQR problem (5), is given by rolling-out the policies along the linear
trajectories of (5). The oracle is then LQR,(J)(uw) = (vo;...;v,—1), where

vp =m(y), Y1 = Ay + Broy for t € {0,...,7 — 1},

starting from gy = 0.
Solving (5) by dynamic programming comes at a linear cost with respect to the length
of the trajectory. Namely, in terms of elementary computations, the ILQR oracle has a
computational cost
C(ng, M, T) = O(T(ng +14)%). 9)

Note that, in nonlinear control problems, the state and control dimensions are generally
small. On the other hand, the horizon 7 may be large if, for example, for a fixed continuous
time horizon, a small discretization stepsize was used to define (2). The ILQR algorithm
keeps then a linear complexity with respect to the leading dimension 7 of the problem. The
linear quadratic problem (5) can also be solved by alternative linear algebra subroutines
ranging from matrix-free solvers that take advantage of differentiable programming frame-
work, or by introducing Lagrange multipliers. We refer to, e.g. Wright (1991a), for more
details.
Overall an ILQR algorithm computes a sequence of iterates as

w kD) — (k) 4 LQRyk(J)(u(k)), (ILQR)

starting from control variables u(9), where vy, are regularization parameters that may depend
on the current iterate and LQR,, is implemented by Algo. 1.

2.2 Iterative Differential Dynamic Programming

The IDDP algorithm is an instance of a Differential Dynamic Programming (DDP) ap-
proach. A DDP approach considers computing approximate solutions of (2) around the
current iterate by dynamic programming using approximations of the dynamics and the
costs. We refer the reader to, e.g., Jacobson and Mayne (1970); Tassa et al. (2012); Roulet
et al. (2022) for a detailed presentation. The original DDP approach uses quadratic approxi-
mations of the dynamics Jacobson and Mayne (1970). Here, we focus on the implementation
using linear approximations of the dynamics and quadratic approximations of the costs as
used by, e.g., Tassa et al. (2012). In this case, a DDP approach amounts to computing
the same policies m; as an ILQR algorithm but rolling-out the policies along the original
dynamics rather than the linearized ones.
Namely, the oracle output by IDDP is given as

DDP,(J)(u) = (vo;...;07-1)
where vy = m(ye), Yer1 = fe(xe + ye, u +vi) — fe(xe,uy) for t € {0,...,7 — 1}, (10)
as presented in Algo. 1. The computational complexity of this approach is the same as
the one of the ILQR approach. By iterating the above steps, starting from initial control

variables u("), we obtain the iterative Linear Quadratic Regulator (IDDP) algorithm, which
computes iterates of the form

wFHD) = 4 (k) 4 DDP,, () (u®), (IDDP)
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—— Backward pass

Input functi . o o .
nput function i ¢ i Linear function : ¢ | Quadratic function ------- Store in memory
or procedure : : : :

Figure 2: Computational scheme of the ILQR, algorithm. The algorithm proceeds in three
phases. In the forward pass, the first derivatives of the dynamics as well as the
first and second derivatives of the costs are stored in memory (or the inputs are
checkpointed to access these derivatives). During the backward pass the cost-
to-go functions are back-propagated at each time step through matrix products
and inversions, denoted simply LQBP for linear-quadratic backpropagation. The
policies computed in the backward pass are used in a final roll-out phase through
the linearized dynamics to output a candidate sequence of control inputs.
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Algorithm 1 ILQR and IDDP steps for problem (2)

1:

Inputs: Controls u = (ug;...;u;—1) € R™, regularization v > 0, initial state o €
R"™ | horizon 7, dynamic f : R™ x R™ — R™ costs (h¢)]_;, oracle type Oracle €
{LQR, DDP}.
Forward pass > instantiate problem (5) for the given control variables
Initialize zg = g
fort=0,...,7—1do

Compute z¢+1 = f(xr, ur) and hy(zy, ug)

Compute and store

At == va?tf(xtv ut)Ta Bt == vutf(xt7ut)—|—7
Pt = Va,hi(xe,ug), qe = Vg he(xg, ug),

P, =V2 bz, w), Q= Vo, (e, w), Ry = V2, (e, w)
6: end for
7. Compute hr(z;), pr = Vg, he(zr) Pr = V2, hr(z;)
Backward pass > compute optimal policies for problem (5)

8: Initialize J, = P, jr = pr
9: fort=7—-1,...0do

10:

11:

12:

13:
14:
15:
16:
17:
18:
19:
20:
21:

Compute the cost-to-go functions ¢; : yr — %ytT Jyye + 4 ye defined in (7) as

Jo=P+ Al Ji1 Ay — (Ry + Al J1B)(Qi + vI+B, J 1 B) Y (R + B/ Ji 1 4)
g =pe+ A G — (R + A 1 B)(Qr + vI+B Jop1 B) ™ ar + By jiesn)

Store the policies 7, : yr — Kyys + ki defined in (8) as

Ky = —(Q¢ + vI+B/ Jy1By) (R + B/ Ju14y),
kt = —(Q¢ + vI+B, Jiy1By) " Ha + B/ jit1)

end for
Roll-out pass > apply the computed policies along the linearized or the exact dynamics
Initialize yg = 0
fort=0,...,7—1do
if Oracle is LQR then

Compute vy = m¢(ye), Yer1 = Avys + By
else if Oracle is DDP then
Compute vy = 7¢(yt), Yer1 = f(@e + Y, ue +v) — (@4, uz)
end if
end for
Output: Control directions v = (vo;...;v,—1)

where the regularization parameters v, may depend on the current iterate and DDP, is
implemented by Algo. 1.

10
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2.3 Generic Convergence Guarantees

We start by presenting convergence guarantees of the ILQR and IDDP algorithm for generic
problems of the form (1). First, with an appropriate choice of regularization both algorithms
can converge globally to a stationary point at a polynomial rate (Theorem 2). Such a
stationary point of J satisfies naturally necessary optimality conditions for problem (1) as
recalled in Appendix B. Note that necessary optimality conditions in discrete time control
problem differ from their continuous time counterpart as discussed in detail in Appendix B.

Theorem 2 For problem (1), assume that the dynamics f; are Lipschitz continuous with
Lipschitz continuous gradients and that the costs hy are Lipschitz continuous with Lipschitz
continuous gradients and Lipschitz continuous Hessians. Then, provided that the reqular-
ization v is larger than some ¢y > 0, the iterates of the ILQR or the IDDP algorithms
satisfy

min
ke{o,..., K}

2(c2 +v) (T (u®) — mingeprnu J (u))
(k)
VI @) < \/ oo ,

for c1,co depending on the smoothness properties of the dynamics and the costs.

Proof Detailed statements and proofs are presented in Lemma 31 and Lemma 33 for the
ILQR and the IDDP algorithms, respectively. |

We can also demonstrate local linear convergence of both algorithms towards a minimum
under regular assumptions.

Theorem 3 For problem (1), assume that the dynamics f; and the costs hy are Lipschitz
continuous with Lipschitz continuous gradients and Lipschitz continuous Hessians. Let u®)
denote the k'™ iterate of the ILQR or the IDDP algorithms. Assume u®) to be close to a
minimum u* of J with positive definite Hessian. If the regularization v is larger than some
c1 > 0, then the iterations of the ILQR or the IDDP algorithm converge linearly to u* as

Jul )~y < (1= 2) ul® — ]y,
v

for c1,co depending on the smoothness properties of the dynamics and the costs.

Proof Detailed statements and proofs are presented in Lemma 32 and Lemma 34 for the
ILQR and the IDDP algorithms, respectively. |

Remark 4 Compared to a Newton method that can converge locally at a quadratic rate on
problems of the form (1) (Nocedal and Wright, 2006; Pantoja, 1988; Dunn and Bertsekas,
1989), the ILQR and IDDP algorithms converge locally only at linear rate a priori (see
also Baumgdrtner et al. (2023)). Similarly, the original Differential Dynamic Programming
(DDP) approach of Jacobson and Mayne (1970) can converge locally at a quadratic rate
(Murray and Yakowitz, 1984; Liao and Shoemaker, 1991; Di and Lamperski, 2019). How-
ever, the local linear convergence rates presented in Theorem 3 do not match the superlinear
rates observed in practice in Fig. 8 (see also Roulet et al. (2022)). Hence, we consider in the
following additional properties of the problem that can uncover both the global convergence
of the ILQR and IDDP algorithms as well as their fast local convergence.

11
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3. Conditioning Analysis

To understand the convergence behavior of the ILQR and IDDP algorithms displayed in
Fig. 1, we consider a restricted class of control problems without control costs of the form (2).
Namely, from now on, we consider objectives of the form

Tw) =Y hi(x) (11)
t=1

st w1 = fog,wg), forte€{0,...,7—1}, 0 = Ty,

for w = (ug;...;ur—1) € R™=. Such objectives keep the main difficulty of nonlinear con-
trol problems: for nonlinear dynamics f, the overall objective J is non-convex such that
convergence to global minima is a priori not guaranteed by even a simple gradient descent.
Nevertheless, by decomposing the objective at the scale of the dynamics, and further de-
composing the dynamics by an appropriate discretization scheme, we can identify sufficient
conditions for global convergence to minima linked to usual notions in nonlinear control.
We can then further show the convergence of the ILQR and IDDP algorithms to a global
minimum, and detail the several phases of convergence (Sec. 4.1, 4.2, 4.3).

3.1 Objective Decomposition

The objective J, defined in (11), can be decomposed into (i) the costs associated to a given
trajectory, and (ii) the function that, given an input command, outputs the corresponding
trajectory, defined below.

Definition 5 We define the control of T steps of a discrete time dynamic f : R™ x R™ —
R™ as the function fI7): R™ x R™ — R which, given an initial point xo € R™ and a
command u = (ug; . ..;ur—1) € R™  outputs the corresponding trajectory xi,..., T, i.€.,

f[T]($0,u) = (r1;...;27) (12)
s.t. xpp1 = flxg,ug)  forte{0,...,7 —1}.

By defining the cost h(x) of a trajectory @ = (x1,...,z;) as the sum of the cost of the
states, problem (2) amounts to solving

-

min {j(u) = ( f[T](:EO,u))} Jfor [ (g, u) given in (12), h(z) =Y hi(z,).  (13)
t=1

For convex costs h, if the dynamic f is linear, then the function fI7) is also linear and the

overall problem (13) is then convex, hence easily solvable from an optimization viewpoint

using, e.g., a gradient descent.

For nonlinear dynamics, the problem is a priori not convex regardless of the convexity
of the costs. Yet, global convergence guarantees of, e.g., first order methods, may still
be obtained by considering whether the objective satisfies a gradient dominating prop-
erty (Polyak, 1964; Lojasiewicz, 1963), i.e., whether there exists, for example m > 0, such
that for any w € R™« [|[VJ(u)||3 > m (J(u) — J*). To focus on the properties on the

nonlinear dynamic, we consider costs that are gradient dominated, e.g., such that for any

12
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x € R™e we have ||[Vh(z)||3 > p(h(x) — h*) for some p > 0. In that case, a sufficient
condition for the objective to satisfy a gradient dominating property is that the control of
7 steps of the dynamic satisfies ouin (Ve fI7(Zo, u)) > o > 0 for any u € R™, since then
we have, for & = fI7] (Zo,u),

IVT (@[3 = [VufT (@0, w)Vh(2)[5 = 0®|VA(2)|3 = o*u(h(z) — h7), (14)

where h* = mingeprn. h(x). Since the set {u € R™ : VJ(u) = 0} is not empty as we
assumed that the problem has a minimizer, the above equation implies that h* = J* and
so that the overall objective satisfies a gradient dominating property. We investigate then
whether the control of 7 steps of a dynamic f can satisfy the aforementioned condition by
considering the properties of the dynamic f.

The condition omin(Veuf™(Zo,u)) > 0 can be interpreted as the surjectivity of the
linearized control of 7 steps, i.e., the mapping v = (vo;...;vr—1) — Vufl7(zo,u) v =
(y1;...;yr) which can be decomposed as

Y+l = thf(xt,ut)Tyt + Vutf(xt,ut)Tvt fort € {0,...,7—1}, yo=0.

We recognize here the linearized trajectories that are at the heart of the ILQR and IDDP
algorithms. Our analysis stems from understanding that the surjectivity of the linearization
of the control of 7 steps, i.e, v — Vq f7(xg,u) v, is inherited from the surjectivity of the
linearization of a single step of the discrete dynamic, i.e., v — V,f(z,u) v as formally
stated in the following lemma. Note that Lemma 6 and the subsequent analysis of the
algorithms presented in Sec. 2 can be extended to time-varying discrete time dynamics as
presented in Lemma 37.

Lemma 6 If the linearized dynamics, v — YV, f(x,u) v, of a Lipschitz continuous discrete
time dynamic f are surjective in the sense that there exists oy > 0 s.1.

\V/SU,U € R™ x Rnuu O-min(vuf(l‘)u)) > gf > 07 (15)

then the linearizations, v — Vo f17) (zg,u) v, of the control of T steps of the dynamic f is
also surjective, namely,

gf

—L >0 16
1+l§>’ (16)

Vo, u € R™ x R™ gpuin (VS (20, w)) > O plr) 1=
where l? = SUDPyernu lf(.u) @5 the mazimal Lipschitz-continuity constant of the functions
f(,u) for any u € R™.

Proof Fix zy € R™. Given a sequence of controls u = (up;...;u,—1) € R™* with corre-

sponding trajectory x = (1;...;2;) = f(zg,u) € R™=, and p = (p1;...;pr) € R,
the gradient vector product V, fI7)(zq, u)p is written

Vauf Tz, w)p = (Vo f (0, u0)Ats 5 Vi, f(@ro1,ur—1)Ar)
st. A =Vg, flap,u) M1 + e forte{l,...;,7 =1}, A = pr.

13
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For ¢ = (z1;...;:27), u = (uo;...;ur—1), define F(z,u) = (f(zo,u0);---; f(zr—1,ur-1)).
By using the upper block diagonal structure of V4 F'(x,u), we have

(I-VaF(z,u) "= (M. 5 A)
st. A=V (v, u) g1+ forte{l,...;7 =1}, A = pr.
The gradient vector product can then be written compactly as
Vuf (2o, w)p = Vo F(z,w) (1 -V F(z,u))  p.
Hence, for any command w € R™* and any xy € R"~,

o'min(qu(wvu)) > oy

: [7] >
UmlH(VUf (CC[),'U/)) - O'max(l —VmF(mau)) -1 +l§

Similarly, the smoothness properties of the control fI”l corresponding to dynamics f
can be expressed in terms of the smoothness properties of the dynamics f as shown in the
following lemma.

Lemma 7 If f is Lipschitz continuous with Lipschitz continuous gradients, then the func-
tion w — fI7] (zo,u) is Lir -Lipschitz-continuous and has L ;- -Lipschitz-continuous gradi-
ents with
T—1
L <148, Lpm < S(LF G + 205 m + L) S =Y (15, (17)
t=0

where the constants I = sup,ecrne lf(z,), L = SUDyernu v, f(u), LF" = SUPzerna 09, (2,
LCJ‘E“ = SUPgepna Iy, f(-u) are mazimal Lipschitz continuity constants of partial functions or
gradients of the dynamics.

Proof This is a direct corollary of the time-varying version presented in Lemma 36. |

At first glance the Lipschitz continuity constant of the function fI7) and its gradients
appear to depend exponentially on the horizon 7 through the constant S defined above.
However, recall that problems of the form (2) stem from the discretization of a continuous
problem on a finite time interval [0, T']. The Lipschitz continuity constant of the discretized
dynamics depend then on the discretization step A, which depends itself on the discrete
time horizon 7 as A = T'/7. Hence, the dependency of the smoothness constants of the
problem may not depend exponentially on 7.

For example, if the continuous time dynamics of the problem are given by a function
f and an Fuler discretization scheme is used, then the discretized dynamic take the form
fzy,up) = xp + Af(xy,uy) with A = T/7 and the Lipschitz continuity parameter of the
discretized dynamics is then l? < 1+ Alf. Hence, the constant S defined above can be
upper bounded as S < ZZ;&(l—i—l‘f”T/T)t < (exp(T'lf)—1)7/(T17) and since Iy, LF*, L7", LE"
are all proportional to A = T'/7, the smoothness constants derived in (17) are independent
of 7 in this case and only depends on the length T" of the continuous time problem.

14
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3.2 Dynamic Decomposition

We have isolated condition (3) as a sufficient condition to ensure global convergence of, e.g., a
gradient descent. It remains to consider whether this assumption can be satisfied on concrete
examples. Note that assumption (3) requires n, > n,. While the underlying continuous
control problem may have less control variables than state variables, by considering multiple
steps of a simple Euler discretization method, we may still ensure the validity of (3) as
illustrated in Example 1.

Example 1 Consider the continuous time evolution of a pendulum

mi?o(t) = p(A(t),w(t), u(t)) = —mlgsin O(t) — pw(t) + u(t),

where 0 is the angle with the vertical axis, w is the angular speed, u is a torque applied to
the pendulum which defines the control we have on the system, and m, I, u, g are physical
constants of the problem described in Section 5. The state is defined by x = (0,w). Using
a simple Euler scheme, the discretized dynamics cannot satisfy (15), since we would have
only one variable u; to control two elements, 0y, w;, at each time step t.

On the other hand, one can consider a two-step discretization scheme such that the
controls are divided in two variables uy = (v¢,vi41/2). The dynamics read then

Or 172 = 01 + Awr, Or41 = Opy1/0 + Awiyy 2,

ml2wt+1/2 = wi + Ap(Or, wi, vr), mZQWH—l =Wy1/2 T Ap(0t+1/2v Wtr1/25 Ut+1/2)7

where A is some discretization step. Intuitively, the variable viyy/o fully controls wiiy,
while the variable vy fully controls 0;11. One can verify that the Jacobian of the discretized
dynamics x¢y1 = f(@r,ut) for ug = (vi,v441/2) are then surjective which then ensure the
surjectivity of the overall control of the pendulum in T steps and the efficiency of the ILQR
and IDDP algorithms as observed in Fig. 1 and further justify in Sec. /.

Formally, in this section, we assume that the discrete time dynamic f can be further
decomposed as the control in k steps of some elementary discrete time dynamic ¢ as defined
below. Concretely, ¢ may correspond to a single Euler discretization step of some contin-
uous time dynamic. The discrete time dynamic f amounts then to k steps of such Euler
discretization scheme and can be formulated as f(z¢, u;) = ¢1¥} (2, 1), for some k& > 0. On
the other hand, we consider the costs to be computed only at the scale of the dynamic f, i.e.,
the sampling of the costs and the sampling of the dynamics differ, hence the terminology
multi-rate sampling.

Definition 8 We define the control in k steps of a discrete time dynamic ¢ : R x R™+ —
R™ as the function ¢} : R x RFMu — R which, given a state yo and a sequence of
controls v = (vg;...;vp—_1), outputs the state computed after k steps, i.e.,

¢ (yo,v) = i (18)
st ysy1 = @(ys,vs) forse{0,....k—1}.

15



ROULET, SRINIVASA, FAZEL, HARCHAOUI

...........................................

Figure 3: Zooming into the properties of the dynamics. The overall objective can be split
at the scale of each step of the dynamics. Each step can be further decomposed at
the scale of the discretization scheme to link properties of the underlying dynamic
to global properties of the objective.

Our overall approach is illustrated in Fig. 3. Our goal is then to know whether, by
considering enough steps of ¢, we can ensure the surjectivity of the linearized dynamic
w — Vyplht (yo,v) "w. To build some intuition, consider a system driven by its accel-
eration such that the state of the system is determined by the position and the velocity
(ny = 2) and the control is a scalar force (m, = 1) determining the acceleration, hence
controlling effectively the speed at each time-step. For such system, the state of the system
cannot be fully determined in one step of an Euler discretization scheme, as only the veloc-
ity is affected by the control. However, in two steps we can control both the position and
the velocity, hence we may satisfy assumption (3) as illustrated in Example 1. To formalize
and generalize this intuition, we consider the availability of a feedback linearization scheme
as defined below (adapted from Aranda-Bricaire et al. (1996)). A brief exposition of static
feedback linearization schemes in continuous time and the associated Brunovsky’s form are
presented in Appendix E.

Definition 9 A discrete time system defined by yi+1 = d(yi, v¢) with y € R v, € R™v

can be linearized by static feedback if there exist some diffeomorphisms a : R — R™
and b(y,-) : R™ — R™ such that the reparameterization of the system as z; = a(y),

16



ITERATIVE LINEAR QUADRATIC ALGORITHMS FOR NONLINEAR CONTROL

wy = b(vg,ye) is linear. Namely, there exists m,, indexes ri,..., Ty, with Z;n:ul Tj = Ng
such that z can be decomposed as z = (G153 Cromy ) With G j € R™ decomposed as

Ct(jr)l,j = (t(?l) forallie{l,...,r; —1}, Ct(:fl) = w,gj), forallj € {1,...,my},

where (9 denotes the ih coordinate of C.

For single-input system (m, = 1, r = n,), the reparameterized system takes the canonical
Brunovsky form (Brunovsky, 1970)

Zt(i)l = zt(Hl) forall i € {1,...,ny; — 1}, zgﬁ) = wy, (19)

ie., 241 = Dz +wee, where D = Z:ﬁfl eieiTH is the upper shift matrix in R"* with e; the

i™ canonical vector in R™, such that (Dz)® = 20D and e = e,,.
As a concrete example, consider the Euler discretization with stepsize A > 0 of a single
input continuous time system driven by its n, "™ derivative through a differentiable function

1, that is,

ygl = y,gz) + Aygzﬂ), for all i € {1,...,n, — 1}, yt(f_ll) = y,gn”) + Ay, vr). (20)
As shown in Lemma 38 in Appendix E, such system can easily be reparameterized in
Brunovsky’s form (19) and provided that |9, (y,v)| > 0 for all y € R™* v € R, we can have
access to a feedback linearization scheme, i.e., we can reparameterize the system in a linear
form using diffeomorphisms.

The canonical representation (19) clarifies why the surjectivity of the linearized dynamics
may hold by taking enough steps as it is clear that, in the representation (19), by controlling
the system in n, steps we directly control the output. Namely, we have that zT(L? = w;_1 for
alli € {1,...,n,}. So for the system (19), considering n, steps ensures condition (3). The
following theorem shows that this property is kept when considering the original system.

Theorem 10 If a discrete time system yir1 = ¢(ye, v¢) is linearizable by static feedback
as defined in Def. 9, then %}, the control in k > r = max{r1,..., m, steps of ¢, has
surjective linearizations, i.e., it satisfies omin(Ved ¥ (yo,v)) > 0 for any yo € R™,v €
kau_

Quantitatively, if the system defined by yi+1 = ¢(ye, v¢) is linearizable by static feedback
with transformations a and b that are Lipschitz continuous and such that

yéﬁfm omin(Va(y)) > o, >0, yeRmicg;feRmu Omin(Vyb(y,v)) > op > 0,

then the control in k > r steps of the dynamic ¢ satisfies, for lg = SUPyermu lb(- )

1
inf min v {k} > @ 0.
yOER”;?UEka“ min(Ved™ (yo,v)) > L1t (r— 1)l(:;//0'a >

Proof We present the main steps of the proof, additional technical details are provided
in the Appendix H. We detail first the single-input case described in (19), i.e., m, = 1
and r = n,. Moreover, we consider first k = n,. Let v = (vo;...;vk-1) € RF and
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denote y = ¢{k}(yo,v). In the reparameterization of the system in the form (19), we
have that z,(;) = w;—; for all i € {1,...,n,}. By defining, for yo fixed, y = (y1;...;yx)
and v = (vg;...;vk_1), the function B(y,v) = (b(yo,v0);---;b(yk—1,vk—1)) € R™ we have
o (yo,v) = a1(B(¢!¥ (1o, v),v)), where ¢[¥l(yy,v) denotes the control of k steps of ¢.
Hence, denoting y = (y1;...:yx) = ¢¥ (4o, v), we have

Voo™ (0, 0) = (Vo By, v) + Vud (50, 0)Vy By, v)) Valye) "

Since VyB(y,v) is strictly upper block triangular, Vod* (3o, v) is upper block triangular,
VB(y,v) is diagonal with non-zero entries, we have that V,¢t*} (3o, v) is invertible

Now, consider k > n, and s = kK —n, > 0. Denote vy = (vg;...;vp) for a < b. Let
Yo € R™ and v = (vg;...;vr_1) € R¥. We have gb{k}(yo,'v) = qb{”z}(qb{s}(yo, V0:5—1)s Us:k—1)-
Hence, denoting ys = #1%} (yo, vo.s—1), we have

Vo1 (10, 00:5-1) Vo 01 (ys, vgip—1)
\V4 {k} V) = ( 0:s—1 ’ Ys ) Us: . 21
'v¢ (yO ) Vus;k_qu?{”’”}(ys, Us:k—l) ( )

The function ys, vgp_1 — ¢{nz}(ys, Vs:k—1) amounts to the control of ¢ in k — s = n, steps.
Hence, the matrix Vvszk_ltb{”l}(ys,vs;k,l) is invertible, so chb{k}(yo,'v) has full column
rank. Overall, we showed the first part of the claim, i.e., that omin(Vedt (3o, v)) > 0 for
any yg € R™ v € R¥™« provided that k > n,.

We consider now deriving quantitative bounds. We focus on the single-input case and
start with k& = n,. Define, for yo fixed, y = (y1;...;9%), v = (vo;...;vk—1), the function
d(y,v) = (¢(yo,0); - .. ; (Yp—1,vk—1)). By decomposing V,¢¥ (yo,v) as in Lemma 6, we
get

Vs (yo,v) = (Vo B(y, v) + Vo ®(y, v)(1-Vy®(y,v)) ' Vy By, v)) Valyr) .

Given the feedback linearization scheme, the discrete time dynamic ¢ can be rewritten as
Yer1 = &y, ve) = a~(Da(ys) + b(ye, vi)e), where D is the upper shift matrix in R and
e = ey, is the n,™ canonical vector in R™ . Hence, we have for t € {0,...,k — 1},

Vo, & (e, ve) = 00, b(yt, ve)e ' Valyer)
Vb, v) = (Va(u) DT + Vyb(ye,ve” ) Valyer) ™
In the sequel, we denote the Kronecker product by ® and for Ry,..., R, € RP*? we de-
note by diag((R;)";) = >.I, eie] ®R; € R™*" the block diagonal matrix with blocks
R1,..., Ry, for e; the i*" canonical vector in R”. Since V,®(y,v) = diag((V., #(y:, vt))fz_ol),
Vy®(y,v) = (D@]1) diag(V,,é(yi, vi)iy), we have that (see Appendix H for more details)
Vo (y, v) = diag((9u,b(ye, v1))iZy ) (1®e ) diag((Va(yes1) )5
Vy(y.v) = (D 1) diag((Va(y));Zg)1@D ") diag((Va(yer) ™ )iZy)
+ (D ® 1) diag((Vy,b(ye, v0))iZg) (1@e ") diag((Va(yr1) ™ )iZ),  (22)
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andv SimﬂarIY7 V’UB(ya ’U) - diag((avtb(yta ’Ut))f:_()l)? VyB(ya ’U) = (D®I) diag((vytb(yh Ut))f:_()l)
Denoting A = diag((Va(y))i=y), C = diag((Va(yi41))i=g), V = diag((Du,b(ye, ve))i=);
Y = diag((Vy,b(ys,v)) ), E=1®e", F=D®Tand G =1@D", we get that

Voo™ (g0, v)Valy) = V(I+ECT (I-FAGC™ — FYEC™')'FY)
Oy (1-EBC Y (1-FAGC™) " FY)!,

Y yVI-EQ-FG) ' FA YY),

(i) 1/ <I—E (Z Dia (DT)H> A_1Y> : (23)
=1

Above, in (i) we used the Sherman-Morrison-Woodbury identity, in (i7) we used that
FA = CF and FA7! = C7'F (see Appendix H), in (iii) we used that FG = D ® DT
is nilpotent of order k = n, since D* = 0 (see Appendix H). The result follows for k = n,
from the assumptions of Lipschitz continuity and non-singularity of the gradients of the
diffeomorphisms, and from the fact that |[F|2 < 1 and [|Dljs < 1. For k > n,, we have
from (21), that for any X\ € R™, |[V,¢*} (yo, v)\2 > | Ve, " (ys, ver—1)A||2, hence
the result follows.

—~

For multi-input systems, let » = max{ry,..., 7y, }. One easily verifies that for any k > r,
the system in its linear representation can be written as zy = Mw for w = (wo;...; wi_1)
with omin(M ) = 1. The first part of the claim follows then as in single input case. For
the second part, the system can be decomposed by blocks and treated as in the single-input
case, see Appendix H for more details. |

Overall, Theorem 10 shows that for, e.g., a dynamical system driven by its k" derivative
as in (20), by considering a dynamic f defined by k steps of an Euler discretization of the
system, condition (3) can be ensured, which in turns can ensure a gradient dominating
property for the objective. The ILQR and IDDP algorithms are not just gradient descent
algorithms. It remains now to exploit assumption (3) to uncover the efficiency of the ILQR
or IDDP algorithms.

4. Convergence Analysis

To analyze the convergence of the ILQR and the IDDP algorithms, we consider problem (2)
at the scale of the whole trajectory and analyze problem (2) as a compositional problem of
the form

-
_min {7(u) = h(g(w)}, where g(w) = /7 (@0, u) and h(@) = 3 hulw).  (24)
t=1
Note however that the dynamical structure of the problem revealed at the state scale is
essential to the implementation of the ILQR and IDDP algorithms. We state our assump-
tions for global convergence at the state scale and translate them at the trajectory scale. A
table of all constants introduced for the convergence analysis with their respective units is
provided in Appendix A for ease of reference.
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Assumption 11 We consider convex costs hy that have Ly-Lipschitz-continuous gradients
and Mp-Lipschitz-continuous Hessians for all t € {1,...,7}. We consider the dynamics to
be Lipschitz-continuous with Lipschitz continuous gradients and satisfying (15).

In consequence, the total cost h defined in (24) is convex, has Ly-Lipschitz-continuous
gradients and Mjy-Lipschitz-continuous Hessians. The function g defined in (24) is lg4-
Lipschitz-continuous with Lg-Lipschitz-continuous gradients satisfying

Vu e R™,  omin(Vg(u)) > o4 >0, (25)
where lg = lyir1, Lg = Ly are given in (17) and o4 = oy is given in (16).

4.1 Convergence Proof Sketches

The ILQR algorithm is a generalized Gauss-Newton algorithm. From a high-level
perspective, the ILQR algorithm consists in linearizing the function g : uw — fl7)(Zy, w) that
encapsulates the dynamics, taking a quadratic approximation of the costs h around the
current trajectory @ = g(u) and minimizing the resulting approximation with an additional
regularization. Formally, as previously observed by Sideris and Bobrow (2005); Roulet et al.
(2019), the ILQR algorithm is then computing

. u u 14
LQR, (7)(w) = argmin g} (¢ (0) + 5 o]
vERTMu

= —(Vg(u)V2h(g(u)Vg(u)" +v 1)~ Vg(u)Vh(g(w)), (26)

where (¢ and qz(u) are the linear and quadratic approximations of, respectively, the control
in 7 steps around w and the total costs around g(u) as defined in the notations. Equation 26
clearly reveals that the ILQR algorithm amounts to a regularized generalized Gauss-Newton
algorithm (Diehl and Messerer, 2019) implemented by a dynamic programming procedure
exploiting the structure of the problem.

Proof sketch of global convergence. By choosing a large enough regularization, the
updates of the ILQR algorithm approach the ones of a gradient descent as we have from
the expression of LQR,, in (26) that for v > 1, u + LQR,(J(u)) ~ u — v~V 7 (u). This
suggests that the ILQR algorithm can converge globally just as a gradient descent given a
gradient dominating property such as (14) (Polyak, 1964; Bolte et al., 2017).

Formally, to ensure global convergence, we consider taking a regularization v that may
depend on the current command w € R™+, s.t. for v = LQR,(J)(u),

u w 1
T (utv) <hoglu)+q™ o f(v) + S ol = T(w) + 5VT (@) Tv. (27)

Given the analytic form of v = LQR,(J)(u) in (26), the above condition ensures that
J (u+v)-J(u) < —al|[Vh(g(u))|3, for some constant o that depends on the regularization
v and the properties of the objective. Hence, if h satisfies a gradient dominating property,
i.e., there exists > 0,7 € [1/2,1) s.t. [|[Vh(z)||3 > p"(h(z) — h*)" for any £ € R™= global
convergence can be ensured given a constant regularization. For example, if r = 1/2, by
taking a constant regularization ensuring (27), we get a global linear convergence rate.
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We further show that a regularization ensuring (27) can be chosen to scale as a function
of ||Vh(g(w))||2, which helps decompose the computational complexity in (i) the complexity
of solving mingegrn. h(x) given an assumption on its gradient dominance and the smooth-
ness properties of the costs, (ii) a term that depends on the initial gap and condition numbers
associated to the approximation of a gradient descent by a Gauss-Newton method though
the smoothness properties of the cost, the dynamics and the surjectivity of the dynamics.

Proof sketch of local convergence. The global rate of convergence sketched above can
be further improved by analyzing the local behavior of the algorithm around a solution.
Namely, if g satisfies (25), then the matrix Vg(u)' Vg(u) is invertible. Denoting z = g(u),
G = Vg(u) and H = V2h(z), we then have by standard linear algebra manipulations, that
the oracle returned by the ILQR algorithm satisfies

LQR,(J)(u) = —(GHG" 4+ v1)"'GVh(x)
= —G(HG'G +vI)"'Vh(x) (Push-through identity)
= -GGGV H+v(GTG) ) Vh(x). (GTG invertible)

Consider then the trajectory associated to a single step of ILQR, i.e., for v = LQR,(7)(u),
y = g(u+v) = g(u) + Vg(u) v =2z — (Vh(z) +v(Vg(u) Vg(u)) ")~ 'Vh(z).

For v <« 1, the difference of the trajectories y — x is close to a Newton direction on the total
costs h. In other words, the ILQR algorithm may be analyzed as an approximate Newton
method on the total costs. In particular, this suggests that the algorithm can have a local
quadratic convergence rate if (i) the costs satisfy the assumptions required for a Newton
method to converge locally quadratically, such as self-concordance, (ii) the regularization
decreases fast enough.

Proof sketch of total complexity. To blend global convergence and local quadratic
convergence, we observe that if the costs are strongly convex then they satisfy a gradient
dominating property and are self-concordant. To satisfy condition (27), the regularization
can then be chosen to be proportional to the norm of the gradient of the costs at the current
iterate, i.e., v = || Vh(g(w®))||2 for 7, bounded above by a constant which ensures that
v tends to 0 with the iterations k. By satisfying condition (27), we can ensure global
convergence, while by having v, — 0, we can ensure local quadratic convergence.

Proof sketch of convergence of the IDDP algorithm. The IDDP algorithm cannot
be simply analyzed as an instance of a classical optimization algorithm. However, a careful
analysis of the difference in the updates of the ILQR and IDDP algorithms for strongly
convex costs reveal that the difference in their oracles can be bounded as || DDP,(J)(u) —
LQR,(J)(u)]l2 < n||LQR,(J)(u)|j3 for some constant 1 independent of u and v. This
observation enables us to derive an appropriate rule for selecting the regularization for the
IDDP algorithm and to ensure that the quadratic local convergence is maintained since the
approximation error of LQR by DDP is quadratic.

Remark 12 [f the function g is surjective and satisfies Assumption (25), then local quadratic
convergence of e.g. a Gauss-Newton method or a Levenberg-Marquardt method (for h
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quadratic) is known, see Bjorck (2024, Chapter 9.2.2), Bergou et al. (2020). For h non-
quadratic, local quadratic convergence of generalized Gauss-Newton methods has also been
shown in some special cases by Messerer et al. (2021, Section 2.2). Compared to these
results, we consider deriving an entire global convergence rate decomposed into a first slow
convergence phase and a fast local convergence phase. Moreover, we consider quantita-
tive bounds involving the constants in (25) and additional assumptions (self-concordance or
gradient dominant assumptions).

4.2 Convergence Analysis of ILQR
4.2.1 GLOBAL CONVERGENCE RATE TO MINIMA

We start by showing global convergence of the ILQR algorithm provided that the costs
satisfy a sufficient condition for global convergence, namely gradient dominance, a.k.a. a
Polyak-Lojasiewicz inequality (Lojasiewicz, 1963; Polyak, 1964; Bolte et al., 2017).

Theorem 13 Given Assumption 11, the sufficient decrease condition (27) is satisfied for

a regqularization
L,|[|[Vh(g(u L,[[Vh(g(u
o) = AT (LT
sLn(B+1)

where y(x) = 14++/1+ 1/x and f = Mhlg/(?)Lth). In addition to Assumption 11, consider
that the costs are dominated by their gradients, i.e., there exists r € [1/2,1) and p > 0 such
that ||Vhe(x)||l2 > p"(he(x) — hy)" for all x € R™ t € {1,...,7}. The total cost satisfies
then, for uy = p/72r=D/2",

Ve e R™, |[Vh(z)lls > p,(h(z) — B7)". (28)

If r =1/2, the number of iterations of the ILQR algorithm to converge to an accuracy e for
problem (2) given regularizations vy, = v(u®)) is at most

k < 40,/ 50y (W) +2pp In (i?) ,

and, if 1/2 < r < 1, the number of iterations to converge to an accuracy € is at most

ke 2Py 2 gsier et (e (O v
T2r—1e21 01— 90 71— 3r/2 0, ’

with p, = Lyp/p3", pg = lg/0g, On = Mp/(2u3"), 04 = Lg/(ag,u,};), a = 4p§ph(5 + 1),
6o = J(u®) — T* and the case r = 2/3 is to be understood limit-wise.

Before presenting the proof, a few remarks are in order.

Remark 14 Consider the case r = 1/2 in Theorem 13. The constants appearing in the
bound are (i) the condition number py, = Ly/un of the total cost h, (ii) the condition
number p, = lg/o4 of the gradient of g, Vg(u), (iii) a constant 8), = Mh/(Q,uz/Q) that
can be interpreted as a bound on the self-concordance parameter of the cost h if the total
costs are strongly convez, (i) a constant 05 = Lg/(UE\/;Th) whose dimension is the same
as Oy, i.e., the inverse of the squared root of the objective. Finally, the terms B and o are

additional dimension independent constants that act as additional condition numbers.
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Remark 15 The rate of convergence in Theorem 13 for r = 1/2 is composed of (i) a term
pnln (8/€) that is the linear complexity associated to the computation of mingegrnu h(x) by
a gradient descent on a function h that has Lipschitz-continuous gradients with a gradient
dominance property and (ii) a term 46,1/50y (99\/%/04) that depends on the initial gap
and appropriate condition numbers on the problem. To understand the effect of this second
term, consider computing the value of the gap 0; after j iterations such that the complexity
of reducing the gap further by a factor 1/e = 1/2 is dominated by the logarithmic term such
that we enter a linear phase of convergence. Formally, after j iterations of the algorithm,
the remaining number of iterations to reduce the gap further by a factor 1/e, i.e., reach an
accuracy € = 0;/e, is 40, \/(Tj’y (09 \/(57/04) + 2pn. To neglect the first term in favor of the
second term we need 7(0g+/0;/c) < pr/(2a) < 1 for 3(x) = & 4+ Va2 + x, which is satisfied
ford; < 02/992 with ¢ = ph/(lﬁpg(l +5)). So up to a multiplicative factor c, the parameter
1/(992 plays the role of a gap determining a linear convergence phase.

Remark 16 For L, = 0, the terms depending on oo uniquely vanish since 8, = 0 in this
case. We then get the classical rates when minimizing a function h that satisfy (28) with
a first-order method. The rates can be improved by analyzing the local behavior of the
algorithm to take advantage of the quadratic approximations of the total costs h as shown
in Sec. 4.2.2.

Proof [Proof of Theorem 13] The validity of the gradient dominating property for the
total costs is presented in Lemma 39 in Appendix F. Note that if h satisfies (28) and g
satisfies (25), then for any w € R™+, we have ||[V(hog)(u)||2 > ogu; (h(g(w))—h*)". Hence,
for u* € argmin,cgrn, J(u) with 7 = hog, we get 0 = [|[VIT (u*)|2 > oguj, (h(g(uw*)) —
h*)" > 0, such that we have J* = h*.

We have from Lemma 40 that for any w,v € R™™  denoting ag = Mhlg/?)—i-Lthlg,

Ly|[Vh(g(w))l2+ao]|v]2

2
: ol

|(ho g)(utv)—(h o g)(u)—gl™ o (4(v)| <

Since || LQR,(J)(w)|2 < ly||VR(g(w))||2/v, condition (27) is satisfied for v > 0 s.t. a; +
az/v < v, where a; = Ly||[Vh(g(w))|l2 a2 = aoly|[Vh(g(w))||2. Therefore, denoting v(z) =
1+ /14 1/z, condition (27) is satisfied for any

v > p(w) = WV _ Ly|[Vhg(w)l <L§||Vh(g(u))”2>
o 2 2 ;

4aply

with ag = lyLg Ly (B + 1) for 8 = Myl /(3LyLy). We have then for v = LQR,,(,)(J)(u),
G = Vg(u), H = V?h(g(u)), since condition (27) is satisfied,

T+ )~ T(w) <~ Vh(g(w) GT(GHET + v(u) ) GVh(g(w))

- _%Wg(u))wﬂ +v(u)(GTG)™) " Vh(g(w))
1 Ug bll‘Q

<~ 9 |Vh(g(u))|?< - :
< 3 o | VOB < e

(29)
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where z = |[Vh(g(w))]|2, b1 = 03, by = Lg, bz = 4dagly, by = Ly, bs = 20§Lh.

The function fi : & — bix?/(vV/box? + bgx + byx + bs) is increasing for x > 0. Hence,
denoting § = h(g(u)) —h* = J(u) — J*, we have fi([|[Vh(g(u))ll2) = fi((#nd)") by as-
sumption (28). Denoting 0 = J(u®)) — J* for k the iteration of the ILQR algorithm, we
then have f(0r)(0k+1 — 0r) < —1, with

fu0) = e = 2y B /0T R0/l 2 BBy )
? B fl((p’hé)r) N §2r or 62r - 52 Iz y
with pn = La/ui's py = lg/og: On = Mn/(24537) 0y = Lg/ (o), @ = 4pgpn(B + 1),

B = Mpl3/(3LyLy).

Since fo is concave on RT, we deduce that fo(dry1) — f2(0x) < —1 and so fa(dy) <
—k + f2(do). Note that fo is strictly decreasing, so we get that, for the algorithm to reach
an accuracy €, we need at most k < fo(dg) — fa(e) iterations.

If r = 1/2, one can verify that § — aln(2aV6v(Vd/a) 4+ a2) + 2v/6v(v/§/a) is an
antiderivative of § — v(v/d/a)/V/ for any a > 0. Hence, for » = 1/2, the number of
iterations to converge to an accuracy ¢ is at most

k< 2pnIn <5 ) s (J% <M> Ve <99f>>

204V/007(0gv/d0/ ) +a
ot < 20,21 (04 v/2 )+ >

< 2phln< ) + 20,/%07 < ) +aln <1+299;/%7 <09;@>> .

By using that In(1 4+ z) < x for x > —1, we get the claimed bound in this case.
If 1/2 < r < 1, by integrating fo, the number of iterations to converge to an accuracy &
is at most

2pn 1 1 Oy l—r _ _1-r /60 Og /2 + ax” /6,
< —
k < >+(1—r) (6o ) + o dx

= _ 2r—1  §2r—1
2r—1 \ e 50

&€

The bound follows in this case by using that, for 1/2 < r < 1, and a > 0,

501/ 2r r
/ x;“$d</ v2ad+ id.
B X l/r"B

4.2.2 LocAL CONVERGENCE RATE TO MINIMA

As we analyze the ILQR algorithm locally as an approximate Newton method on the costs,
we use the notations and assumptions used to analyze a Newton method. Namely, we
assume the costs h; to be strictly convex, and we define the norm induced by the Hessian
at a point € R™= and its dual norm as, respectively, for y € R™=,

lylle = /¥ V2h(z)y, lyllz =/y"V2h(z)"!
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For a matrix A € R™=*™ we denote ||Allx = ||[V2h(z)/2A]|3 the norm induced by the
local geometry of h w.r.t. the Euclidean norm. Finally, we denote the Newton decrement
of the cost function, as, for & € R7™x,

Mi(@) = /Vh(z)TV2h(z) ' Vh(z).

To analyze the local convergence of the ILQR algorithm we consider the costs to be self-
concordant (Nesterov, 2018, Definition 5.1.1). In addition, we consider smoothness proper-
ties of the function g with respect to the geometry induced by the Hessian of the costs as
presented in the assumptions below.

Assumption 17 We consider that the costs hy and so the total cost h are strictly convex
and the following constants, defined for g : uw — fI] (Zo, w) with fU7 the control in T steps
of the dynamic f defined in (12), are finite

lg(u +v) — g(u)llgeu) IVg(u+v)" = Vg(u) ||y

l == s L =
u,veER HUH2 u, vERTu ”U||2
v#£0 v#0
V3h(x Volu
ﬁh — sup ’ ( )[ylay27y3”7 - inf M
zy1,2,95eR7 2| Y1 ||z ]|Y2llllys] weR™m per™e |7,
y17£0,y27#0,y3#0 u#0

In consequence, h is Vp-self concordant (Nesterov, 2018, Definition 5.1.1, Lemma 5.1.2),
and we have that 0 < omin(Vg(uw)V2h(g(1))'/?), omax(Vg(w)V2h(g(u))'/?) < 1, for any
u € R,

In terms of the dynamic and the individual costs, Assumption 17 is satisfied if h; is strongly
convex for all ¢ such that the total costs h are strongly convex and if Assumption 11 is also
satisfied. In that case, we have

1< VInly, L<\InLg, 20,<My/ii? o> ino,. (30)

Given Assumption 17 and equipped with a stepsize proportional to the Newton decrement,
we can show a local quadratic convergence rate of the ILQR, algorithm.

Theorem 18 Given Assumption 17, consider the ILQR algorithm for problem (2) with
regularizations of the form vy, = v\, (g(u®)) for some o > 0. For k > 0 such that

1
*)) <A = 1
Au(g(u™)) < max{49;, + 39, + 20/02, 2005}’ (81)

where o = /o and 9, = L/o?, we have \,(g(u®* 1)) < AN\, (g(u®))?, and the ILQR
algorithm converges quadratically to the minimum value of problem (2).

Remark 19 If h is a quadratic, such that the algorithm reduces to a Gauss-Newton al-
gorithm and 9y, = 0, the radius of quadratic convergence reduces to N = 1/(39, + 20). If
in addition, no regularization is in effect, the radius of quadratic convergence reduces to
A = 1/394, which can be expressed as 1/(304\/pr) if the total cost is py strongly convexr
with Oy, p, defined as in Theorem 13 and o,L expressed using (30). So up to 3/pp, the
parameter 1/0, acts again as a radius of fast convergence as in Theorem 185.
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Remark 20 For better readability, we simplified the expression of the radius of convergence.
A closer look at the proof shows that a non-zero regularization may lead to a larger radius
of convergence than no regularization.

Proof [Proof of Theorem 18] Let u € R™ G = Vg(u), H = V?h(g(u)), v = LQR,(J)(u)
with v = DA (g(u)). Assume that

An(g(u)) < 1/ max{\/29,04c1, 204 0c2, 204c2},
where ¢;=max{1-v/(y/29,Ll),0}, co=max{1-v/(21?9},),0}, o=l/c, 9;=L/o?. We have

M(g(utv)) < | VA(g(uto)) =Vh(9(u)+GT0) |5y ) + VARG TG0 [ iy - (32)

~~

A B

Bounding A in (32). By definition of [ in Assumption 17 and Lemma 41, we have

l9(u +v) — g(u)lg) < Uvl2, o]z < IAn(g(w))

One easily verifies that /(1 4+ az) < ¢ if 0 < x < ¢/ max{l — ca, 0} for any a,c > 0. So for
An(g(w))) < 1/(20h0c2), we have ||g(u + v) — g(u)|gw) < 1/(204). Hence, using that h is
Ip-self-concordant, Theorem 5.1.7 of Nesterov (2018) applies and by using the definition of
L in Assumption 17, we have

1
1=dnlg(utv)—g(u)gw)

lg(utv)—g(w)~G "] y(usv) < lg(u+v)—g(w)=G "] g

<2 = Llfv]l3.

1
/ Vy(uttv) 'vdt — Vg(u) v
0 g9(u)

Using (33), for Ap(g(u)) < 1/(\/20104c1), we get [|g(u+v)—g(w) =G v|| garv) <1/ (204).
Since the total cost h is ¥p-self-concordant, we can then use Lemma 42 to obtain

1 — u) — TU
A= T o) g~ G el T T 7 )
2L12 N\, (g(u))?
= Qo + o (gw))? (34)

Bounding B in (32). Recall that for Ay(g(w))) < 1/(29h0c2), we have [[g(u + v) —
9(u)lgu) < 1/(294). Since h is ¥p-self-concordant, we have then (Nesterov, 2018, Theorem
5.1.7),

1

B <
19 lg(utv)—g(w) | 5w

IV (g(w)+GT0) 5 < 2IVR(g(w)+GT0) 5. (35)

Denote v = 7 (g(w)) and define n = —(H + v(GTG)™1)"'Vh(g(u)). Using that

v=-GGTG) YH+v(GTG) ) 'Vh(g(u)),
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and denoting = g(u), we have then
IVh(g(u) + GTo)|50) = [Vh(z +n) = Vh(z) - (H + v(GTG) ||}
< ||Vh(z 4+ n) — Vh(z) — Hn|: + v|(GTG) In|. (36)

The first term can be bounded as in the proof of local convergence of a Newton method (Nes-
terov, 2018, Theorem 5.2.2). Namely, we have

1
[Vh(z +n) — Vh(z) — Hn|% = || /0 (V2h(z 4 tn) — V2h(zx))ndt||%.

Since omax(Vg(u)V2h(g(u))'/?) < 1, we have

i e . An(g(uw))
Inlle = I+ H= 3G Q)T HTE) T H T AV (u)ll2 < o7msy sy

So if A\p(g(u)) < 1/(204c2), we get ||n|e < 1/(29)) and, since h is self-concordant, by
Corollary 5.1.5 of Nesterov (2018), we have, denoting J = fol(Vzh(:I; +tn) — V2h(z))dt,

n| 9
(et + ml303/3) () < 7 = A2l g2y
1 — [|nflen
Moreover, since ||n||, < 1/(203), we have |n|/z9, — |n|292/3 < %. Hence, we get

InllZ09n  _  2n(g(w))*0n

Vh(x +mn) — Vh(x) — Hnl}, < < — . 37
Vit tm) = V@ = e = T i, = Wt onGgtuye 7
On the other hand, since 0 < ouin(Vg(u)V2h(g(u))/?), we have
_ S An(g(w))
T 1 * — H1/2 T H1/2 I 1H 1/2 < h )
So combining (38) and (37) into (36) and then (35) we get
279h v 2
B<2 A . 39
<2 (o * T o) o) &)

Local quadratic convergence rate. By combining (34) and (39) into (32), we get, as
long as Ap(g(w)) < 1/ max{,/20,94c1,20p0c2,20pc2},

2LI2 N 49y, N 20
(lo+vAn(g(u)))?  (1+712An(g(u)))?  o?+0An(g(w))

Note that 1, c2 < 1 and that 29,449, +20/0? > max{20y, \/29,9,}, using the arithmetic-
geometric mean inequality. Hence, for

Matuto)) < ) Mlatw®

An(g(w)) < A = 1/max{29, + 49, + 20/, 200},

we get A\p(g(u+v)) < A A\ (g(w))? < Ap(g(w)), that is, we reach the region of quadratic
convergence for g(u). [ |
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4.2.3 GLOBAL COMPLEXITY

Given Assumption 11, if the total cost is strongly convex then it satisfies the condition
of Theorem 13 and Assumption 17 is satisfied with the estimates given in (30). We can
then bound the number of iterations to local quadratic convergence and obtain the total
complexity bound in this case. The following theorem is the detailed version of Thm. 1.

Theorem 21 Consider the costs hy to be up-strongly conver and Assumption 11 to be
satisfied. Then condition (27) is satisfied for a regularization
«

vu) = <1 T eg||Vh<g<u>>||2/<Mpg>>> LoVl

With such regularization, the number of iterations of the ILQR algorithm to reach an accu-
racy € 18 at most

k(80,€) = 40,(\/30 — V/E) + 2p In @)) +2aln (

69\/%"":09) , (40)

Ogv/E + pg

where py, = Lu/tin, pg = lg/0g, O = Lg/(02/Tn), O = Mn/(2u)%), a = 4p2pn(B + 1),
B = Myl2/(8LyLy), and 6o = T (u®) — T*.

If in addition the target accuracy e is smaller than & = 1/(32pn(0n(1 4+ /prps/3) +
\/pTng(l—i—pgph))Q) which determines a quadratic convergence phase, the number of iterations
of an ILQR algorithm to reach the accuracy € is at most k(5p,8) + O(Inln(s71)).

The total computational complexity of the algorithm in terms of basic operations is then

of the order of (k(60,8) + O(Inln(e™1))) x C(ng, ny, 7) with C(ng, ny, 7) defined in (9).

Remark 22 The rate of convergence can now be separated between three phases, (i) the
number of iterations to reach some linear convergence determined by the first term in the
complexity bound (40), (ii) the number of iterations to reach the quadratic convergence rate
that is captured by the logarithmic terms in the complexity bound (40), (iii) the quadratic
convergence phase once dy, is smaller than the gap of local quadratic convergence 6.

Proof [Proof of Theorem 21] By using the strong convexity of the costs h, we can refine
the choice of the regularization to ensure (27). The validity of the proposed regularization
to ensure condition (27) is shown in Lemma 43 in Appendix F. With the proposed regu-
larization, Lemma 44 in Appendix F shows, following the same reasoning as in the proof
of Theorem 13, that the number of iterations of the ILQR algorithm needed to reach an
accuracy ¢ is bounded by

do 99\/50 + pg
< _ — —_—
k <2pp1n < 6 ) + 46, (\/50 \@) + 2aIn < 9g\ﬁ oy , (41)

with pp, pg, On, 04, a defined as in Theorem 13.

For the local convergence, the constants in Theorem 18 can be expressed in terms of the
constants in Theorem 13 as o0 = \/upoy, 9y = Op, Vg = \/prby, 0 = \/pPrpg. From the proof
of Theorem 18, if A\ (g(u®)) < 1/ max{,/20,9,, 2050, 294}, then

An(g(ulFT)) < (2199 + 40 + 2:;) An(g(ut®)))?,
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where 7 = v(u™) /A, (g(u®)) < /Ly(Lg + 21g(My12/3+LgLy)/(0gu1)). Define then

1
A(On (L + \/prp/3) + /Prbg(1+ pgpn))’

We have that A < 1/ max{,/20,94,2950,295}. So, if A\y(g(u®)) < A, quadratic conver-
gence is ensured.

It remains to link the objective gap to the Newton decrement. By considering a gra-
dient step with step size 1/Ly,, we have |[Vh(x)||? < 2Ly(h(x) — h*) for any =, hence
An(x) < \/2pn(h — h*). So, the number of iterations to reach quadratic convergence
is bounded by the number of iterations to get an accuracy & = A%/(2pp,). Once quadratic
convergence is reached the remaining number of iterations is of the order of O(Inlne~!). W

Theorem 21 presents an ideal implementation of the ILQR algorithm given the knowledge
of all constants to define the regularizations. This ideal implementation informs us on an
appropriate line search strategy for the regularization, namely searching over v for regu-
larizations of the form vy = 7||Vh(g(u®))||2. We present in Algo. 2 an implementation of
the ILQR algorithm with an adequate line-search procedure that is guaranteed to termi-
nate and maintain the complexity bounds presented in Theorem 21 as formally stated in
Corollary 23, whose proof is given in Appendix F.

Corollary 23 Consider the assumptions and notations of Theorem 21 on problem (2) and
Algo. 2 with an initial scaled regularization guess v_1 < (1 + a/(2 4 204v/30/pg)) Ly. The
total number of calls to ILQR oracles of Algo. 2 to reach an accuracy € is at most 2k(dg, &)+
Inln(e™t) + [logy (1 4+ «/2)Ly/—1)], where k(S,8') is defined as in Theorem 21 and &' =

1/(32pn(0n(1 + 2\/php3/3) + /Prby(1 + 2p4p1))?) is a gap of quadratic convergence for
Algo. 2.

Algorithm 2 ILQR with Line-Search
Inputs: Initial point wg, initial scaled regularization 7_; > 0, costs and dynamics sum-
marized as h and ¢ as in (24), LQR, (J) oracle for 7 = h o g.
for k=0,...do

Set U, = Up_q, vy, = I7k||Vh(g( ))H

2
Compute w1 = k) 4 LQR (T ) (u®)
while 7 (u®D) > 7(u®) + VJ ()" (ut ) —u®))/2 do

)’
Set vy < 20y, Vg < k|| Vh(g(u )))Hg
Set u* D)« u® + LQR,, (J)(u®)
end while
end for

4.3 Convergence Analysis of IDDP

The IDDP algorithm departs from the implementation of usual optimization algorithms
for compositional problems as it cannot be formulated as the minimization of an approx-
imation of the objective but rather as an approximate minimization of the objective by
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dynamic programming, see e.g. Roulet et al. (2022) for a detailed overview. Its analysis
can nevertheless be pursued by analogy of its implementation with the ILQR algorithm.
Namely, the technical Lemmas 47 and 50 in Appendix G decompose the implementation of
the IDDP algorithm into the dynamical structure of the problem to quantify an approxi-
mation bound between the oracles returned by the ILQR and IDDP algorithm of the form
| DDP,(J)(u) — LQR,(J)(u)|2 < n|| LQR,(J)(u)||3 for some constant 1 independent of
u and v, provided that the costs are strongly convex.

Equipped with this approximation bound, we consider selecting the regularization of
the IDDP algorithm such that

J(u+DDP,(J)(u)) < J(u) + %Vj(u)T LQR, (T)(w), (42)

i.e., we use the same criterion as for the ILQR algorithm (27) to ensure a sufficient de-
crease. This choice of regularization is motivated by the implementation of the ILQR and
IDDP algorithms which both compute 4V.7(u)" LQR, (J)(u) by dynamic programming;
see Roulet et al. (2022) for more details. For strongly convex costs, the rule provided in (42)
to select the stepsize together with the quadratic approximation bound between the oracles
of the ILQR and IDDP algorithm enable us to state a global convergence result for the
IDDP algorithm.

Theorem 24 Consider the costs to be up-strongly convezr and Assumption 11 to be satisfied.
Then the constant N=Supycrrru >0 | DDP,(J)(u) — LQR,(J)(w)|l2/|| LQR, () (u)|3 is

finite. Condition (42) is satisfied for a regularization
v(u) = Le€||Vh(g(w)) 2 + prozbyx* [V h(g(w)) |13,

where § = (1 + pppg) (1 +2x) + p2(29h)/(3eg), X =lgn/Lg and pp, pg, On, 04 are defined in
Theorem 21.

With such reqularization, the number of iterations of the IDDP algorithm to reach an
accuracy € 1S at most

k < 2py1n (?) +46,¢(v/00 — V) + 2p40,°X* (80 — 8) + O(InIn(e ™)),

where & = 1/(32pn(04+/Pr(2 + 26 + \/prX) + 40,)?) is the value of the gap determining the
quadratic convergence phase.

Remark 25 The complexity bounds for the IDDP algorithm in Theorem 2/ take then the
same form as the complexity bounds obtained for the ILQR algorithm in Theorem 21 up to
some additional multiplicative factors. Our proof is built on considering IDDP to approz-
tmate ILQR. In practice, IDDP appears more efficient than ILQR as illustrated in Fig. 1
and other works (Roulet et al., 2022; Liao and Shoemaker, 1992) and alternative proofs
may better explain this phenomenon. On the other hand, our implementation and analysis
provide theoretical global convergence guarantees.

Proof [Proof of Theorem 24] We sketch the proof of the first part of the claim, whose
technical details can be found in Lemma 47. Given a command u = (ug;...;%r—1)
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with associated trajectory # = g(u) = (1;...;2;), denote 7, : vy — Ky + k¢ for t €
{0,...,7—1} the affine policies computed in Algo. 1 and define for y = (y1;...;y7), 7(y) =
(m0(0);m1(y1); ... ;mr—1(yr—1)). Denoting then v = LQR,(J)(u), w = DDP,(J)(u), we
have, after close inspection of the roll-outs,

v=7(Vg(uw) v),  w=m(glu+w) - g(u)).

Denoting, for e; the i? canonical vector in R™, K = Z;Q eiel—-r_l QK; 1 € RTuxTe [ —
(ko;...;kr—1), G = Vg(u), we get that v = k 4+ KGTv. Since G is lower block triangular
and K is strictly lower block triangular, KG' is strictly lower block triangular and so
I -KGT is invertible. Therefore, we can express the LQR oracle as v = (I -KG ")~ 'k. For
the IDDP oracle, a similar expression can be found by using the mean value theorem as
formally shown in Lemma 47. Informally, there exists a matrix D which can be thought as
Vg(u + ¢) for some ||C[|2 < ||w]||2 such that w = (I—-KD")~'k. The difference v — w can
be bounded by co||k||2||CT — DT||2 for some constant ¢ and ||[CT — DT || can be bounded as
c1]|wll2 such that we get in total a quadratic error bound in ||k||2 which can be converted
in a quadratic bound in terms of ||v||o.

For w €™ denote v = LQR,(J)(u), w = DDP,(J)(u). By definition of v, condi-
tion (42) is satisfied if

v
T(u+w) < T(w) + g5 o £ (0) + 2 |lvl3
We proceed by first observing that, by Lipschitz continuity of the gradients of h,

J (utw)—T (utv) < Vh(g(u+v)) " (g(utw)—g(u+v)) + Lnllg(utw)—g(u+v)|3/2,

and ||Vh(g(u+v))|l2 < ||[Vh(g(w))|l2+ L] g(u+v)—g(u)||2. Hence, using the Lipschitz con-
tinuity of g and the definition of 1, we have

J (utw) =T (utv) < ([Vh(g(w))ll2 + Lulg||vll2)lgnl|v]l3 + Lalgn®|[v]|2/2-

On the other hand, the term j(u+v)—j(u)—qz(u) oly(v) can be bounded using Lemma 40.
Hence, using that [|v]]2 < ||Vh(g(w))||2/(1rog) (see the first paragraph of the proof of
Theorem 21), we get that condition (42) is satisfied for

v(u) = Ly€|[Vh(g(w)) 2 + progbyx*Vh(g(w)) 3,

for &€ = (1 + pppg) (1 + 2x) + p2(29h)/(309), X = lgn/Lg, where pp, pg, 0n, 04 are defined in
Theorem 21.

With such regularization choice, the convergence of the IDDP method follows from the
proof of Theorem 13 by using that condition (42) is satisfied. Namely, we get that the
number of iterations of an IDDP algorithm with regularizations v, = v(u®) to ensure an
objective less than ¢ is at most (see Appendix H for the detailed derivation)

k < 201,10 (d0/2) + 40,€(v/ 00 — v/2) + 208, X% (50 — 2). (43)
For the local convergence, define [, o, L, Jp,, 7, as in the proof of Theorem 21. We have

An(g(u +w)) < [[VA(g(u+w)) = VA(g(u + 0))lg(urw) + VR(g(0 + )50ty
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If )\h(g(U)) < U/\/Qﬁhl , then,
lg(u +w) = g(u + V)| gusw) < v —wll2 < Illv]|3 < InAn(g(w))?/o® < 1/(204),

where we used that ||v|l2 < Ap(g(w))/o as shown in the second paragraph of the proof of
Theorem 18. Hence, using Lemma 42, we have that ||Vh(g(u—|—'w))—Vh(g(u+v))||;(u+w) <

2in\n(g(u))?/0? and using Theorem 5.1.7 of Nesterov (2018), we have that |[Vh(g(u +
v))H;(u_HD) < 2||Vh(g(u + U))H;(u+v). We conclude that if Ap(g(u)) < 1/1/20,9,X,

Mn(g(u+w)) < 2x0, A0 (g(w)? + 2An(g(u + v)).

Hence, using the bound derived in Theorem 18 for Ay (g(u + v)), we conclude that for

An(g(u)) < 1/max{\/219h19g, \/219h19gx, 200,20},

we have that

(2(2 + x)Vy + 89 + 400 %) Ay (g(u))?

An(g(u 4+ w)) <
< (203/Pn(2 + 26 + X) + 801 + 40730, M (9(w))) An(g(w))?,

where we used that 7 = v(u)/Ap(9(uw)) < Lgv/Lpé + thhagﬁgzxz)\h(g(u)). Denote

A =1/(4(04+/pn(2 + 2§ + \/prX) + 464)),

s.t. A < 1/max{\/20504, \/20p0¢X, 2001, 20 }. For A\p(g(w)) < A, quadratic convergence
is ensured, i.e., Ap(g(u+w)) < A7\, (g9(u))? < My(g(w)). The conclusion follows as in the
proof of Theorem 21. [ ]

5. Numerical Evaluations

We illustrate numerically the theoretical findings to examine their relevance. In all exper-
iments, we implemented gradient descent (GD), ILQR, IDDP, with a line-search on either
the stepsize for GD or the scaled regularization for ILQR and IDDP as in Algorithm 2.

5.1 Settings considered

We consider two simple synthetic control environments: swinging up a pendulum, and
controlling a simplified model of a car. Experiments on a more realistic model of a car are
presented in Appendix I. The code is publicly available at https://github.com/vroulet/
ilgc. In all experiments we consider only a cost on the state variables, i.e., hy(x,ur) =
hi(z¢). See Roulet et al. (2022) for additional experiments with costs on the control variables
and other settings.
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Swinging up pendulum. We consider swinging up a pendulum vertically through the
control of a torque. The state x = (0, w) consists in the angle § with the vertical axis and
the angular speed w as illustrated in Fig 1. The dynamics in continuous time are

0(t) =w(t),  mi%o(t) = —milgsin0(t) — pw(t) + u(t), (44)

where m = 1 is the mass of the blob, [ = 1 is the length of the blob, u = 0.01 is a friction
coefficient, g = 10 is the gravitational constant. The system is controlled through a torque,
u(t), applied to the pendulum. We use an Euler discretization scheme (Gautschi, 2011,
Chapter 4) for the continuous dynamics (44) with a discretization step A = T'/7 for a total
time 7" = 2 and a number of discretization steps 7 = 100.

For Fig. 1, we consider a single cost on the last state. Namely, the objective is to swing
up the pendulum to be vertical with

he(x,) = (0, — )% + W2, hi(z;)) =0fort € {1,...,7—1}

for x; = (6;,w;). In other words, we target 6(7") = 7, w(7T) = 0 for some time horizon T,
given 6(0) = 0, w(0) = 0. In some experiments below, we consider variations of the costs,
such as considering a cost for each time step or a subsampled cost.

Simple Model of a Car with Tracking Costs. We consider a simple model of the car,
illustrated in Fig. 1. The state consists in & = (24, 2y, 0, v), where z = (2, 2) is the position
of the car, 0 is the angle between the orientation of the car and the horizontal axis, a.k.a.,
the yaw, and v is the longitudinal speed. The controls u = (a,d) consist of the longitudinal
acceleration a of the car, and the steering angle §. For a car of length [ = 1, the continuous
time dynamics of this simplified model of the car are

Zo(t) = v(t)cosB(t)  O(t) = v(t)tand(t)/I
2y (1) = v(t) sin 0(t) 0(t) = a(t).

We use a Runge-Kutta method of order 4 (Gautschi, 2011, Chapter 4), a discretization step
A =T/7 for a total time T = 2, and a number of discretization steps 7 = 25.

The objective consists in minimizing the distance between the position of the car and a
reference position on a track. We define a reference track z*(¢) as a continuous spline using
a simple track presented in (Roulet et al., 2022, Figure 13). The discrete time reference
positions are defined as z; = z*(At). The costs consist then

he(xi) = ||zt — 27||3 fort € {1,...,7},

For Fig. 1, we consider a subsampled cost equivalent to consider a multistep discretization
strategy detailed in Section 3.2. Namely, we subsample the cost every k = 3 steps such that
the costs are then

2zt — 2|2 iftmodk =0
ht<xt>={'t o (45)

0 otherwise

with A = T'/(k7). Below, we consider also costs on every time-step, i.e., k = 1.
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Figure 4: Cost along iterations of ILQR, IDDP and Gradient Descent (GD) on the pen-
dulum problem using a cost at each time step or every two time steps. Shaded
areas correspond to a 95% confidence intervals over 10 random initializations of
the control sequences.

5.2 Evaluations

Costs along iterations for the pendulum. For a single final cost, the problem of
swinging up the pendulum is equivalent to minimizing the composition of a strongly convex
cost with the control in 7 steps of the discrete dynamics of the pendulum. With an Euler
discretization of the continuous dynamics of the pendulum (44), one easily observes that
the control in any k > 2 steps of the discrete dynamics satisfies the sufficient condition for
global convergence outlined in Section 3. Hence, with a single final cost, this problem falls
under the assumptions of Section 4. The convergence of both ILQR and IDDP algorithms
towards a global minimum cost, namely a null cost, is observed in Fig. 1.
In Fig. 4, we consider a cost every k steps, that is

0 —m)* +w? if tmod k=0
ht(xt):{(t m)"+wi iftmo forte{1,...,7},

0 otherwise
for k € {1,2}. We also consider 10 random initial sequence of control variables, i.e., uio) ~
N(0,0), for o =1/7=100,t € {0,...,7 — 1}.

By taking k = 2, we observe that ILQR and IDDP both converge to a 0 cost, hence
a global minimum, across random initializations. As mentioned above, by taking & > 1
convergence to a global minimal cost is predicted by the theory in Section 3 and 4.

For k = 1, none algorithm converges to 0. However, this does not mean that they do not
converge to a global minimum. In fact, one observes that accross random initializations,
both ILQR and IDDP converge to the same cost. Namely, the standard deviation of the
minimum cost computed by these algorithms across random initializations is 10~'4. This
suggests a global convergence behavior to the same point. While the theory developped in
Section 3 and 4 explains the behavior for k = 2, the results for k = 1 suggest that global
convergence of these algorithms may be ensured beyond the sufficient condition (3).
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Figure 5: Cost along iterations of ILQR, IDDP and Gradient Descent (GD) on the car
problem using a cost at each time step or every three time steps with varying
initial controls. Shaded areas correspond to a 95% confidence intervals over 10
random initializations of the control sequences.

We also note that, in any case, IDDP converges faster than ILQR. This observation
was also made by (Liao and Shoemaker, 1991) and further explored in the companion
report (Roulet et al., 2022).

Costs along iteration for the simple model of a car. In Fig. 1, we considered a sub-
sampled cost, such that a sufficient condition for global convergence outlined in Section 3.2
may be satisfied. We observe in Fig.1 convergence to a global minimal cost, namely a null
cost, for both ILQR and IDDP algorithms.

In Fig. 5, we consider a cost at each time step (no subsampling of the costs, i.e., k =1
in (45)) with 10 random initial control sequences, i.e., ugo) ~ N(0,0) for 0 = 1/A = 25,
t € {0,...,7—1}. We also repeat the experiment with costs subsampled every 3 time steps
with the same random initializations schemes.

For subsampled costs, i.e., k = 3 in (45), we observe convergence to global minimal costs
(null costs) for both IDDP and ILQR algorithms across random initializations.

For non-subsampled costs, i.e., k = 1 in (45), the costs do not converge to 0. Contrarily
to the pendulum case, we observed a discrepancy in the minimal cost reached after 2000
iterations. ILQR and IDDP reach, on average across initializations, costs of, respectively,
4.61 -1072 and 5.68 - 1072 with standard deviations across initializations of, respectively,
3.93-107% and 3.75- 1072

Instantaneous rate of convergence. The theoretical findings of Sec. 4 outline a priori
three phases of convergence, sublinear, linear and quadratic. Convergence rates of ILQR
and IDDP can be assessed through convergence rates in function values p(k) = (c(kH) —
¢*)/(c®) — ¢*) for ¢* the minimal cost as done in Appendix I, or by considering convergence
in iterates through £®) = [[u®*+D) — u®)||y/|u®) — 4wV, as done in Fig. 6.

For the simple model of a car, in Fig. 6, we observe that the convergence rate in iterations
of these algorithms remain close to 1 for many iterations (the x-axis in Fig. 6 is in reverted
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Figure 6: Convergence rate in iterates, k) = [|[u*+D) — u®)|y/[|u® — w*=D]|;, along

iterations of ILQR and IDDP algorithms for the simple model of a car with or
without subsampling the costs.

log-scale). This rate suddenly drops close to convergence akin to a local quadratic local
convergence. This shows that the main difficulty of the problem arises for a long first phase
of slow convergence.

Surjectivity of the Jacobian. The sufficient condition for global convergence (3) can
be assessed by computing the minimal singular value oy (Vf7(w®))) of the transpose
Jacobian of the control of 7 steps of the discrete dynamics. In Fig. 7, we plot this minimal
singular value along the iterations of the ILQR and IDDP algorithms. We consider discrete
dynamics defined as the control in £k = 2 and k = 3 steps of the discretization of the contin-
uous dynamics of, respectively, the pendulum and the simple model of a car. Considering
discrete dynamics in multiple steps amount to the subsampling of the costs presented in
previous experiments.

We observe in Fig. 7 that o (V7 (w®)) is small yet bounded away from 0 along
the iterations. This result concurs with the convergence to global minimal costs of these
algorithms observed in the right panels of Fig. 4 and Fig. 5.
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Figure 7: Minimal singular value of the transpose Jacobian of the control in 7 steps of
the discrete dynamics along the iterations of ILQR and IDDP algorithms. We
consider discrete dynamics of a pendulum or of a simple model of a car stemming
from the control in 2 and 3 steps respectively of the original discretization of the
dynamics.

6. Related Work

Nonlinear control algorithms based on local approximations and iterative re-
finements. Nonlinear control problems of the form (1) stem from the discretization of
generic optimal control problems in continuous time of the form

) T
min. /0 h(z(8), w(T)) + hr((T)) (46)

subject to  #(t) = f(z(t),u(t)), x(0)= Zo,

Continuous optimal control problems of the form (46) can be tackled in various ways (Diehl
et al., 2006). One can approach the problem from a dynamic programming perspective
to derive the Hamilton-Jacobi-Bellman equation, a partial differential equation in state
space (Lions, 1982). Alternatively, one can derive necessary optimality conditions for (46)
to derive a boundary value problem. Such a method is referred to as an indirect method
and amounts to a “optimize then discretize” approach (Farshidian et al., 2017). Finally,
problem (46) can be tackled by direct methods that consider finite dimensional approxi-
mations of the original infinite dimensional problem (46). Direct methods amount to a
“discretize then optimize” approach (Diehl et al., 2006), they can further be split into dif-
ferent approaches. First, one may consider a finite representation of the continuous control
u(t) as piecewise constant functions whose values qi,..., ¢, at each piece define the finite
number of degrees of freedom. The problem still involves an ODE in the state variable,
&(t) = f(x(t),uq,., (t)), albeit a simpler one. Tackling the problem with such a partial dis-
cretization is referred to as a single shooting method (Diehl et al., 2006; Bock and Plitt,
1984). Collocation methods (Von Stryk, 1993) consider discretizing both the states and
controls, leading to a formulation like (1), that can benefit from advanced numerical in-
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tegration methods. Finally, multiple shooting (Diehl et al., 2006; Bock and Plitt, 1984)
combines both approaches. The system is split in multiple windows and for each window
a single shooting method is used. We focus solely on the resulting discrete time nonlinear
control problems (1) and refer the interested reader to, e.g., Rawlings et al. (2017, Section
8.5) for an overview of the approaches mentioned above.

One of the first approaches for nonlinear discrete time control problems (1) appear to
be the Differential Dynamic Programming (DDP) methods developed by Mayne (1966);
Jacobson and Mayne (1970); Mayne and Polak (1975). Its principle is to apply a dy-
namic programming procedure to the nonlinear system. The associated Bellman equation
is approximately solved by considering its quadratic approximation around the current tra-
jectory. A set of policies is computed along this process and applied to the original dynamics
as if the true solutions of the Bellman equations were found. A modern account is provided
in the companion report (Roulet et al., 2022) for reference; see also (Liao and Shoemaker,
1992). Numerous variants of DDP have been developed to account for constraints or noise
in the dynamics (Li and Todorov, 2004; Tassa et al., 2007, 2014; Giftthaler et al., 2018).
Among those, the IDDP algorithm can be seen to follow the same principle as DDP except
that linear-quadratic approximations a la Gauss-Newton are used in place of the quadratic
approximations of the Bellman equation akin to Newton’s method.

DDP approaches differ from the implementation of classical optimization algorithms
such as a Newton, quasi-Newton or Gauss-Newton method for discrete nonlinear control
problems. Bock (1983); Bock and Plitt (1984) first presented such approaches referred to
as direct multiple shooting. Detailed and efficient implementations of Newton’s method
exploiting the dynamical structure of the problem were presented by Pantoja (1988); Dunn
and Bertsekas (1989). A linear algebraic viewpoint on these implementations was presented
by Wright (1990, 1991a), that enabled the use of fast linear solvers exploiting the structure of
nonlinear control problems (Wright, 1991b; Jerez et al., 2011; Rao et al., 1998). In particular,
Wright (1991a) presents alternative resolutions of the linear quadratic subproblem using a
“Riccati-like” recursion that slightly differs from the resolution by dynamic programming
presented here. Wright (1991a) further developed parallel implementations of algorithms
solving the LQR problems. We do not delve into the specific implementations of the oracles
used in ILQR or IDDP and rather focus on the global behavior of the algorithms.

This viewpoint was further generalized to handle nonlinear inequalities in model pre-
dictive control (Diehl et al., 2009) or even generic graphs of computations (Srinivasan and
Todorov, 2015). The ILQR algorithm can be seen as an instance of direct multiple shoot-
ing, namely, an instance of a generalized Gauss-Newton method (Sideris and Bobrow, 2005)
which uses linear-quadratic approximations of the problem decomposed along the dynamics.

Detailed implementations of DDP approach (quadratic approximation of Bellman equa-
tion), IDDP approach (linear-quadratic approximation of Bellman equation), Newton (quadratic
approximation of the objective) and ILQR (linear-quadratic approximation of the objective)
are presented in the companion report (Roulet et al., 2022) to highlight their common points
and differences.

The decomposition of the problem at several scales by means of some quadratic ap-
proximations have also been developed and studied by Messerer et al. (2021); Frasch et al.
(2015); Verschueren et al. (2016); Houska and Diehl (2013).
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Convergence analysis of Gauss-Newton methods. Regularized Gauss-Newton meth-
ods, a.k.a. Levenberg-Marquardt methods (Moré, 1978), have been extensively studied (Ya-
mashita and Fukushima, 2001; Fan and Yuan, 2005; Dan et al., 2002; Zhao and Fan, 2016;
Bergou et al., 2020). Global convergence to stationary points at a polynomial rate is es-
tablished by, e.g., Bergou et al. (2020, Theorem 3.1). The results could potentially be
extended, provided that the non-linear mappings have surjective Jacobians (Ueda and Ya-
mashita, 2010, Corollary 2.1). Our approach improves on previous results with polynomial
rates and our complexity bounds provide explicit dependencies on the initial gap and the
region of quadratic convergence. We also depart from previous results using error bounds,
such as the ones of Bergou et al. (2020, Assumption 4.2) and Yamashita and Fukushima
(2001, Eq. (1.6)), in that our assumption on surjective Jacobians is stronger than an error
bound.

Closer to our approach is the work of Nesterov (2007) where the assumption of surjec-
tive Jacobians is used to provide global convergence guarantees of a modified Gauss-Newton
method also known as the prox-linear method (Drusvyatskiy and Paquette, 2019) for nonlin-
ear fitting. Nesterov (2007) argues in favor of least un-squared norms methods, as opposed
to least squared norms methods, by reasoning in terms of condition numbers irrespective
of local subroutine computational complexity. In contrast, we consider twice differentiable
costs, for which we build a quadratic model, leading to generalized Gauss-Newton meth-
ods. In the context of nonlinear control problems, generalized Gauss-Newton oracles can be
implemented efficiently by exploiting the dynamical structure of the problem, while mod-
ified Gauss-Newton method oracles may require a computationally expensive line-search.
Messerer et al. (2021) considered also convergence of generalized Gauss-Newton methods.
However, Messerer et al. (2021) analyzes such algorithms without regularization, nor line-
search or trust-region techniques, resulting in possibly divergent algorithms or only local
convergence guarantees that fail to explain global phenomena presented in the introduc-
tion. By adding a regularization scheme, we are able to ensure global convergence, and
to provide practical guidance on the choice of regularization (Algorithm 2). Baumgértner
et al. (2023) also considered the local convergence properties of ILQR, IDDP to determine
that they share the same linear convergence rate locally. We considered here more general
convergence properties either towards stationary points or global minima given additional
assumptions. Finally, our results are quantitative, relating the region of quadratic conver-
gence to the smallest singular value of the transposed Jacobian.

As mentioned earlier, a Newton’s method could just as well be implemented to exploit
the dynamical structure of the problem (Dunn and Bertsekas, 1989). Several caveats lend
still in favor of a Gauss-Newton method. First, a Newton’s method (or a DDP approach)
requires computing and storing the second order information associated to the dynamics at
the intermediate states, although the storage issue can be mitigated by an adequate imple-
mentation in a differentiable programming framework (Nganga and Wensing, 2021; Roulet
et al., 2022). Second, Newton’s method does not compute a priori descent directions if the
Hessian is not positive definite. Hessian modifications (Nocedal and Wright, 2006, Section
3.4) may be necessary to ensure a descent direction such that a linesearch can be used.
On the other hand, for generic functions, Newton’s method is known to converge locally
at a quadratic rate (Nesterov, 2018), which is a priori not true for a generalized Gauss-
Newton method. Our analysis shows that in some nonlinear control problems generalized
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Gauss-Newton methods can converge with such a local quadratic rate, just as observed em-
pirically. Our analysis stems in fact from considering a generalized Gauss-Newton method
as an approximate Newton method in the space of the trajectories which enable us to re-
cover the fast local rate of convergence of Newton’s method by appropriately controlling
the approximation error.

Convergence analysis of differentiable dynamic programming methods. DDP
algorithms developed by Jacobson and Mayne (1970); Mayne and Polak (1975) appear to
be one of the first approaches for nonlinear discrete time control problems. Their princi-
ple is to apply a dynamic programming procedure to the nonlinear system for which the
associated Bellman equation is approximately solved by considering its quadratic approx-
imation around the current trajectory. A set of policies is computed along this process
and applied to the original dynamics as if the true solutions of the Bellman equations
were found. The IDDP algorithm can be seen to follow the same principle except that
linear-quadratic approximations a la Gauss-Newton are used in place of the quadratic ap-
proximations of the Bellman equation. A modern account is provided in the companion
report (Roulet et al., 2022) for reference; see also (Liao and Shoemaker, 1992; Tassa et al.,
2014). Previous work mainly focused on local convergence guarantees (Mayne and Polak,
1975; Murray and Yakowitz, 1984; Liao and Shoemaker, 1991) or convergence guarantees to-
wards controls satisfying first-order necessary optimality conditions (Polak, 2011). The local
quadratic convergence analysis of DDP is based on viewing DDP as an approximate Newton
method (Pantoja, 1988; Di and Lamperski, 2019). An alternative proof of local quadratic
convergence (Liao and Shoemaker, 1991) and an approach based on the method of strong
variations (Mayne and Polak, 1975) are also worth mentioning. Previous work (Pantoja,
1988; Di and Lamperski, 2019) considers additional costs on the control variables and as-
sumes that the Hessian of the overall objective (2) is invertible; see (Pantoja, 1988, Theorem
4.1) or (Di and Lamperski, 2019, Assumption 2.2). In contrast to previous work, we do
not consider additional costs on the control variable, and we consider the IDDP algorithm
which uses linear-quadratic approximations developed by Tassa et al. (2012) and extended
by Giftthaler et al. (2018). The IDDP algorithm benefits from a smaller per-iteration cost
compared to DDP, as IDDP does not require computing intermediate second-order infor-
mation associated to the dynamics, see Roulet et al. (2022) for more details.

Sufficient conditions for global convergence. Discrete time nonlinear control prob-
lems of the form (2) stem from the time discretization of continuous time problems. Nec-
essary optimality conditions for the continuous time control problems are characterized by
Pontryagin’s maximum principle (Pontryagin et al., 1963). However, these optimality con-
ditions cannot be used for the discretized problems since Pontryagin variations in finite
dimensional space do not exist (Polak, 2011). Necessary optimality conditions can be de-
rived from the Karush-Kuhn-Tucker conditions for problem (2), which are equivalent to
first order optimality conditions of the objective in terms of control variables. Sufficient
optimality conditions for the continuous time nonlinear control problem were also derived
by Mangasarian (1966); Arrow (1968); Kamien and Schwartz (1971). We translate these
conditions for the discrete time nonlinear control problem in the companion technical re-
port (Roulet et al., 2022). Unfortunately, such conditions require convexity assumptions of
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implicitly defined functions that seem difficult to verify in practice. We argue in Sec. 3.2
that our assumption (3) can be verified on simple instances.

Our assumption is based on analyzing the gradient dominating property of the objective
of problem (2) in terms of the properties of the dynamic. The gradient dominating prop-
erty was introduced by Polyak (1964); Lojasiewicz (1963) as a sufficient condition to ensure
global convergence of gradient descent. Here, we exploit this property to ensure global and
local quadratic convergence of a regularized generalized Gauss-Newton algorithm. From a
nonlinear control viewpoint, our assumption translates as the controllability of the discrete
linearized trajectories in one step. In a similar spirit, a controllability assumption on the dis-
crete linearized trajectories in several steps was considered to analyze the local convergence
of MPC controllers by Na and Anitescu (2020, Assumption 2) following Xu and Anitescu
(2019). Compared to Xu and Anitescu (2019); Na and Anitescu (2020), we consider global
convergence results to minimizers, which justifies a stronger assumption. In addition, com-
pared to Xu and Anitescu (2019); Na and Anitescu (2020), we formally relate our condition
to feedback linearization schemes well understood in continuous time (Isidori, 1995; Sontag,
2013) and further developed in discrete time by Jakubczyk and Sontag (1990); Jakubczyk
(1987); Jayaraman and Chizeck (1993); Aranda-Bricaire et al. (1996); Belikov et al. (2017).
In particular, we exploit the existence of a feedback linearization scheme by considering a
multi-rate sampling scheme to ensure our sufficient condition. Using multi-rate sampling
was proposed in the early work of Grizzle and Kokotovic (1988) on discrete time feedback
linearization schemes.

We consider only understanding the performance of two popular algorithms, ILQR and
IDDP, and derive sufficient conditions for global convergence adapted to these algorithms.
Several variants can be considered. In particular, given the surjectivity of the Jacobian of
the dynamics (3), the problem may also be rephrased as a feasibility problem and tackled
differently. Namely, the minimizers z;y of the costs h; could be computed offline, and
the problem would reduce to fit a nonlinear model of the states, here described by the
trajectories given by the dynamics, to the minimizers xj. Such feasibility problems may be
tackled for example by penalty method as done by Kim and Wright (2016). However, such
penalty methods may dismiss the dynamical structure of the problem. Moreover, ILQR or
IDDP methods can tackle the original problem at once, rather than deriving a two-stage
method consisting in computing first the minimizers of the costs.

7. Conclusion

We have detailed global computational complexities of the ILQR and IDDP algorithms
for problems of the form (2). Our analysis decomposes at several scales. At the scale
of the whole trajectory, the problem can be summarized as a compositional objective and
analyzed as a Gauss-Newton type algorithm. The trajectories can be detailed at the scale of
the dynamic, which reveals the low computational cost of the optimization oracles. Finally,
the dynamics can further be detailed in terms of the discretization scheme in order to ensure
sufficient conditions for global convergence of the algorithms.

The sufficient conditions for global convergence are restricted to problems without costs
or constraints on the control variables. Moreover, they may not be applicable in usual
scenarios with costs that are not subsampled. As future work, one may analyze constraints
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on the control variables while ensuring a gradient dominating-like property on the objective.
Analyzing further the links between feedback linearization schemes and sufficient conditions
for global optimality may also reveal the impact of the discretization stepsize on the overall
condition number of the problem.
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A. Index of Constants

Table 1 presents an index of the constants used in the main results of the paper in Sec. 4
with their units. We denote the unit of the control variables, the states and the costs as,
respectively, v, x and h and use 1 if the constant has no dimension.

Note that all constants are rooted in assumptions about the dynamic f and the indi-
vidual costs h; of problem (2). In particular, constants governing the compositional prob-
lem (24) defined by the total cost h and the control g in 7 steps of f for fixed initial state
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Notation Definition Interpretation Unit
oy infy oy Omin (Vo f(z,u)) Surj. param. of v — V, f(z,u) v x/u
I Supy, L f(. ) Lip. cont. of f(-,u) for any u 1
Iy sup, Ly, Lip. cont. of f(z,-) for any = x/u
Ly supy, v, £(-u) Bound on ||V f2 (@, u)|| 1/x
L sup, v, f(z,) Bound on ||V f?(x,u)|| x/u?
L3 sup, Iy, f(-.u) Bound on ||V f2(x,u)|| 1/u
Og, 0 flr] of/(L+1F) Lower bound on omin (V£ (20, u)) x/u
lgs Lsim) IS Lip. cont. of fl™(zq,u) x/u
Lg, Ly | L¥(13S)*+2L5"13S+L}"S Lip. cont. of Vy, f™ (20, u)  /u?
S . (1) Auxiliary constant 1
i inf, omin(V2he()) Strong convexity param. of the costs h/x?
Ly, sup, omax(V2he()) Lip. cont. of gradients of the costs h/x?
My, ly2p, Lip. cont. of Hessians of the costs h/x3
Pg lg/og Cond. nb of Vg(u) 1
Oh Ly/un Cond. nb of the costs 1
Or, In My,/ (2/,L:,3/ 2) Self-concordance of the costs 1/vh
04 Lg/(ag\/pTh) Scaling param. for g 1/vh
B MulZ/(3LgLy) Cond. nb for global conv. of ILQR 1
a 4p2pn(B+1) Cond. nb for global conv. of ILQR 1
l VLl Lip. cont. of g w.r.t. h in Hyp. 11 Vh/u
L VLpL, Lip. cont. of grad. of g w.r.t. h in Hyp. 11 | v/h/u?
o VRO Surj. param. of g w.r.t. h Vh/u
0 l/o = \/Prpy Cond. nb of g w.r.t. h 1
Vg L)o? = V/Prby Scaling param. of g w.r.t. h 1/vVh
Relative bound btw DDP & LQR:
n See Corollary 51 | DDP, (7)(u)—LQR, (T (w)[l2 ~ 1/u
ILQR, (7) (w3 ="
X lgn/Lg Factor of smoothness for IDDP 1

Table 1: Index of constants used in the paper.

(see (24) and Def. 5), are all explicitly given in terms of the constants of f, h;. Moreover,
note that the constants governing the dynamic f can be further decomposed by considering
the dynamic as the control in k of a dynamic as presented in Sec. 3.2.

For simplicity, we present only the strongly convex case. For the gradient dominating
case with exponent r # 1/2 we refer the reader to Theorem 13. For the local convergence,
constants 0,1, L, 0, can be defined without strong convexity as presented in Assumption 17.
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B. Optimality Conditions
B.1 Necessary Optimality Conditions

We recall necessary optimality conditions for nonlinear control problems in continuous and
discrete time to underline their discrepancies. The problem we consider in continuous time
is

1
min / h(z(t),u(t),t)dt + h(z(1),1) (47)
zeC([0,1],R"=) Jo

weC((0,1],R"u)

subject to  z(t) = ¥(x(t),u(t),t), forte[0,1] x(0)= Ty,

where C([0, 1], R?) and C*([0, 1], R?) denote the set of continuous and continuously differen-
tiable functions from [0, 1] onto R? respectively, and we assume 1 and h to be continuously
differentiable. By using an Euler discretization scheme with discretization stepsize A = 1/,
we get the discrete time control problem

T—1

D DUICADESIC (48)
uOn-,u‘,—_leRnu t=0

subject to  xpy1 = x4 + Y(we,uy), fort €{0,...,7 =1}, o= Ty,

where x; = x(At), up = u(At), hy = Ah(-, -, At), hy = h(-, 1), Y = Ap(-, -, At). Compared
to problem (1), we have x; + ¥ (x¢, ur) = fi(ae, ug).

Continuous Time Necessary Optimality Condition. Necessary optimality condi-
tions for the continuous time control problem are known as Pontryagin’s maximum princi-
ple, recalled below. See Arutyunov and Vinter (2004) for a recent proof and Lewis (2006)
for a comprehensive overview.

Theorem 26 (Pontryagin’s maximum principle (Pontryagin et al., 1963)) Define
the Hamiltonian associated with problem (47) as

H(a(t), ult), A1), 1) = MO T ((t), u(t), ) — hw(t), u(t), ).

A trajectory x € C1([0,1],R™) and a control function u € C([0,1],R™) are optimal if there
exists A € CL([0,1],R™*) such that

z(t) = V)\(t)H(x(t),u(t), A(t),t)  for allt €0,1], (C1)
with x(0) = I
A(t) = =V H(z(t),u(t), A(t), t) for all t € [0,1], (C2)
with A(1) = —=V,q)h(z(1),1)
H(x(t),u(t),A(t),t) = max H(x(t),u,A(t),t)  forallt € |0,1]. (C3)
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Discrete Time Necessary Optimality Conditions. In comparison, necessary optimal-
ity conditions for the discretized problem (48) are given by considering the Karush-Kuhn-
Tucker conditions of the problem, or equivalently by considering a sequence of controls such
that the gradient of the objective is null (Bertsekas, 2016).

Lemma 27 Define the Hamiltonian associated with problem (48) as
Ht(l“uuu )\t—i-l) = AL1¢t(xtaut) - ht(l“uut)

A trajectory xg, ...,z € R™ and a sequence of controls ug,...,ur—1 € R™ are optimal if
there exists A1, ..., A\ € R™ such that

Topr — T = Vg Hi(@g, ug, A1) for allt € {0,...,7 — 1}, with xg = Zo (D1)
M1 — M = =V, He(z, ug, \ey1)  forallt € {1,...,7 — 1}, with A = =Vh(x;)

(D2)

0=V Hi(ve,ug, Adey1)  forallt € {0,...,7 —1}. (D3)

Proof Necessary optimality conditions are given by considering stationary points of the La-
grangian (Bertsekas, 1976). The Lagrangian of problem (48) is given for A = (A1;...;\.) T,

x=(r1;...;2.), = (up;...;ur—1) as, for xg = Zo fixed,
T—1 T—1
L(z,u, A) = > (e, we) + Z M1 (@1 — 20— Yy(e, w)) + he(27)
t=0 t=0
T—1 T—1

|
(]

hi(2e, ut) + Z (5”:()% = Aty1) — >\tT+17/’t($t, Ut))

t=1
(@) + M ar — A (2o + Yolzo, uo)).

t
+

= &

We have then, for t € {0,...,7 — 1},
V)\t+1L(iD, u, A) =0 < Tl — Tt = ¢t(a:t,ut)
= v)\t+1Ht(xt7uta)\t+1)7
VutL(m,u, )\) =0 < 0= —Vutwt(xt, ut))\t—i-l + Vutht(a:t,ut)
= —Vuth(ﬂft,Ut,)\tH),
We have, for t € {1,...,7 — 1},

Vo, L@, u,X) =0 <= Mg1 — A = =V, (2, ue) N1 + Vi, bz, uy)
= —thHt(ZCt, U, )\t+1)7

Finally, for ¢t = 7, we have V,_L(x,u,A\) =0 <= Vh:(z;)+ A\, =0. [ |
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Common Points and Discrepancies between Continuous and Discrete Time.
The first two necessary optimality conditions (D1) and (D2) for the discretized problem cor-
respond to the discretizations of the first two necessary optimality conditions (C1) and (C2)
for the continuous time problem. The third condition differs since, in discrete time, the
control variables only need to be stationary points of the Hamiltonian. One may wonder
whether condition (D3) could be replaced by a stronger necessary optimality condition of
the form

Ut € arg max Ht(-%f, U, )\t+1)- (D4)

ueER™u

If the Hamiltonian is convex w.r.t. to the control variable, i.e., H¢(z¢, -, Ay1) is concave.
If, e.g., the costs hy(z,-) are convex and if the dynamics are affine input of the form
U(xy, up) = ag(xe) + Bi(zt)uy, then condition (D3) is equivalent to condition (D4). However,
generally, condition (D4) is not a necessary optimality condition for the discrete-time control
problem as shown in the counter-example 2.

Example 2 Consider the continuous time control problem

1
min ax(t)? — u(t)?)dt + az(1)?
w(t),u(t)ec([o,u,R)/O (az(t) (t)%) (1)

subject to  (t) = u(t), x(0)=0,

for some a > 0 and the associated discrete time control problem, for an FEuler scheme with
discretization A = 1/,

7—1

min E A(az? — u?) + az?
Z0se. s Tr ER 4=
gyt 1 ER E=0

subject to  wpp1 = x¢ + Aug, x9=0.

The Hamiltonians in continuous time, H(x(t),u, \(t)) = A(t) T u + u? — az(t)?, and in
discrete time, Hy(xg, up, Apy1) = A)\;_lu +u?— cw:%, are both strongly convex in u such that
neither condition (C3) nor (D4) can be satisfied.

According to Theorem 26, this means that the continuous time control problem has no
solution. This can be verified by expressing the continuous time control problem uniquely in

terms of the trajectory x(t) as

min {C(:c) - /Ol(ax(t)Q — a(t)?)dt + a:v(l)z} .

x(t):z(0)

By considering functions of the form xj(t) = exp(t¥) — 1, we observe that the corresponding

costs are unbounded below, namely, C(z) < 2a(exp(1) —1)2—k2/(2k—1) i _—>F —oo which
—400
shows that the problem is unbounded below and has no minimizer.

On the other hand, the discrete time control problem can be expressed in terms of the
control variables as

min aA?u' D™ JD u — Aljul)?,
u€R™u
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where J = diag(A,...,A,1), D =1— Z;ll err1e] . We have, using that A < 1 for the first
inequality, w" D™ JD" u > A D7 |3 > Aowin(D™)?[|ull3 = Allul3/D]3 > Allul3/4.
Hence, for any a such that aA%/4 > 1, the above problem is strongly convexr and has a
unique solution. Yet, if condition (D4) was necessary the discrete control problem should
not have a solution since condition (D4) cannot be satisfied.

Alternative derivation. Necessary optimality conditions for the discretized problem (1)
can be derived from Lemma 27 using the correspondence xy + ¥y (xy, ur) = fi(xy, ur). We
can also derive the necessary optimality conditions simply by considering a sequence of
control variables w = (up;...;ur—1) that minimize the objective J defined in (4). Namely,
the gradient of the objective J on w = (up;...;u,—1) can be obtained by gradient back-
propagation as follows. First the states corresponding to the control variables are computed
in a forward pass
Tt4+1 :ft(xt,ut), for t € {0,...,7'—1}

starting from z¢o = Zo. Then the gradients V.J(u) = (go;...;9,—1) are computed in a
backward pass as

>\T = VhT(xT)7
A = Vo flze, w) " N1 + Vi (e, w), fort € {0,...,7— 1},
9t = Vi fr(ze, wg) " N1 + Vi he(zg,ue),  for t € {0,...,7 —1}.

One easily verifies then that having g = 0 for all t € {0,...,7 — 1} correspond to the
optimality conditions presented in Lemma 27 with the correspondence x; + 1 (x¢, uy) =

ft(xtaut)-

B.2 Sufficient Optimality Conditions

Sufficient optimality conditions can also be derived following sufficent optimality conditions
in continuous time presented by Mangasarian (1966); Arrow (1968); Kamien and Schwartz
(1971). We start by rewriting problem (1) as

T—1
min Z mi(xt, 0¢) + he(x7),  where my(zy, 0) = inf hi(zy, ) (49)
zg,...,tr ER"T u€eR™u
60y-.-,0r—1 ER™T t=0 5t:f(xt~,ut)7xf

subject to 0 = w411 — 1, TY = Tp.

Sufficient conditions can be expressed through the true Hamiltonian, presented by Clarke
(1979), and defined as the convex conjugate of my¢(xy,-), i.e., for z¢, \epq € R,

Hy(w, A1) = sup Al 16 — my(a, 6)
JERx

= sup Noi(f(2e,up) — 20) — by, u)
UGR"“

= sup Hi(zt,u, \et1),
u€R"u

55



ROULET, SRINIVASA, FAZEL, HARCHAOUI

where
Hy(we,ue, A1) = Ny (Fr(@e, we) — 2) — by, w)

is the Hamiltonian associated with problem (1).

Theorem 28 Assume that m; defined in (49) is such that m¢(x,-) is convex for any x
and hr is conver. If there exist xy,..., x5 and A},...,A; such that Hy(-, N}, {) is concave
and

N = Ny € O Hy(a}, Npy)  forte{l,...,7—1},  \=Vh ()  (50)
i1 = 27 € Oy He(af, Niy) fort€{0,...,7 =1}, a5 =, (51)

then xjy, ..., x% is an optimal trajectory for (49). Conditions (50) and (51) amount to the ex-
istence of uj € arg max,cgnu Ay (f (e, up) =) —he (4, w), v} € arg max,cgn, Al Ve(Te, v)—
hi(x,v) such that

/\f - )‘Lrl = thwt(xfa U:) ;fk+1 - vxtht(x;fkv v?)’ x;fk+1 - xf - Qﬁt(xzkv u:)
Proof Since my(x,-) is convex for any z;, problem (49) can be rewritten

T—1

min_ sup Z ()\t+1T($t+1 — ) — Hy(y, /\t+1)) + hr (7). (52)
1T ERM NN\ eRre 1]
To==0

The above problem can be written as mingegrne SUpyecgm. ¢(€, X) with ¢(z, -) concave for
any x. The assumptions amount to consider x*, A* such that (i) 0 € Ix«c(x*, A*), (ii)
c(+, A*) convex and 0 € Og«c(x*, X*). Then for any € R™"=,

—

(41) i
sup c(x,A) > c(x, A*) > c(x*, AY) < sup c(x*, ).
AERTNx AER™nz

Hence, * € arg mingcprn, SUpyecprne ¢(€, A), that is, z§, ..., 2% is an optimal trajectory. B

Theorem 28 provides generic sufficient optimality conditions for problem of the form (1)
inspired by the continuous time viewpoint. However, as noted by (Polak, 2011), optimality
conditions in continuous time may not be informative for discrete time counterparts. This is
illustrated here by the difficulty to verify convexity of my (¢, -) or the concavity of Hy (-, Aj} ;).

C. Generic Convergence Results

In this section, we present the convergence analysis for generic problems of the form (1),
recalled below.

T—1
. " " 53
uOv--vﬂrLI-rliI;ER"u Z t(xt’ut) + T($T) ( )
zg,...,Lr ER™® t=0
subject to  xyy1 = fi(zy,ug) fort € {0,...,7—1},  x¢=To.

We decompose the problem in a composition by defining first the control of 7 discrete
dynamics below.
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Definition 29 We define the control of T discrete time dynamics (f; : R"* xR"™ — R”I)Z:_Ol
as the function fI1 : R x R™ — R™<  which, given an initial point o € R™ and

a sequence of controls uw = (ug;...;ur—1) € R™v  outputs the corresponding trajectory
T1,...,Tr, L.€.,
o, u) = (215, .5 2,) (54)
s.t. w1 = fe(xg,ug) forte{0,...,7—1}.
We consider then the cost of a sequence of control variables u = (ug;...;u;—1) € R™* and
associated trajectory = (z1;...;2,;) € R as
T—1
h(m,uw) = hi(xg,u) + he(zr).
t=0

Problem (53) amounts then to a compositional problem of the form

min 7 (u), for J(u) = h(g(w)), g(u) = (f7 (u,2o), u) (55)

u€eR™u

We make the following regular smoothness assumptions.

Assumption 30 We consider all costs hy to be l Lipschitz continuous, with Ly, Lipschitz
continuous gradients and My, Lipschitz continuous Hessians, then the cost function h is Iy,
Lipschitz continuous, with Ly, Lipschitz continuous gradients and My, Lipschitz continuous
Hessians.

We consider the dynamics to be Lipschitz-continuous with Lipschitz-continuous gradients
such that the control fI7) of these dynamics is lf[f] Lipschitz continuous with L Lipschitz
continuous gradients as detailed in Lemma 36. The augmented function g is then l; =

A /ZJ%[T] + 1 Lipschitz continuous with Ly = L?[T] + 1 Lipschitz continuous gradients.

Note: The notations h, 7, g used in Appendix C for problems of the form (53) pertain
only to Appendix C, Lemma 48 and Corollary 49. In particular, the definition of g and its
smoothness properties differ here than from the main text (see (24)).

C.1 Generic Convergence Results for ILQR

As explained in the main text for the problem without control costs (Sec. 4), the ILQR
algorithm amounts to linearizing g and taking a quadratic approximation of h such that,
provided that the minimum exists,

LQR, () (u) = argmin g} (£3(v) + 5 o]
’UE TNy

= —(Vg(u)V2h(g(u)Vg(u) " +v 1)~ Vg(u)Vh(g(w)), (56)

where £ and q}gL(u) are the linear and quadratic expansions of, respectively, the control in
T steps around u and the total costs around g(w). In other words the ILQR algorithm
is a generalized Gauss-Newton algorithm that exploits the compositional structure of the
problem. Lemma 31 below presents then the convergence to stationary point of the ILQR
algorithm from the lens of a generalized Gauss-Newton algorithm. Lemma 32 presents local
convergence guarantees.

57



ROULET, SRINIVASA, FAZEL, HARCHAOUI

Lemma 31 Under assumption 30, provided that the reqularization v satisfies

L.l L,l,
> 2021, =2 J
V_max{ glhs B 7(4thg(1+ﬁ))}7

for y(x) =1+ +/1+1/x and f = Mhlg/(BLth), the iterations of the ILQR algorithm
satisfy

min
kef{o,...,.K}

for J,h,g defining the objective in (55).

2(12Lp, + v) (J (u®) — mingegrna T (u))
(k) g
VT (u®)]2 < \/ e :

Proof Using Lemma 40 adapted to Assumption 30, we have that for any u,v € R™",

a) + GQH’UHQ
2

for a; = Lylp, a0 = Mhlg’/3 + LyLply. For v > lth the minimizer in (56) is uniquely

defined. The oracle v = LQR,(J)(u) satisfies then |v|2 < lglp/v. For v > ai(1 +

V1 +4daslyly/a?)/2, we have a1 + aglyly/v < v. Expanding a1, a2, the condition v >
a1(1 4 /1 + daslyly/a?) /2 reads

Lyly Lyly
> g g
25 (o)

for y(x) =1+ +/1+1/x and § = Mhlg/(?)Lth). Then, for v = LQR,(J)(u), we have

(hog)(u+wv) < (hog)(u)+ g™ o f(v) + oI5,

(hog)(u+v) < (hog)(u) +qi™ o £ (v) + Zlo[}

= (hog)(w) ~ 5V (hog)(w) (Vo(w)V*h(g(w)) Vo(w) +v1) 'V (hog)(w)

1 2

< - — .

< (h09)(w) = 57— IV e @B
We have then in terms of the ILQR iterations,

1

- (k)12 < (k)y _ (k+1)

s )V e DB < (ho g ) — (hog) )
Summing over kK = 0,..., K — 1 and taking the minimum on the left-hand side gives the
result. |

Lemma 32 Consider Assumption 30. Assume in addition that the dynamics are twice
differentiable with Lipschitz-continuous Hessian such that J = h o g has M s-Lipschitz
continuous Hessians. Consider u'®) to be close to a minimum uw* of J = h o g satisfying
17 = Amin(V2T (6*)) > 0. If [|[u® —w*||y < py/My, and the regularization satisfies

V> Ky max{5th£2], 8Ly},
for kg7 = Lg/nz, then the iterations of the ILQR algorithm converge linearly to u* as

JulD = < (1= 25 ful®) —u|la
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Proof Denote R = ||u®) —u*||y and H = fol V2T (u* +t(u®) —u*))dt such that V.7 (u®) =
VI (u®) - VT (u*) = Hu® —u*). Note that (u7/2)1< (uy — MsR/2)I < H < Ls1,
where L7 < thg + Lyl is the Lipschitz continuity parameter of J = hog.

Denote P = Vg(u)V2h(g(u))Vg(u)" + v1. We have

e — w3 < D — a® 5+ (@ — )T (@ — ) + ) — w3
<[P H@® — )3 — (u® —uw) THP (u® —u*) + [u®) — |3
< (14 L3 ) u® — w3 — (u® — ) THP (u® —u*). (57)

Denote C' = Vg(u)V2h(g(u))Vg(u)". For v such that ||C|l2/v < 1, we have
400 o
Pl=yvlaw o)y =140t Z v Y
j=1

Denoting G = Z;_:OT v=ICI, for ||Cl]2/v < (k71/4)/(1 + k~1/4) with k = L7 /pugs > 1, we
have ||G|| < k~1/4. We then have

_(u(k) _ u*)THP—l(u(k) B u*) _ —y_l(u(k) N u*)TH(u(k)
—u*) — v w® —u)TGH(u® — u¥)

-1 -1 -1
vV RT ., (k v Lgk k

< LT ) o T ) —
1/71/'6\_7 k *

= AT ) e,

Plugging the above equation into (57), we have that if v satisfies in addition v > 8L 7k 7,
the iterates of the ILQR algorithm converge linearly to u* as

D — w3 < (14 L3 — v g ) u® = < (1= B2 ) u®) —

C.2 Generic Convergence Results for IDDP

We analyze the convergence of the IDDP through the lens of the ILQR algorithm. As these
two algorithms differ simply by the roll-out procedure, Lemmas 47 and 48, summarized in
Corollary 49, show that their oracles differ by at most

lw —wll2 < [lv]3
for £ independent of v provided that v is sufficiently large.

We can then show the convergence of IDDP to stationary points in Lemma 33, as well
as its local convergence behavior in Lemma 34
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Lemma 33 Under Assumption 30, provided that the regularization v is larger than 2l§Lh
the oracle v = LQR,, (J)(w) returned by the ILQR algorithm and the oracle w = LQR,(J)(w)
returned by the IDDP algorithm differ as

lv = wl2 < £[lvl3,

for & a constant independent of v. Moreover, if the reqularization v satisfies

Lol Lol
> 2021, =4 g
V_max{ 97y 7(4thg(1+ﬁ+ﬁ’)>}

for y(z) =1+ \/14+1/x and 8 = Myl2/(3LyLy), 8 = 20,€/(LyLy), the iterations of the
IDDP algorithm satisfy

2(2Lp + v) (T (u®) — mingegrn. J (u))
K+1 ’

min }IIVJ(u(k))Ilz < \/

kefo,....K
for J,h,g defining the objective in (55).

Proof To show the convergence of the IDDP, we consider selecting v such that
v
T(u+w) < J(w) + g0 ) + o3

for w = DDP,(J)(u) and v = LQR,(J)(u). Using that costs and dynamics are Lipschitz
continuous, we have
T (u+w) = T (u+ )| <lplgllw — 2.

On the other hand, by Corollary 49 for v > 2th§, there exists a constant £ independent of
v such that ||w — v||2 < &||v||3 and so

T (u+w) = T (u+ )| < lplg|lv]f3.
Now using Lemma 40 adapted to Assumption 30, we have that for any u,v € R™™,

ay + az||v||2

T(u+v) < J(u) + ™ o i (v) + =2 o3,
for a1 = Lglp, a2 = Mhlg’/?) + LyLyly. Hence, we have
a1 +agjjv
Tt w) < 7 (w) + ¢} 0w) + DTN
for ag = ag + 2lpl,€. Selecting v > a1 (1 + /1 + daslyly/af)/2, that is,

Ll L,l,
> g g
=T 7<4thg(1+ﬁ+ﬁ’>>

for y, 8 defined as in Lemma 31 and ' = 21,§/(LyLy) ensures that a; + agl|v|]2 < v. So we
get that

I+ w) < J () +q b ) + vl

The rest of the proof follows exactly the proof of Lemma 31. |
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Lemma 34 Consider Assumption 30. Assume in addition that the dynamics are twice
differentiable with Lipschitz-continuous Hessian such that J = h o g has M s-Lipschitz
continuous Hessians. Consider u'®) to be close to a minimum uw* of J = h o g satisfying
17 = Amin(V2T (6*)) > 0. If [|[u® — w*||y < py/My, and the reqularization satisfies
Ly
v > max{2l3Lh, 5I€thl§, 8I€jLJ, 325m},

for k7 = Lg/uy, then the iterations of the IDDP algorithm converge linearly to u* as

(k+1) _ 4% <<1_L~7> ®) _ .
[ u'2 < 35, 18 — w2

Proof Given the k™ iteration u®) of the IDDP, denote
uffhy = u® + DDP(F) (™), ulffl) = u® + LQR(T)(@®),

the next iteration if the LQR or the DDP oracles are used respectively. We have using
Lemma 31 and Lemma 47,

k * k *
luiphp — w2 < lulion — u*llz + €| LQR(T)(u®)|3

2
o L.,7 (k) * (k) *
<[1-2L 4 ¢ - - ,
< (1 60 +¢& 2 llw w2 | |lu u*|2

The result follows by using that ||u*) — w*||y < p7/M and taking

V> 32€L‘7.
= "My

D. Conditioning Analysis
D.1 Smoothness Estimations

To derive simple bounds on the Lipschitz-continuity constants of the trajectory function
fI71, we present first a compact formulation of the first and second order information of f[7]
with respect to the first and second order information of the dynamics ( ft)tT;Ol in Lemma 35.
We require the following tensor notations in this subsection.

A tensor A = (ajjk)1<i<d,1<j<p,i<k<n € RI*PX7 g represented as a list of matrices A =
(Al, .. ,An) where A = (az}j,k)lﬁiﬁd,lﬁjﬁp € R¥™P for k € {1, .. n} Given A € Réxpxn
and P € R4 Qe RP*P' R € R™" | we denote

A[P’ Q’ R] - (Z RkvlpTAkQa cees Z Rk,n’PTAkQ> € Rd’Xp’xn’.

k=1 k=1
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For Ag € Rdoxpoxno  p ¢ Rloxdi @ ¢ RPoXP1 R ¢ R™*™ denote A; = Ag[P,Q, R] €
RAxP1xn1 Then, for § € R1¥42 T ¢ RP1¥P2 [ € R™*"2 we have

./41[8, T, U] = AO[PS, QT’ RU} c Rd2><p2)<n2‘

If P,Q or R are identity matrices, we use the symbol “-” in place of the identity matrix.
For example, we denote A[P,Q,1,] = A[P,Q, ] = (PTAlQ, . ,PTAnQ). If P,Q or R are
vectors we consider the flattened object. In particular, for x € R%,y € RP, we denote

Alz,y, ] = (a:TAly, .. ,xTAny)T € R,
rather than having A[z,y, -] € RY1X". Similarly, for 2 € R™, we denote
n
A[', ~,Z] = szAk S Rpr.
k=1

We denote ||lallz the Euclidean norm for a € R?, ||A|22 the spectral norm of a matrix
A € R¥P_ and we define the norm of a tensor A induced by the Euclidean norm as || Al|2,2.2 =

SUP,£0,y£0,20 AL, ¥, 2]/ ([l 2lly 2]l 2|2)-

Lemma 35 Consider the control fI7) of 7 dynamics (ft)tT_Ol as defined in Def. 29 and an

initial point xy € R™. For = (x1;...;2,) and w = (ug;...;ur—1), define

F(:I},’U,) = (f()(l'o,'do); ce ;fT—l(xT—17uT—1>)7

such that © = fUl(xq,w) is the unique solution of the implicit equation & = F(x,u). The
gradient of the control fl7} of the dynamics (flt);:_o1 on u € R™u can be written

Vol (o, w) = Vo F(z, u)1 -V F(z,uw)) "
The Hessian of the control fI} of the dynamics (ft);_ol on u € R™« can be written
Vil (20, u) = Vi F(z,w)[N, N, M] + V3, F(z,u)[,-, M]
+ V2 F(z,u)[N,-, M| + V2_F(x,u)[, N, M|,
where M = (1 -V F(x,u))™" and N = Vo f(zo,u)T.

Proof Denote simply, for u € R™, o(u) = fI7(zg,u) with z( a fixed initial state. By
definition, the function ¢ can be decomposed, for u € R™, as p(u) = (v1(u);...; o (u)),
such that

ir1(w) = filps(u), Efw) fort e {0,...,7 —1}, (58)

with pg(u) = z¢ and for t € {0,...,7 — 1}, By = ¢; ® I,, is such that E, u = u;, with e;
the ¢ + 1'® canonical vector in R™, ® the Kronecker product and I,,, € R™*" the identity
matrix. By taking the derivative of (58), we get, denoting z; = ¢¢(u) for t € {0,...,7} and
using that B, u = uy,

Vg0t+1(u) = V(pt(’U/)vxtft(ﬂft, Ut) + EtVutft(xt, Ut) for t € {O, e, T — 1}
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So, for v = (vg;...;v,_1) € R™xu denoting Vo(u) v = (y1;...;9,) s.t. Voy(u)Tv =y for
te{l,...,7}, we have, with yo = 0,

Yt+1 = thft(xt, Ut)Tyt + Vutft(xt,ut)Tvt fort € {0, ey T — 1}. (59)
Denoting y = (y1; .. .;yr), we have then
(I—-A)y = Bv, ie, Vp(u)'v=>1-A)"'Bo,

where A = 22;11 €t€;r+1 ® A; with Ay = Vg, fi(xs,us)" for t € {1,...,7 — 1} and B =
21;1 €t€;r ® By_1 with By = Vutft(xt,ut)T for t € {0, e, T — 1}, i.e.

0 ... .0
. By O 0
Ay
A= 0 ) B = 0
0
: . I 0 0 B,
0 ... 0 A1 0

By definition of F' in the claim, one easily check that A = V4 F(x,u)" and B = V, F(z,u) .
Therefore, we get

Vol (2o, u) = Vo(u) = Vo F(x, u) (I -V F(z,u) "

For the Hessian, note that for g : R — RP, f : R? — R, 2 € R?% we have V2(f o
9)(x) = V() V2 (2)Vo(x) T+ V2g(x)],-, V(x)] € REIf f : RP 5 R, we have V2(f o
9)(x) = V2f(2)[Vg(z)",Vg(x) ", ]+ V3g(z)[-,, Vf(z)] € R”". Applying this on f; o g;
for g¢(u) = (¢i(u), B u), we get from (58), using that Vg, (u) = (Vi (u), Ey),
Vi1 (u) = Vi (u)[-, -, Ve, filw, ur)]
+ V2 o fe(@eu) [V (u) ', Vor(w) T ] + Vi, fi(e, w) (B B
+ V2 el u) Vo (w) T B 4+ Vi, (@, u) (B Vi (u) T,

fort € {0,...,7—1}, with V2 (u) = 0. Therefore, for v = (vo;...;v,_1),w = (wo;...;w,_1) €
R7™, o= (pas. .5 pr) € R™ ) we get

I
L

V2p(u)[v,w, p] =Y Vi (u)v, w, 1]

N o+
!
)

(V?Mt Fe(@e, we) [, 2, M1 ] + Vi, frl@e, ug)[ve, we, A1) (60)
0

~~
Il

+ V2,0 (@ ue) [y, we, Nes1] + Vi, fo(@e, we) [vn, 22, >\t+ﬂ),

where y = (y1;...;9,) = Vo(u) v, z = (21;...;2:) = Vo(u) w, with yg = 20 = 0 and
A= (A1;...; A7) € R™= is defined by

)\t = thft(a:t,ut))\tH + Lt for t € {1, ey T — 1}, )\T = Ur.
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On the other hand, denoting Fy(x,u) = fi(x¢,us) for t € {0,...,7 — 1}, the Hessian of F'
with respect to the variables w can be decomposed as

T—1 T—1
VZUF(.’.U, ’LL) [’U, w, A] = Z Vqut(m, ’U,)[’U, w, )\t+1] = Z Vitmft(a:t, Ut)[’l)t, Wt, )\t+1].
t=0 =0

The Hessian of F' with respect to the variable  can be decomposed as

71 7—1
vimF(m’ u) [y, z, )‘] = Z vimFt(wa u) [ya z, >‘t+1] = Z vitmtft(xtv Ut)[yt, 2t )‘t+1]'
t=0 t=1

A similar decomposition can be done for V2, F(x,u). From (60), we then get

Vip(u)[v,w, p] = V2, F(z,u)ly, 2, + V2, F(z,u)[v,w,\
+ V2, F(z,u)ly, w, A + V2, F(z,u)v, z,Al.

Finally, by noting that

(VuF(z,u)I-VoF(z,u)) ') v,
(VuF(z,u)(I -V F(x,u) ") Tw
(I-VaoF(z,u) '

Y
z
A

the claim is shown. |
Lemma 35 can be used to get estimates on the smoothness properties of the control of
7 dynamics given the smoothness properties of each individual dynamics.

Lemma 36 If 7 dynamics ( ft)zz_ol are Lipschitz continuous with Lipschitz continuous gra-
dients, then the function u — fI7l(xzg,w), with fI7) the control of the T dynamics (ft)tT;Ol, 18
Lyir-Lipschitz continuous and has L ;i -Lipschitz continuous gradients with

L) SIS, Lyt < S(LF130 + 205" ) + LYY, (61)

where U} =sup, ,, [|Vuf(z, u)ll22, I of (@, w)|22, LEF=sup,, [[V3.f(2,u)l222,
LY = sup, , || V2, f(z,u)|222, L3 = sup, , V2, f(z,u)|222, S=>1—g (%), and we drop
the index t to denote the maximum over all dynamics such as lf = maX;e(o,....7—1} li.

Proof The Lipschitz continuity constant of u — fI7)(zo,u) and its gradients can be esti-
mated by upper bounding the norm of the gradients and the Hessians. With the notations

of Lemma 35, VzF(x,u) is nilpotent of degree 7 since it can be written VzF(x,u) =
ZtT:_11 err1e] @ Va, fi(zs,ug) and (A® B)(C ® D) = (AC ® BD). Hence, we have

(1-VgF(x,u))~ ZVqu
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The Lipschitz continuity constant of f[7 is then estimated by
T—1
IV (@o, w22 < [IVaF (@, u) 22 (1 =V F(z,w) 22 < 14 Y (15)"
t=0

As shown in Lemma 35, the Hessian of u — fI7] (zo,u) can be decomposed as

Viufm(x()vu) = VimF(mvu)[N7 N, M] + Vqu(.’I;,u)[-, '7M]
+ Vqu(iL', u)[N7 " M] + meF(:z:,u)[, N, M]v
where M = (I -V 4F(z,u))"" and N = V. fI7/(Zo,u)". Given the structure of F, bounds

on the Hessians are |VZ, F(x,u)|222 < L;%b for a,b € {x,u}, where || A|]222 is the norm
of a tensor A w.r.t. the Euclidean norm as defined in the notations. Note that for a

given tensor A € R¥*PX" and P, Q, R of appropriate sizes, we have || A[P,Q, R]|222 <
[All222[ Pll22[@ll22[ Rl[2,2- We then get

V20T @0, w)ll2.22 < LFIN3 0l M 122 + LY M |22 + 2LF | M||2,2]| N || 2.2,
where for twice differentiable functions we used that L?“ = L;ﬁ‘”. |

D.2 Sufficient Condition for Global Convergence of Time-varying Dynamics

Lemma 37 presents a simple extension of Lemma 6 for time-varying dynamics. Note that
provided that condition (62) is satisfied, the analysis of the ILQR and IDDP algorithms
remain essentially unchanged, up to different constants.

Lemma 37 Consider the control of T discrete time dynamics (f; : R" x R™ — R”Z)Z:_Ol
as defined in Definition 29. If the dynamics f; are Lipschitz continuous and satisfy

VIE,U € R"™ x Rnuv O'min(vuft(l',u)) > Of > 07 (62)

then the control f7) of these dynamics satisfy for all t € {0,...,7 — 1},

min o
Vg, u € R x R™™, Umin(Vuf[T](xo,u)) > 0 = t€{0,...,7=1} 9 f

1+ maxeqo,...r—1} l?t

where l?t = SUPyernu Lfy(-u) 18 the mazimal Lipschitz-continuity constant of the functions
fi(-,u) for any u € R™,

Proof With the notations of the proof of Lemma 6 we have

O'min(qu(m7 u))

. I
Omin (Va7 (@0, w)) 2 G )

where here F(x,u)=(fo(xo,u0);...; fr—1(®r—1,ur—1)). Noting that omin(V.F(x,u)) >
minyego,... 1} 0f and Omax(I =VzF(z,w)) < 1+ maxicqo,. 131}, concludes the proof. B
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E. Linearization by Static Feedback and Brunovsky’s Form

We briefly recall here the rationale behind the parameterization of a system in Brunovsky’s
form and the theory underlying the existence of static feedback linearization in continuous
time, see, e.g. Isidori (1995); Busawon and Djemai (2009) for more details on these subjects
and Aranda-Bricaire et al. (1996) for an analysis of feedback linearization in discrete time.

E.1 Brunovsky’s Form

We start by understanding the relevance of the parameterization in Brunovsky’s form for
discrete time linear systems of the form

2411 = Axy + Buy fort =0,1,... (63)

for x; € R™, u; € R™ with n, = 1 for ease of presentation, where A € R"%*"= B ¢ Rnex1
and we denote n, = n for more readability. An important property that can be investigated
for such system is its controllability, i.e., whether, from any initial state xg, we can reach any
state x* after a sufficient number of steps of the discrete dynamical system and appropriate
control variables. This question can be answered by examining the controllability matrix
C = [B, AB,... A" 1 B] associated to the system (63). If C has full row rank, i.e., rank(C) =
n, then the system is controllable in at most n steps, as observed from standard linear
algebra considerations. For a controllable system (63), we can investigate whether there
exists a reparameterization of the system in variables y; = Mxy, v = Nu; + Pyq, in which
the notion of controllability is transparent in the reparameterized system ;11 = Fy, + Guy,
for F,G defined appropriately from A, B, M, N, P. One ideal reparameterization is given
by Brunovsky’s form,

(1) (2)

o
Yir1 =Y
that is  yrr1 = Dy + Evy
(n—1
g =y
(n)
Yir1 =t

for D = Z?;ll eie;;l the upper-shift matrix in R™ and e; the i*" canonical vector in R™ with

FE = e,. In this reparameterized system of equations, after n steps of the linear system we
naturally have that y,(f) = v;—q for i € {1,...,n}, that is, the operator that, at n control
variables associates the state of the system after n steps is just the identity operator, which
clearly satisfies the definition of controllability.

To get such a parameterization, consider state variables of the form y; = Max; for M
invertible. The resulting linear system has the form ;.1 = M AM 'y, + M Bu;. We then
need to choose M such that MAM~' = D + EJ for some J € R'*" and FB = E such
that by defining vy = EJy; + Fuy, we get that y.r1 = Dy, + Evy. Such invertible matrix
M can be computed in closed form from the expressions of A, B, D and E as CK~! for
C' the controllability matrix associated to the pair (A, B) defining the linear system (63)
and K the controllability matrix associated to the pair D, E defining the linear system in
Brunovsky’s form. This is essentially the approach taken in Lemma 38.
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E.2 Static Feedback Linearization for Continuous Time Systems.

Consider a continuous dynamical system of the form

i = f(2) + g(a)u (64)

for f : R — R™ and g : R™ — R™ with v € R, and we denote here n, = n for
more readability. Static feedback linearization schemes aim to find a reparameterization
of this system around an initial state xg such that the system is linear and controllable
in the reparameterized variables under suitable assumptions on f and g. The point of
departure of the analysis of conditions for the existence of a static feedback linearization
scheme (Isidori, 1995, Section 4) is to consider a function h which defines the output of the
system (64) as z = h(z). We may then analyze the influence of the control on this output
through the derivatives of z. Namely, we have that % = %% = %(f(az) + g(x)u) =
Lh(z) + Lgh(z)u, where we defined the derivative of h : R” — R along f : R* — R"
as Leh(z) = Y0, %(m)fi(a:) for f;(x) the i*h coordinate of f(z). If Lyh(x) = 0 in a
neighborhood of the initial state xg, i.e., the derivative of the output function A along
g is zero, then the control has no effect on the first derivative of the output for ¢ small

enough, i.e., %(t) = L¢h(x(t)). Analyzing the second derivative of the output, we have

% = L?ch(a:)—i—Lgth(x)u, where LyLh(z) = Y1, %L—:Cffl(x)gz(x) and L%h(x) = LsL¢h(x).
If LyL¢h(x) = 0 in a neighborhood of the initial state, then the control variable has no effect
on the second derivative of the output for ¢ small enough. Continuing this way, if for any
ke{0,...,n—1}, LgL’JEh(:U) = 0 around zg and Ly L}h(zo) # 0 then the derivatives of the

output satisfy g—:,f = L?h(t) for ¢t small enough and %(O) = Lth(zo) + LgL?_lh(xo)u(O).
In other words, under the aforementioned conditions, the output of the system can be seen
as a dynamical system driven by its n'* derivative. Given an output function h satisfying

the aforementioned conditions, we can then consider the reparameterization y; = Ll]'flh(:p)

(which corresponds to consider a system whose coordinates are defined by the i*" derivative
of the output) and define v = L}h(x) + LgL’}_lh(m)u such that the reparameterized system
takes the form

U1 = Y2
Y2 =3
y.nfl =Yn
gn = Ljh(z) + LyL} 'h(z)u = v.

We recognize here again a parameterization in Brunovsky’s form, here for the continuous
time system considered. Existence of an output function satisfying the aforementioned
assumptions and such that the reparameterization is a diffeomorphism around the initial
point can be verified by considering the involutivity and regularity of the vector field defined
by repeated Lie brackets of the function f on the function g, see, e.g. Isidori (1995, Lemma
4.2.2).

E.3 Reparameterization in Brunovsky Form

Lemma 38 shows how a discrete time system driven by its k' derivative can be expressed
in Brunovsky’s form (19) (Brunovsky, 1970).
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Lemma 38 Consider the Euler discretization of a single-input continuous-time system
driven by its ny™ derivative as presented in (20). If |8, (y,v)| > 0 for all y € R™ v € R
then the dynamical system (20) can be linearized by static feedback into the canonical
form (19).

Proof Denoting A = I+AD, with D the upper-shift matrix in R™, the original dynamical
system (20) can be written as y; 1 = Ay + Av(ys, ve)e, with e = e,, the n,™ canonical
vector in R™ . It suffices to note that the matrix A is similar to a matrix of the form

B =D +ec' for some vector c. Namely, denoting Pn@ = Py 1s--- ,pnm,nm)T the nmt}f lower
triangular Pascal matrix defined by rows p,, ; = ((;j))?il with the convention (;) =0

if i < jand Q = P,, diag((A* ")), we get that BQ = QA for B = D + ec' with

c=((=1)"7" ()i
Hence, by considering the change of variable z; = a(y;) = Qu:, we get that

zi41 = Bz + A (yg, v)Qe = Dz + ¢! ze + A (ye, vy )e,

using that Qe = e. By defining wy = by, v¢) = ¢! Quys + Atp(ys, v;) we get the desired
form (19). The transformation a is a diffeomorphism since @ is invertible. The transforma-
tions b(y, -) are also diffeomorphisms since |0,%(y,v)| > 0 for all y € R™* v € R. [ |

F. Convergence Analysis of ILQR
F.1 Global Convergence Analysis

In the statement of Theorem 13, we used Lemma 39 to relate the constants associated to
gradient dominance properties of the costs on the sates to the constant associated to the
gradient dominance property of the cost on the trajectory with, in Theorem 13, compared

to Lemma 39, we used p; = p for all ¢ such that p, = Hu‘lﬂq_l = pr = )7/ =),

Lemma 39 Let hy,...,h; be differentiable functions from R™* — R such that
IVhe(xi)ll2 = pi (he(xe) — h)" fort €{1,...,7},

for some constants iy > 0, r € [1/2,1). The function h : & = (z1;...527) = > 1_1 he(xt)
satisfies
IVR(@)ll2 > py(h(z) = h*)" for pn = |n~ 157,

fora=2r/(2r—1) and p' = (a7 u2) T with YTk = mineq e if F = 1/2,

Proof Denoting for simplicity §; = hy(z;) — h*, we have

IVh(z)|3 = Z IV he(z4) |5 > Z(Mtfst)% = [lp © 83, > W@T )™,
t=1 t=1 q

for ¢ = 2r/(2r — 1), where g = (p1, ..., ptr) ", 8 = (01,...,0,) ", ® denotes the element-wise
product, and we used Hélder’s inequality ||z|,||ylly < |2 Ty| for p = 2r, ¢ = p/(p— 1) =
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2r/(2r — 1), 2 = p® & and y = p~!. Plugging the values of § in the inequality above, we
get

IVA()ll2 > =157 (Z hi () = hZ‘) = pp (h(2) — B7)",
t=1

where we used that, since h is decomposable in the variables z;, h* = Y|, hy. |

Lemma 40 states that a linear quadratic approximation of the compositional objective
in (24) approximates the objective up to a cubic error.

Lemma 40 Given Assumption 11, we have, for problem (24),

_ LollVI(g(w))ll2+(Malg/3+ Ly Lnly) [ v]|2

2
5 ol

|(h o g)(u+v)—(hog)(u)—gl™ o %(v)]
Proof We have for any u,v € R™,

B (g(u+v)—h(g(w)—gl™ (€4 ()] < [h(g(utv))—h(g(u)—gi™ (g(u+v)—g(u))|
+ g™ (g(utv)—g(u))—g™ (£4(v))].
On one hand, we have, by Taylor-Lagrange inequality,

Myl

(g u+0)~h(g ()~ (g(uto)—g(w))| <~ lg(w + v)-g(w) < =2 ol

On the other hand, we have,

g5 (g(utv)—g(u)—g} ™ ((2(v))] = |(g(utv)—g(w)~Vg(w) v) Vh(g(u))

+1(g(u+’v)—g(u)—Vg(U)Tv)TVQh(g(U))(g(U+v)—g(u)+V9(U)Tv)

2
Lyl Vh(g@)l2, o LnLyl
R e T R

F.2 Local Convergence Analysis

Lemma 41 provides a bound on the oracle returned by an ILQR method in terms of the
constants introduced in Theorem 18.

Lemma 41 Given Assumption 17 on problem (24), we have for any uw € R™x v >0,

l

ILQR, (7)(u) <

IVA(g(w)llgu)-
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Proof For u € R™« v > 0, denoting V2h(g(u)) = H, Vg(u) = G, we have
LQR,(J)(u) = —GHY?(H'2GTGH? + v 1) ' H~'?Vh(g(u)).

Recall that by definition of ¢ and [, we have o < amin(GHl/Q),amax(GHI/Q) < I. By
considering the singular value decomposition of GH'/2, we then have

o : 2
T ifv<o

_ x .
IGHYV2(H2GTGHY? + v1) 7Yy < max - = sy ot <v<i®
me it >
By analyzing each case, we get the claimed inequality. |

Lemma 42 provides a bound on the differences of gradients of a self-concordant function.
It replaces the classical bound we can have for Lipschitz continuous gradients.

Lemma 42 For a Uy-self-concordant strictly convex function h (Nesterov, 2018, Definition
5.1.1) and y,x such that ||y — x|, < 1/9p, we have,

1
Vh(y) — Vh(z)|s < — x|
IVh) - TGl < 1yl al

Proof Denote J = fol V2h(z +t(y — z))dt and H = V2h(x), we have |[Vh(y) — Vh(z)|} =
|J(y —2)||5 = |H-Y2THY2||y||ly — 2||.. Now H-Y2JH=Y2 = 0 since h is strictly convex
and by (Nesterov, 2018, Corollary 5.1.5), we have J =< V2h(z)/(1 — 93|y — z||») hence
|H2TH 22 < 1/(1 = Oply — 2/la)- =

F.3 Global Complexity Bound

Lemma 43 refines the regularization choice of Theorem 13 by exploiting an additional as-
sumption of strong convexity of the costs.

Lemma 43 Consider h to be pp-strongly convex and Assumption 11 to be satisfied. Con-
dition (27) is satisfied by choosing a regularization

(07

2(1 + 0g/Vh(g(w))ll2/(VEnpg))
for pn = Ln/pn, Pg = lg/og: 0y = Lg/(US\//Th)} Q= 4P§Ph(ﬁ +1), 8= Mhlg/(3Lth)-

Proof Let w € R™, G = Vg(u), H = V?h(g(u)). We have using that GTG = 03 L ie.,
GG invertible,

y>y@>:(y+ )Lﬂvmmwm%

LQR,(J)(u) = —G(G'G) ' (H + v(G'G) ™)' Vh(g(u))
= -GG V2(GTAHPHGT)Y? + v ) UG T @) 2V h(g(w)).
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By bounding each formulation, using ||G(GTG)~ || < 1/, for the first formulation, and,
IG(GTG)"?|, <1, (GTG)'V2H(GTG)Y? = ,uhag for the second formulation,

| LQR, (7) (@) l2/I1Vh(g(w) |2 < min{l3/(unoyly +vog),ly/ (v + unoy)}
<2, /(v(1+0g/ly) + prog(og + 1))
< 2lg/(v + pnogly),

where we used that min{a, b} < 2/(1/a+1/b). Hence, condition (27) is satisfied if v satisfies
a1+ az/(ay + v) < v with a1 — Ly|Th(g(w)la, a2 = 2a0l|[Vh(g(u))ll2, as = oylin,
ag = Mhl§/3+Lthl9. Hence, condition (27) is satisfied for v > vy = (a1 — az + (a1 +
az)\/1 + 4az(ar + az)~2)/2. Since v/1 + 2z < 1 + x, we have vy < a1 + az/(ay + as), so it
suffices to take a regularization larger than or equal to

205 (Mpl3/3+LgLn) || Vh(g(w))|2
LgllVh(g(w)ll2 + oglgpn

v(u) = Lg[|Vh(g(w))ll2 +

Lemma 44 details the computations of the complexity bounds of the ILQR algorithm in
the case of strongly convex costs, used in (41) before taking into account the local quadratic
convergence.

Lemma 44 Consider the notations and assumptions of Theorem 21. The number of iter-
ations of the ILQR algorithm with reqularizations

(67

o <1 21 0, Vh(g(a®))o/ (Vrnpg))

needed to reach an accuracy € is at most

k‘<2phln< )+4«9 (\/% \@)—I-Zaln(m),
g g

where py, = L/ tin, pg = lg/g, 0y = Lo/(02Im), O = My/(20)%), @ = 4p2pn(B + 1),
B = Mhlﬁ/ (3LpLy)

) LIt

Proof Let u € R™ and v = LQR,,(,,)(J)(u) for

(%

v(u) = (1 + 2(1 4 04| Vh(g(w))ll2/(VEnpg))

As shown in Lemma 43, the chosen regularization ensures the sufficient decrease (27). As
n (29), in the proof of Theorem 13, we get that

) Lyl Vh(g(w))]l.

1 Ug bll‘3 + b2$2

—_ =< T . 7 < 2__—
Tt o) = I < =3 g o VM =
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where z = [[Vh(g(w))l|2, b1 = Lg/(2lgpnLnog), ba = 1/(2Ly), bs = Ly /(05lgunLn), by =
Ly/(oglgun)+Lg/(0aLy)+2a0/ (o pnLy). The function fi(x) = (biz®+box?)/(bsa? +b4a:+1)
is increasing and since h is strongly convex, we have that [|[Vh(g(w))||3 > pn(h(g(uw))—h*) =
w6 for § = J(u)— J*. Hence, as in the proof of Theorem 13, we get that the total number
of iterations to reach an accuracy ¢ is at most k < fo(dg) — f2(g) where

1 . 1+6151/2+625
fl(\/,u,hé) c30 + 6453/2 ’

where ¢1 = Oy(p; " + 20 + p ) + 40300/ Bpn)s 2 = 05%/(pgpn), 3 = 1/(2pn), ea =
04/ (2pgpn). By standard integration, we have that an antiderivative of f is

f2(0) =

2 2
oy = 20 200 (G B G) (0 f5 goy)
C3 Cy4 C3Cy

= 2p1, In(5) + 40,V'6 + 8p2(p1, + 20201/ (304)) n(0,V/ 5/ (2pnpg) + 1/ (2p1)).-

The result follows. |

We present below the proof of Corollary 23 that ensures the validity of the line-search
procedure presented in Algo. 2.

Corollary 45 Consider the assumptions and notations of Theorem 21 on problem (2) and
Algo. 2 with an initial scaled regularization guess v_1 < (1+ o /(24 204v/00/pg)) Ly. The
total number of calls to ILQR oracles of Algo. 2 to reach an accuracy € is at most 2k(d¢, &)+
Inln(e™1) + [logy (1 4+ «/2)Ly/v—1)], where k(S0,8') is defined as in Theorem 21 and &' =

1/(32pn(0n(1 + 2w/php2/3) + /Prbg(1 + 2pgpn))?) is a gap of quadratic convergence for
Algo. 2

Proof Define for u € R™",

v(u)=1|1 a L
(w) ( * 21+ 99\/j(u) — MiNyeRr7u j(”)/l’y))) !

Since h is strongly convex, we have that |[Vh(g(u))||2 > /an(h(g(w)) — mingegrra h(y)) =
VER(T (w) — mingegrrne J(v)), where we recall that mingegrne h(y) = mingegr. J(v) as
shown in Theorem 13. Hence, we have that v(u)||Vh(g(u))||2 > v(u) for v(u) defined
in Lemma 43. Therefore, by Lemma 43, the line-search procedure of Algo. 2 at the ktP
iteration necessarily terminates with a scaled regularization 7, < 20(uy) since we chose
v_1 < v(up) and since (uy) necessarily increases over the iterations as J(uy) decreases
when condition (27) is satisfied.

Moreover, since 7(u) is upper bounded by (1+a/2)L, the total number of calls to oracles
made by the line-search inner loop to satisfy the decrease condition after k iterations is at

most kE+ [logz ((14'1/04_/12)%)-‘ '
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Since the line-search ensures the decrease condition (27), we have, as in Theorem 21
that for v, = Dk”Vh(g(uk))Hg,

T(wnrn) = Tup) < —2— T | h(gu))3
) TS S T IS
<! % IVh(g(w))]3
= 2020, + 20(uwp) [VA(g(u) o I
1 o

2
- g9
|

2
02T + () [ViGg@)s @Dl

The rest of the proof of Lemma 44 follows, and we get that the number of iterations of
Algo. 2 to reach an accuracy ¢ is at most 2k(dg,¢) for k(do, ) defined as in Theorem 21.

For the quadratic convergence rate, we have, with the notations of the proof of Theo-
rem 21, that

vie/ An(9(ur)) < 20(wp)[|Vh(g(ur)) 13/ An(9(ur)) < 29/ Ln(Lg+2lg(Mily /3+LyLn) /(0 gun)).

The rest of the proof follows with a slightly modified quadratic convergence gap. |

G. Convergence Analysis of IDDP

The ILQR and iLQR algorithms differ only by the rolling-out phase. The former uses the
linearized dynamics, while the latter uses the original shifted dynamics. We formalize the
roll-out phase in Definition 46.

Definition 46 We define the roll-out of T policies m : R™ — R™ aqalong T dynamics
¢y : R x R™ — R™ from xg as

rollout : o, (6¢)7a, (1) 7=g = (U0, - - -, Ur—1)
S.t. up = 7Tt($t), T4l = gbt(a;t,ut), fOT t e {0, o, T — 1}

With the notations of Definition 46, denoting

(I)(QS, u’) = ((;SD(an uO); cee ;¢T—1($T—1u UT—l))

m(x) = (m(x0);...;7(Tr—1))

for x = (z1;...;2,),u = (ug;...;ur_1), the trajectory = ¢l™ (o, u) associated to u is
the unique solution of & = ®(x,u) and the roll-out is the unique solution of

u=m(x), x=(x,u). (65)

Given a trajectory (z1;...;2,) = fI™)(zo,u) computed from w = (ug;...;ur_1), and 7
policies (ﬂt)t:ol computed in the backward pass of Algo. 1, the ILQR and iLQR algorithms
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can be expressed as

LQR, () (u) = rollout(0, (¢){ =y, (m); =, )

for £i(yt,ve) = xt’ut(ytﬂft) = Va, fe(@e,ue) "y + Vi, fil@e, w) Ty (66)
DDP,(J)(u) = rollout(0, (&)=, ()] =)

for 0¢(ys, ve) = xt’ut (Y, ve) = fe(we 4 ye, ue +ve) — fe(we, up) (67)

To analyze the convergence of the iLQR algorithm, we consider how close it is from the
ILQR algorithm. This can be traced as measuring how the roll-out phase differ between
using 63’;:’“’5 (yt,v¢) or 5;;”” (yt,v¢) as done in Lemma 47.

Lemma 47 Given T discrete dynamics f; : R™ xR™ — R™ and T policies w¢ : R™* — R™
fort=0,...,7—1, denote

v = rollout(0, (ﬁt); ()= 01) w = rollout(0, (5t)th_ol7 (7’[}5)35—:_01),

for by, 6; defined as in (66) and (67) from (x1;...;2,) = fID(zo, u) and w = (ug;. .. ;ur_1).
Suppose that the policies are affine of the form are m(xy) = Kixy+ ke, and that all dynamics
are Lipschitz continous with Lipschitz-continuous gradients. Then the directions v and w
differ by

lw — vll2 < n(K)|v]3

for n(K) an increasing function of | K ||2 detailed in the proof.

Proof In this proof, we ignore the dependency w.r.t. Zy and denote simply fIl(u) =
"Nz, w). Similarly, we denote £[7(v) = £I71(0,v) and 67} (w) = 6[71(0, w) the trajectories
associated to the linearized and shifted dynamics starting from 0. For y = (y1;...;y;), de-
note m(y) = (mo(0); 1 (y1); ... ; Tr—1(Yr—1)). Denoting K =7 _, etetT_l QK1 € RTuXThe,
k = (ko;...;kr—1) € R™= we have that 7(v) = Kv + k with

0o ... 0
K,
0
0o ... 0 K,—1 O

The roll-outs are defined as the solutions of
v = (M), w=r(@Ew))
From Lemma 35, the linearized trajectories can be expressed as
(Nw) = 1-A)"'Bo

for B =V F(x,u)', A= VgF(x,u)", with F(z,u) = (fo(zo,u0);...; fro1(xr_1,ur_1))
for x = (z1;...;27), w = (up;...;ur—1). We have that v satisfy

= K(I-A)"'Bv +k.
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Note that A + BK = Y7 ,eiel | @ (A1 + Bio1Ky1) for By = Vo, fi(ze,u) ', Ay =
Va, fe(z, Ut)T, that is

0 0
Uy :
0 ... 0 U._, 0

for Uy = Ay + B K;. So I—A — BK is invertible by solving an autoregressive problem.
We then have that (I1—-K(I—-A)"!B)(I+K(I1—A — BK)~!'B) =1 such that the solution of
v =n(ll(v)) is

v=k+ K(I-A—- BK) 'Bk.

For w = (wp;...;wr—1), denote z = (21;...;2,) = 5[7}(11)) sit. zep1=fi(x+2ze, wtwe) — fr (g, we)
fort € {0,...,7—1}, with 2p=0. By the mean value theorem, for all t € {0,...,7—1}, there
exists Ce1y.vy Gime € R™ M1,y en, € R™ st for all i € {1,...,n,}, denoting f; the

ith coordinate of f, we have

filwe + ze,ue +wy) — fi(wg, ue +wy) = Va:tJrCt,ifi(ﬂUt + G ut-f—wt)TZt

Ji(we, ugtwy) — fi(xe, ue) = Vuﬁm,ifi(ﬂﬁt,Ut+77t,i)TZt,
with [|Gill2 < [|2¢]|2 and |92 < [Jwe]|2. We can then write the dynamics of z; as

2t4+1 = Cyzy + Dywy  for t € {0,..., 7 — 1}

Ng Na
Cy = Z €i ® Vi, 4¢,, fi(@et+Cei, urtwy) ' Dy = Z €i ® Vu,tn, , fi(Tt, uAei)
i=1 i=1

Denoting C' = >/ ,ere41®Ci—1, D =>7 ere] @Dy_1, we get that 87 (w) = (I-C)~'Dw.
Since w = (6!} (u)), we get that w satisfies

w=KI1-C)"'Dw + k.
The solution of this system can be found as before as
w=k+K(I-C—-DK) 'Dk.
We then have
[ = wllo < [[K]l2[(1—C = DK) ™D = (1—A = BK)~"Blls|[k]l2
Then, we decompose the middle term as

(I-C—-DK)'D—-(1-A—-BK)'B
=(I-C-DK)'-(1-A-BK)™"YD-(1-A—-BK)Y(B-D)

= (I1-C—-DK)Y(C—-A+(D-B)K)1-A—-BK)™'D
—(I-A-BK)Y(B-D).
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We have (I—A — BK)~' = 3.7 (A + BK)? since (A + BK)™ = 0. So we get

T—1 T—1
IT—A—=BE) M2 <> A+ BE|5 <Y (5 + 1} Kll2)" = Si(K),
t=0 t=0

for l?, l}‘ defined as in Lemma 36. Similarly, we have

T—1
|1=C = DK) M2 < (nalf + nalf | Kll2)" == Sa(K).
t=0

Using the block structure of the matrices, we have, using that ||n. ;|| < [|well2, [[Gill < ||zell2,

1B = Dll2 < ng L§"||wl|2
A = Cll2 < na(LF"[|2[l2 + LF*||w]l2),
[Dll2 < nal¥,
for Ly, L3, L3 defined as in Lemma 36. In addition, we have that [|z[l2 < I [|lwll2,

where [ flr 18 the Lipschitz-constant of f [7l computed in Lemma 36.
So in total we get that

lw —vll2 < | Kll2(na?S1(K)Sa(K)IH(LE Lin + LF* + LFEK |l2) + noS1(K) L") w2l |2
= m (K) [[wll2][kl2
Now since w =k + K(I-C — DK)™'Dk and k = v — K(I —A)~! Bv, we have

[wlla < (1 + nel| K252 (K)17)[|Kll2,
[Kell2 < (1 + [[K]l2l jim)[[0]]2-

Hence, we get

lw = vll2 < 7 (K)(1+ ng|| K |22 (FK)UF) (1 + | K [l2l g1 )| 013
= n(K)|vl3.

It remains to bound the Lipschitz continuity constant of the policies derived in the
backward pass of the ILQR and iLQR algorithms. In the general case, i.e., problem (1),
Lemma 48 shows that the policies are Lipschitz continuous with a Lipschitz continuity pa-
rameter independent of v provided that v is sufficiently large. For the restricted problem (2),
the policies are Lipschitz continuous with a Lipschitz continuous parameter independent of
v unconditionally, as shown in Lemma 50.

Lemma 48 Consider problem (1) with dynamics and costs Lipschitz continuous with Lipschitz-
continuous gradients as in Assumption 30. For any v > 2l,Ly, the policies mp @ y; —
Ky + ki computed in Algo. 1 are well-defined and Lipschitz continuous with || K||2 < ¢ for

¢ independent of v.
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Proof For t € {0,...,7 — 1}, denote f[t:T](xt,u[t:T_l]) = (@¢41;...,2,) the control of the
dynamics fy, ..., fr—1 starting from z; with control variables wy., ) = (u¢;...;ur—1). For
t = 0, denoting [0 : 7] = [r], we retrieve Definition 29. Define similarly glt"] (Upr—1]) =
(f[t:ﬂ(mta u[tZT—l])7u[t2T—1]) and h[t:T] (x[t+1;T]7u[tiT—1]) = Z;—;tl hs(x&us) + hT(:L‘T)' The ¢h
policy 7 (y;) is formally equal to vy (y;) for

* * . f[t:T](w YUt — ) SUt T — v
Ut (yt)7 s UT—l(yt) = argmin g, ., . (g;rrft'l:]t ' (yta v[t!T—l])7 v[t:T—l]) + 5 ”v[tIT—l] ||%

Ut yeueyUr—1
= (I+Vg" () V2RI (g1 () Vg () 1) T Ay + a)

for some A, a independent of v. For v > L. ls[t”] the policies are well-defined. Since
Lyier) = Lym = Ly, and 13[”] < lg[w] = lg, the policies are well-defined for any v > 2[,Lj,.
Moreover, for any v > 21,Ly,

1
lyLy,’

1 T+ V" () V2R (91T (g 1)) 72 <

Hence, the associated policy 7; is at most 1/(l4Ly) Lipschitz-continuous. [ |

Corollary 49 Consider problem (1) with dynamics and costs Lipschitz continuous with
Lipschitz-continuous gradients as in Assumption 30. For any v > 2l4Ly,, there exists a
constant n independent of v, such that the ILQR or iLQR directions v = LQR,(J)(u) and
w = DDP,(J)(u) on any control variables uw € R™+ differ by

lw — ]|z < nllvl3.

Proof The result follows from Lemma 47 and 48. [ |

Lemma 50 Consider Algo. 1 applied to problems of the form (2), that is, such that Ry =
0,Q: =0,q = 0. Assume in addition that the costs are strongly convez, the dynamics are
surjective and both costs and dynamics are smooth as described in Assumption 11. The
policies m @ yr — Ky + ki computed in Algo. 1 are always well-defined and such that
|Kt||2 < ¢ for some ¢ independent of v.

Proof Consider K, J; defined in Algo. 1 for a command u € R™, a regularization v > 0
and no control costs (R; = 0,Q; = 0,¢; = 0). By recursion, we have that J; is positive
definite, since

S = P+ AT I+ 2 BB I A,

and J, = P, and P, are positive definite.
In particular, J; = P, = pp I and for any t € {1,...,7 — 1},

1ell2 < L+ (1) Teaa|l2

T s—1
<> (11,

s=t j=t
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where here and in the following we use l?, l"}‘ defined in Lemma 36. Therefore, we have

sup || Jill2 < Ln Y (15)*70.
te{l,...,7} =1
On the other hand, we have

K= —(w1+B, Jo1By) 'B/ Jii1 A

The spectral norm of the matrix (v 1+B," J;11B;) "' B, can be bounded just as in Lemma 43
given the assumptions. Namely, we have,

U

21
| 1+B/ Jiy1B) ' By |2 < !

v+ pupoply
Hence, we have
sup || Kyll2 < %Lhi(zwﬂs—ﬂ
te{0,...,7—1} T vt poply f
2lj€ T 9(s—t)
S L l.Z’ s—t
Hho f ;( f)

Corollary 51 Consider Algo. 1 applied to problems of the form (2), that is, such that
R:;=0,Q: =0,q = 0. Assume in addition that the costs are strongly convex, the dynamics
are surjective and both costs and dynamics are smooth as described in Assumption 11.
Then there exists a constant n independent of v, such that the ILQR or iLQR directions
v=LQR,(J)(u) and w = DDP,(J)(u) on any control variables w € R™ differ by

lw —vll2 < nlv]3.

Proof Follows from Lemma 47 and 50. [ |

H. Detailed Computations

In this Appendix, we detail some technical computations done in the paper.
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H.1 Details on Theorem 10

Proof [Details on Eq. (22)] Note that V,®(y,v) = diag((V, ¢ (i, v¢))F=), such that, by
definition of diag,

k
Vu@(y,v) = Z €t€tT ® V1 ¢(Ye—1,ve-1)
t=1

k
= Z ere] ® Oy, b(ye—1,ve-1)e’ Valye1) ™"
t=1
k k
= (Z Doy b(Yi—1,vi-1)erey 1) Ixe") (Z ere] ® Va(yt+1)1>
t=1 t=1

= diag((0u,b(yr, v1))i ) (I@e ) diag((Va(yer1) ™ )izg),

where k = n,, and we use that (A® B)(C® D) = (AC® BD) for A, B,C, D of appropriate
sizes and 1 is the identity in R!. Similarly, one has that, for D = Zf;ll etetT 1 the upper-shift
matrix in RF = R".

k-1
Vy(p(y, U) = Z et6;r+1 ® Vyt ¢(yt7 Ut)
t=1
k-1 k
= <Z ereln @ I) (Z etel ® Yy, By, >> — (D@ 1) diag(Vy, (i, 1))
t=1 t=1
On the other hand, we have
k-1
diag(Vy, ¢(yi, vi)i=) = D> err1e ® (Va(yt)DT + Vi b(yt, Ut)eT) Va(yi) ™"
t=0
k-1
= et+1€tT+1 ® Va(y) D Va(ye) ™
=0
A
k-1
+ > erpiefir ® Vyb(ys, vi)e Va(yppr) ™"
t=0
B
k—1 k—1
A= <Z er1e11 @ Va(yt)) (TeD') (Z Cre16iy ® Va(ytﬂ)l)
t=0 t=0

= diag((Va(y)i=y)(1@D") diag((Va(yi1))i=y)
k-1 k—1
B = <Z 116 ® Vytb(yt,vt)) (I®e") (Z et+1etT+1 ® Va(yt+1)_1>

t=0 t=0
= diag((Vy,b(y:, v))i= ) (1@e ) diag((Va(yer1) ™ H)i5).
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Proof [Details on line (ii) in Eq. (23)] Denote K; = Va(y;). Using that De;=e;_1, we have
FA=Do®D)(> 1, ere] @ K 1) = Yot er1e] @ Ki_1) = Z?:_ll etetTHKt and, using that
e/ D = e/, |, we have CF = (3} ere] @ K3)(D ®1) = St eref 1 ® K. Therefore, we
have FA = CF, and similarly we can show that FA~! = C~'F. |

Proof [Details on line (iii) in Eq. (23)] Since D = S5} etel 1, we have DI = Zf:_f etetTJrj
hence D¥ = 0. Therefore, F® G = D ® D" is nilpotent of order k. Hence, I -F® G)~! =

K D'@ (D7) and so, for F = D®T, we have I-F®G) 'F = (3F D'e (D)) (D
) =315 D (D) m

Proof [Details on the extension to multi inputs] Consider the multi-input case as described
@ _ ()

in Def. 9. For any k > r, j € {1,...,my}, i € {1,...,7;}, we have Chj = Wiyimry—1°
Denote T = Zle Z;n:“l eje;-r ® eiejT for e;, e; canonical vectors of, respectively, R* and
R™u. For w = (wp;...;wk—1), we have that w = T'w reorders the coordinates of w such
that w = (w1;...;wn, ) with wj(l) = wl(]_)l forie{1,...,k},j€{l,...,my,}. Hence we have
for any k > r, j € {1,...,m,}, denoting here e; the ith canonical vector in R, D, the
upper-shift matrix in R4,
k—1
Ck,j = (Dr]- Crjye- ) DrjerjaeTj)wj
= (05, 005501,y er )wi = (05, 00, 1w = Cjwy,
k
r;

where 0,; is the null vector in R™ and I, is the identity matrix in R"7. So we get that

Moy My
2k = g ejejT ®C; |w= Z ejejT ®Cj | Tw,
j=1 j=1

ie., zp = Mw with o, (MT) = 1.
Consider £ = r and the notations of the proof of Theorem 10. We can write that
Yt+1 = ail(MB(¢[k] (yﬁv U)a U)) HGHCG,

Voo™ (y0,v) = (Vo B(y, v)+Ve®(y,v)(1-Vy®(y,v)) 'V, B(y,v)) M Va(y,) ™"
The discrete time dynamic can be written
Yrr1 = a N(Ja(y) + Kby, vr)),

with, denoting e;; the it? canonical vector in R™ and ey, the fjth canonical vector in R"=,

D, 0 ... 0
J = o . ' , D, :Zeﬂeziﬂ, K:ZegjejT, l; :er.
: IR 0 i=1 j=1 s=1
0 0 D,
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Hence, we have for ¢ € {0,...,7 — 1},

Vo d(ye,ve) = Vo, (e, v0) K T Va(yes1) ™!
Vb 1) = (Va()d " + Vb v) KT ) Valye)
The rest of the proof follows as in the proof of Theorem 10 by redefining E =I®K ', G =

I®J", F = Dy ®1 for Dy, the upper-shift matrix in R¥ = R", V= dlag((Vvtb(yt,vt))f:_Ol).
We then get

-1
Voo™ (yo,v)Valyy) = (I— (ZD RET(JT) ) A—1Y> M.

The result follows for kK = r and for £ > r the same reasoning as in the single input case
applies. |

H.2 Details on Theorem 24
Proof [Details on Eq. (43)] With the notations of Theorem 13, we have that
1 o2a?

s — 0k < — v ,
: 20200 + & + X

with z = || VA(g(u®))|2 and 6, = J(u®) — 7*. The function f; : z — o xz/( ( th +
Ex+ prx?a?)) is strictly increasing, so we can follow the steps of the proof Theorem 13 and
obtain that fo(dx)(0g+1 — 0) < —1 with

/ _ 1 2 2
f2(0) = ) 2ph5 +29g£\f +20,°ppx "

The result follows by integrating f4 and, as in the proof Theorem 13, we have that conver-
gence to an accuracy ¢ is ensured after at most k£ < fa(dg) — fa(e). [ |

I. Additional Numerical Evaluations

Realistic model of a car with tracking cost. On Fig. 8, we consider the same setting
as for the simple model of a car except that we replace the simple model of the dynamics
of a car by a bicycle model driven by tire forces taken from Liniger et al. (2015), also
detailed by Roulet et al. (2022, Section 10.3.1). We considered a fourth order Runge Kutta
discretization scheme of the continuous dynamics of the bicycle model of the car. We keep a
tracking cost as explained for the simple model of a car in Section 5. We use a discretization
step A = T'/7 for a total time T = 2 and a number of discretization steps 7 = 25. We use
random initial control sequences ut ~ N(0,0) for o = 1/7 = 25.
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Bicycle Model of a Car
with Tracking Cost

2.8 x 10!
2.6 x 10
2.4 x 10! algo random seed
2.2 % 10! - =0
S —— ILQR == 1
2 x 10! e [DDP wuues 2

1.8 x 10!

Iterations

Figure 8: Convergence of gradient descent (GD), ILQR and ILQC to control a bicycle model
of a car for a tracking cost

In this case, the ILQR and IDDP algorithms do not appear to converge to the same value
across random initial control sequences. This suggests no global convergence phenomenon
in this example.

Contouring costs and model predictive controllers can circumvent the difficulty of this
task as presented by Liniger et al. (2015); Roulet et al. (2022). However, the bottleneck of,
e.g., model predictive controllers remain an algorithm such as ILQR or IDDP to compute
the short term policies. Understanding the behavior of these algorithms may then help the
design of model predictive controllers.

Convergence rates. In Fig. 9, we plot convergence in iterates for the pendulum example.
We retrieve a similar superlinear rate of convergence after some number of iterations.

In Fig. 10 and Fig. 11, we also consider convergence rates in function values, that is,
p*) = (c®) — ) /(ch=1) — ¢*) for ¢¥) the cost at iterate k and ¢* the minimal cost. To
plot this rate, we consider ¢* = 0 when subsampling the costs. For non-subsampled costs,
we consider ¢* as the minimum reached by ILQR and IDDP algorithms across random
initializations for the pendulum example. For the simple model of a car, we consider c¢* as
the minimum reached by each algorithm on the given instance. In that case, ¢* may be a
local minimum.

We observe generally a long phase where the convergence rate is close to one, followed
by a sudden phase of superlinear convergence where the rate drops to 0. The second
phase of convergence outlined in the theory of Section 4 appears transient. The algorithms
appear to mostly show a phase of sublinear convergence followed by a phase of superlinear
convergence.
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Swinging up Pendulum

Subsampling cost

No subsampling every 2 steps

. 10!
10
[0}
= —2
& , 107! 10
221072 107
g.s
S 107 1078
L0 = |LQR - |LQR
1 20 30 1 79 89
Iterations Iterations
10!
3
<. 107! 107!
2103 -3
§ - 10 10
§
O . s
10 = |DDP 10 = |DDP
1 10 1 10
Iterations Iterations

Figure 9: Convergence rate in iterates, %) = |[u*+1) — ¥y /[|[u® —u*=1D||5, along iter-
ations of ILQR and IDDP algorithms for the pendulum example with or without
subsampling the costs.
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Swinging up Pendulum

Subsampling cost
No subsampling every 2 steps

1072

,_.
S
[V

107°

FA
2
1

Convergence Rate
in Function Values

10-%
—— ILQR — ILQR

1 20 30 1 79 89
Iterations Iterations

1072

1078

Convergence Rate
in Function Values

10—11
== |DDP == |DDP

1 10 1 10
Iterations Iterations

Figure 10: Convergence rate in function values, p*) = (¢®) — ¢*)/(¢¥) — ¢*), along itera-
tions of ILQR and IDDP algorithms for the pendulum example with or without
subsampling the costs. When subsampling, the minimal cost is set to ¢* = 0.
Without subsampling, the minimal cost is set to the minimal cost found by all
algorithms across random initializations.
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Figure 11:

Simple Model of Car
with Tracking Cost
Subsampling cost

No subsampling every 3 steps
0
10 = |LQR
1
5 S
8.5 107
=0
Sell 10-8
— |LQR
1 496 506 1 255 265
Iterations Iterations
10° )
10~
-3
«©
82 o0
8.5
§‘g‘ B 1077
éi 10
= 10710
—12
10 m— |DDP = |DDP
1 31 41 1 66 76
Iterations Iterations

Convergence rate in function values, p(*) = (¢¥) —¢*) /(c¥) —¢*), along iterations

of ILQR and IDDP algorithms for the simple model of a car with or without
subsampling the costs. When subsampling, the minimal cost is set to ¢* = 0.
Without subsampling, the minimal cost is set to the minimal cost found by the
particular algorithm on this instance.
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