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Abstract—We focus on the problem of long-range dynamic
replanning for off-road autonomous vehicles, where a robot
plans paths through a previously unobserved environment while
continuously receiving noisy local observations. An effective
approach for planning under sensing uncertainty is determiniza-
tion, where one converts a stochastic world into a deterministic
one and plans under this simplification. This makes the planning
problem tractable, but the cost of following the planned path in
the real world may be different than in the determinized world.
This causes collisions if the determinized world optimistically
ignores obstacles, or causes unnecessarily long routes if the
determinized world pessimistically imagines more obstacles.

We aim to be robust to uncertainty over potential worlds
while still achieving the efficiency benefits of determiniza-
tion. We evaluate algorithms for dynamic replanning on a
large real-world dataset of challenging long-range planning
problems from the DARPA RACER program. Our method,
Dynamic Replanning via Evaluating and Aggregating Multiple
Samples (DREAMS), outperforms other determinization-based
approaches in terms of combined traversal time and collision
cost. https://sites.google.com/cs.washington.edu/dreams/

I. INTRODUCTION

Inspired by the DARPA RACER program [1], we focus on
the problem of motion planning under sensing uncertainty for
autonomous off-road vehicles travelling over tens of kilome-
ters. RACER challenges teams to program an autonomous
off-road vehicle equipped only with onboard sensing and
compute to navigate complex terrain (deserts, forests, hills)
over long distances. Unlike on-road driving (which contends
with lanes, signs, and rules of the road), off-road driving
has much less structure. The robot can go wherever it can
effectively traverse, posing a unique robotics challenge.

This flexibility relies on the autonomy system’s onboard
sensors and perception system to discern what terrain is and
is not traversable. For example, terrain that is far from the
robot may be difficult to classify precisely due to e.g.,natural
occlusions (hills, trees), few sensor readings, or lack of train-
ing examples in the given environment. This noisy perception
creates both false obstacles and false freespace; a downstream
planning algorithm that is unaware of this uncertainty may
produce dangerous collision-bound or roundabout paths.

Thus, uncertainty is the core challenge of long-range plan-
ning: an algorithm must appropriately consider this sensing
uncertainty from perception when planning paths (Fig. 1).

In this setting, a robot plans paths through a previously
unobserved and potentially hazardous environment, while
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Fig. 1: An autonomous off-road vehicle’s long-range planner needs to decide
the best way up a hill, given blind spots and imperfect sensing.

continuously receiving and reacting to noisy local observa-
tions.

This can be cast as a Partially Observable Markov De-
cision Process (POMDP). Solving a POMDP is PSPACE-
Complete [2], so we frame this as a Bayesian Dynamic
Motion Planning Problem (BDMP) to impose structure and
make the problem tractable. The BDMP problem differs from
a POMDP in that uncertainty originates only from the robot’s
ignorance about the environment and the agent maintains a
posterior over possible environments given its observations.
Given the environment, the transition, the reward function
and robot’s internal state are fully observable [3].

Previous works have exploited this structure via the
framework of determinization in the face of uncertainty—
repeatedly solving and executing relatively-inexpensive de-
terminized planning problems—with strong theoretical and
practical results [3–6]. Although determinization is com-
putationally efficient, it does not consider what happens
when the determinized problem that it solved diverges from
reality. This can manifest as optimism (causing collisions) or
pessimism (causing roundabout paths, or no path at all).

Our key insight is that this deficiency stems from deter-
minization’s limited ability to reason about the distribution
of costs over plausible worlds. Thus, we leverage multi-
sample posterior sampling to reap some of the computational
benefits of determinization while preserving the planner’s
ability to reason across multiple plausible environments.
Our resulting multi-sample determinization algorithm, Dy-
namic Replanning via Evaluating and Aggregating Multiple
Samples (DREAMS), considers multiple plausible optimal
paths and multiple plausible worlds. With this framework,
DREAMS enables reasoning not just over the distribution of
worlds, but also over additional parameters such as traversal
speed. We show that with the correct instantiation, DREAMS
outperforms prior determinization strategies on realistic long-
range off-road robot navigation tasks.

We make the following contributions:
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Fig. 2: Overview of DREAMS. Sample & Plan: Sample many worlds from the posterior distribution, and plan the optimal path on a subsample of worlds
(ϕ1, ϕ10, ϕ50 above). Evaluate: Evaluate the cost of each resulting plan against the full set of sampled worlds. Aggregate: Aggregate the resulting cost
distribution with a summary statistic (e.g., mean or CVaR) Select: Select the plan with minimal aggregated cost.

• We introduce DREAMS (Fig. 2), an algorithm for
planning under uncertainty that maintains the ease of
planning from determinization while also being able to
consider uncertainty over worlds in decision making.

• On a large dataset of challenging long-range planning
problems, we demonstrate that DREAMS plans effec-
tively under uncertainty to achieve lower total cost
compared to other determinization methods.

II. RELATED WORK

There has been a fair amount of prior work on dynamic
replanning under uncertainty. D* and D* Lite are well-
known dynamic replanning search algorithms that have been
demonstrated to quickly replan in real-world settings [7–
9]. Neither are designed to reason about uncertainty and
are optimistic about unknown parts of the environment. Re-
planning is triggered when the planned path is deemed in
collision. In an environment with no sensing uncertainty, this
is effective because collisions can be easily determined. In
an uncertain environment, D* must either collide with an
obstacle to detect a collision or blindly trust its noisy sensors.
That being said, D*’s efficient re-use of the search tree
could be incorporated into methods that consider environment
uncertainty directly.

The BDMP problem can be framed as a POMDP with
unknown state, but known transitions and rewards. POMDPs
have a plethora of approaches but a notable few rely on
a fixed or sampled set of MDPs to make the problem
more tractable [4, 10–13]. Most similar to our approach is
DESPOT [4], which samples a set of K scenarios and builds a
tree to alleviate the curse of dimensionality. While promising,
solving a POMDP is PSPACE-complete [2] and this work
instead focuses on a tractable MDP relaxation with discrete
set of states and known transitions represented as a graph
(instead of a tree) with unknown reward.

The Canadian Traveler’s Problem [14] and specifically its
stochastic variants [5, 15–17] are most similar to the BDMP
setting. In both cases, edge collisions are discovered when
the agent reaches an incident vertex. This setting follows
our observations from real mobile robotic systems: sensing
is more accurate near the robot. The stochastic variants

additionally use this information to update unobserved edge
probabilities. Our setting is similar except we discover the
true cost of an edge when we traverse it, and we additionally
incorporate limited range noisy sensing.

Risk-aware planning can be seen as another form of
planning under uncertainty [18–23]. Barbosa et al. [19]
converts the popular Conditional Value at Risk (CVaR) [24]
metric into a cost function for planning and accepts new
plans only when risk increases along the current trajectory.
While these methods have shown great promise, none have
investigated planning under the setting of onboard sensing
where uncertainty increases further from the robot. Therefore,
in this work we compare with these approaches as a baseline
(Section IV-C).

Determinization, making a deterministic approximation of
a stochastic problem, has been effective for planning under
uncertainty [6]. In particular, a variety of works [3, 18, 25–
27] have used posterior sampling [28] to make the plan-
ning problem tractable and only require sample access to
the posterior. Dynamic Replanning with Posterior Sampling
(DRPS) [3] samples one problem and solves it optimally, let-
ting sampling naturally balance exploration and exploitation.
A key observation from DRPS is that gaining information
from the world as a mobile robot is relatively easy without
explicit exploration. As the robot moves, it easily gains more
sensor information to clarify its future actions. Our work
leverages this insight and we apply posterior sampling as
a determinization strategy. Sampled A* [18] further utilizes
multiple samples per replan and accepts the most likely path,
showing promising results. DREAMS also uses multiple
samples, but differs in how it selects the plan to follow
by considering a distrbution of costs. We compare DRPS
and Sampled A* with DREAMS in a realistic setting where
sensing is noisy and there is a limited observation range.

III. BAYESIAN DYNAMIC MOTION PLANNING WITH
COLLISIONS

Given a start state xs and goal state xg in configuration
space X and a set of environments Φ, we seek to minimize
the expected total time of traversing from start to goal
under the distribution of environments P (ϕ). To help solve
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Fig. 3: The sensor noise levels used in testing: ηlow = 10−4, ηmed =
10−3, ηhigh = 10−2. Our simplified noise model defines the probability
of receiving a correct observation for a query point distance d away as
max(exp(−ηd2), pmin). The minimum probability threshold pmin is set
to 0.6 to provide some signal at the edge of the robot’s observation range;
note that the minimum possible value of pmin for binary occupancy is 0.5
(pure noise). With these parameters, the robot receives approximately 96%,
72%, and 61% correctly observed pixels per observation.

this problem, we are given a measure of uncertainty over
environments modeled as the posterior distribution P (ϕ|ψt)
where ψt is the history of observations from time [0, t]. This
problem extends the Bayesian Dynamic Motion Planning
Problem (BDMP) [3] to consider the added cost of potential
collisions. Off-road collisions can be dangerous—injuring the
rider or damaging the robot—and require additional time to
recover from.

Similar to DRPS, we focus on planning over roadmaps.
Specifically, we are given a graph G with vertices V and
edges E. Each edge has a traversal time w : E → R+ and a
collision status ϕ(e) where ϕ(e) = 1 means e is a collision-
free edge in world ϕ. A path ξt = (e1, e2, . . . , et) is defined
as a sequence of edges. Since we are in a dynamic setting,
traversing edges adds observations to our history ψt.

In the motivating RACER scenario, the goal is to get
from start to goal as fast as possible. Thus, we consider the
following two metrics: Traversal Time and Collision Cost.
We additionally consider collision cost because optimizing
for traversal time alone can lead to impractical algorithms
that collide frequently with obstacles.

• Traversal Time. T (ξ) =
∑

e∈ξ w(e) is the time it takes
the robot to traverse to the goal. Edges in collision are
still counted toward traversal time.

• Collision Cost. C(ξ; ρ) =
∑

e∈ξ 1(ϕ(e) = 0)c(e)ρ(e).
c(e) is the collision cost and ρ(e) adjusts the relative
cost of a collision compared to traversal time.

The total cost to reach the goal in one planning episode is:

J(ξ; ρ) = T (ξ) + C(ξ; ρ) (1)

where ρ(e) = α is a constant.

IV. PROPOSER-ACCEPTOR APPROACH

To summarize various approaches from the literature, we
decompose algorithms into a proposer and an acceptor. The
proposer proposes a set of paths Ξ = {ξ0, ξ1, . . . , ξn}. The
acceptor considers the proposed paths and accepts one. The
robot then follows the accepted path for a step, receives
observations, and updates the posterior distribution. It then
replans and repeats until the goal is reached.

A. DREAMS Proposer

The DREAMS proposer is based on posterior sampling,
where at each step we are sampling from the distribution of

optimal plans P (ξ∗|ψt) = P (ξ|ϕ)P (ϕ|ψt). This is achieved
via sampling from the posterior over worlds P (ϕ|ψt) and
then planning the optimal path on each sampled world (Fig.
2, Sample & Plan). As the robot learns more about the
world, this process naturally exploits the knowledge we gain
by reducing the spread of the distribution of worlds/plans.
Similar to Sampled A*, DREAMS samples multiple plans to
approximate the distribution P (ξ∗|ψt).

B. DREAMS Acceptor

Unlike prior determinization approaches, we evaluate the
cost of each sampled plan against a distribution of sampled
worlds (Fig. 2, Evaluate). The sampled worlds do not need to
be the same as the ones used for planning. Empirically, we
have found that planning is typically the bottleneck rather
than evaluation. Therefore, we opt to sample many more
worlds for evaluation than planning.

For each plan, we compute a summary statistic for this
resulting distribution of costs (Fig. 2, Aggregate) and select
the plan that minimizes aggregate cost. Depending on the
application, the summary statistic can vary. For example,
selecting the minimum cost for a given plan is an optimistic
strategy that looks at a plan’s cost under the best-case
scenario. CVaR summary statistics balance the risk of high
cost paths (in this case, collision-prone paths) more carefully.

This approach is extremely flexible. In Section V, we
additionally use this acceptor to explore different velocity
profiles to further reduce expected cost. We now describe
example evaluation and aggregation functions, although these
design choices will vary based on the application.

1) DREAMS Evaluation Function: We make a small mod-
ification to Eq. 1 to use as the DREAMS evaluation function.

Ĵ(ξ) = T (ξ) + C(ξ; τ) (2)
τ(e) = 1(e = e0)α+ 1(e ̸= e0) (3)

Because DREAMS plans in a receding-horizon fashion, Ĵ(ξ)
considers the collision factor α only on the immediate edge
and assigns future potential collisions a relative cost of 1.
Equally weighting all collisions can create overly conserva-
tive behavior due to noisy observations farther from the robot.
Reducing future collision cost helps avoid these scenarios.

2) DREAMS Aggregation Function: We optimistically
take the mean of the best 75% of the distribution of costs,
calling it the Inverse CVaR. This reduces the effect of
unlikely high-cost outliers. Like CVaR it also considers the
width of the distribution: as increased uncertainty causes the
cost distribution to spread out, the increased aggregate cost
promotes caution.

C. Benchmark Overview

We briefly summarize each benchmark algorithm with this
framework. Each algorithm proposes plan(s), accepts a plan,
follows one edge, and replans.

• DRPS [3]. Proposer: Sample one plan from the poste-
rior. Acceptor: choose only plan.

• Sampled A* [29]. Proposer: Sample multiple plans
from the posterior. Acceptor: choose the most likely
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Fig. 4: Traversed paths of each algorithm (blue edges) on two example worlds from each of the Forest and Desert datasets, with the same world in each
set of four. Each algorithm receives observations with high noise, and is penalized with a collision factor of α = 10. With high noise, DRPS frequently
backtracks and changes direction while Sampled A* incurs many collisions (red edges). Both DREAMS variants follow more direct paths without collisions.

plan. Determined by computing edge centrality across
plans and accepting the plan with maximum mean edge
centrality.

• Direct. Proposer: Compute the plan that minimizes risk-
aware evaluation cost in expectation. Acceptor: choose
only plan.

E[Ĵ(ξ)] =
∑
e∈ξ

w(e) + P (ϕ(e) = 0)c(e)τ(e) (4)

V. EXPERIMENTS

The following simulation experiments are designed to
replicate an off-road autonomous driving scenario where the
planner faces limited sensor range and noisy perception. The
robot must navigate as efficiently as possible while avoiding
dangerous collisions, re-planning at at each step.

We compare DREAMS to DRPS and Sampled A*, as both
incorporate posterior sampling and present strong results on
similar problems. DRPS highlights the difference between
single and multi-sample posterior sampling, while Sampled
A* compares the evaluation/aggregation acceptor strategy
with an approximate MAP estimate. These baseline algo-
rithms only consider the geometric path at an arbitrary fixed
speed. We include results for DREAMS-Fixed to compare
most directly with these algorithms, and provide additional
results for DREAMS-Adaptive to demonstrate our ability to
evaluate paths under different parameters in this case speed.
Finally, we evaluate a benchmark that optimizes Equation 2
directly (Direct) to demonstrate the benefits of posterior
sampling.

We consider the following hypotheses:
H1. Both DREAMS variants will incur lower total cost

compared to DRPS and Sampled A*. More sampled
plans will help DREAMS reduce cost variance relative
to DRPS. Reasoning about a distribution of costs rather
than accepting approximate MAP estimate will help
DREAMS incur less collision cost than Sampled A*.

H2. DREAMS-Adaptive will reduce collision cost and total
cost compared to DREAMS-Fixed. Reasoning about
distribution of speeds allows the vehicle to slow down
when the likelihood of a collision increases and speed
up when the path is likely free.

H3. Increasing the number of sampled plans will reduce the
total cost (with diminishing returns). More plans will

provide more options to evaluate, until all likely options
are enumerated.

H4. Increasing the number of sampled worlds considered
during evaluation will reduce the total cost (with di-
minishing returns). More world samples from the dis-
tribution will better estimate the distribution.

H5. DREAMS will incur lower total cost compared to Direct.
To plan directly with the cost function, Direct replaces
the indicator in Equation 2 with a probability. This can
result in extremely unlikely plans under the posterior
P (ξ∗|ψt), which DREAMS probabilistically avoids by
construction.

A. Experimental Setup

1) Real World Occupancy Grids and Speeds: We eval-
uate performance with two real-world datasets of long-
range planning problems through open desert environments
(N = 83) and more challenging crowded forest environments
(N = 51). These datasets were collected through the RACER
program.

Worlds are 100× 100 meters at a resolution of 0.4 m/px.
The robot moves on a graph covering the space at speeds
ranging from 1–10 m/s. As the robot traverses, it receives
observations at 1 Hz. Therefore, speed affects both traversal
time and the number of observations received. The robot can
move in reverse at a fixed speed of 1 m/s. For all approaches,
we discourage reversing by prompting each planning call to
find a solution without reversing. If unsuccessful, it retries
with reversing allowed. We evaluate on ten random seeds for
each world ϕ, noise level η, and collision α.

2) Limited Range Noisy Observations: It is a popular
choice among autonomous vehicles to process raw sensor
input into semantic classification of the environment using
a deep neural network [30, 31]. Noisy sensors and limited
training introduce uncertainty into the resulting semantic
segmentations. Generally, the predictions become noisier
farther away from the robot where there is less (and noisier)
sensor information. Predicted semantics eventually become
too noisy and are thus limited to a reliable range. To
simulate this, we add a limited range observation module
that simulates classification of obstacles. The robot can only
observe a patch of 50 × 50 meters centered around itself.
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Fig. 5: Qualitative comparison of each approach, given the exact same sampled worlds and paths. Robot (blue), proposed paths (light orange), accepted
path (bright orange). Top: All plans except DRPS find a path through the gap. DRPS happened to sample a world that did not fit through the gap, producing
a longer route. Bottom: All plans except Sampled A* reverse from a likely obstacle in front of the robot. Sampled A* does not explicitly consider the cost
of collision and accepts a path going through the obstacle. Right: Looking at the heatmap, areas where more plans overlap are hotter. As there is little
overlap besides the start position, Sampled A* has less signal to choose the most likely plan; its decision is almost a uniform random sample.

Fig. 3 describes the sensor model within this limited range
observation.

Outside of the limited range observation, we optimistically
assume that the space is free to allow posterior sampling to
discover many plausible paths. This is similar to how real-
world systems work where unknown space is a fixed cost.
The posterior is updated using Bayes’ Rule.

3) Posterior Sampling: To sample from the posterior
distribution over optimal plans P (ξ∗|ψt), we sample from
the posterior distribution over worlds P (ϕ|ψt) and plan
on each world. We sample a world by sampling over the
posterior distribution of roadmap edges, created by taking
the maximum posterior collision probability across all pixels
marked by the robot’s swept volume (3.5×1.5 meters) along
an edge.

4) Planning and Execution Parameters: For DREAMS
and Sampled A*, we choose to plan with 100 posterior
samples using A*. DREAMS evaluates each plan according
to (Equation 2) against 104 sampled worlds. DREAMS-
Adaptive additionally considers multiple speed profiles. For
each sampled plan, it creates five timed trajectories each with
a separate speed profile. Profiles are all 5 m/s within the
observed area and optimistically 10 m/s outside the observed
area, but differ in the first edge traversal speed {1, 3, 5, 7, 10}
m/s. DREAMS-Adaptive executes the chosen speed for the
chosen plan for one time step before re-planning. DREAMS-
Fixed and the other algorithms consider only one speed
profile: 5m/s in observed area, 10m/s outside observed area.

The collision cost is proportional to the robot’s pre-
collision speed (Equation 1), as higher speed collisions are
more dangerous. We vary α across {1, 10, 20} to characterize
performance with different relative collision costs.

5) Metrics: We compare each algorithm’s incurred cost to
the cost incurred by an oracle ξopt, which has full information
about the world and traverses at 10 m/s without collisions.

Suboptimality = J(ξ)/J(ξopt) = J(ξ)/T (ξopt) (5)

B. Results

Fig. 6(a) and 6(b) show suboptimality results for the
Forest and Desert datasets. An ablation study with the more
challenging Forest dataset is visualized in Fig. 6(c) and 6(d).

Qualitative results of traversed paths on the final posterior
are shown in Fig. 4. Fig. 5 compares each algorithm under
the exact same scenarios. Table I gives planning time results.

H1. In both datasets (Fig. 6(a) and 6(b)), DREAMS-Fixed
is competitive with DRPS and Sampled A* in Low noise. It
is either competitive or outperforms them in Medium noise.
In High noise, it dominates for all α values tested. H1 is
supported. It is not surprising that all algorithms achieve
similar results in Low noise, as the sampled plans will likely
be near-optimal (i.e., most sampled worlds are close to the
true world). In Medium noise, we observe the benefit of
multiple samples as both DREAMS variants and Sampled A*
perform better than DRPS. But in High noise, Sampled A*
incurs a high collision cost as it does not explicitly reason
about collisions; all plans seem equally likely because the
distribution of plans is spread out, showing less benefit to
multiple samples without explicit collision reasoning. Fig. 5,
bottom shows an example scenario of this behavior.

H2. In Fig. 6(a) and 6(b), we see a mixed result between
DREAMS variants: DREAMS-Adaptive has statistically-
significant lower cost in some cases but not all. With
Low noise, DREAMS-Adaptive can move faster reducing
its traversal time without incurring too much collision cost.
In Medium noise, DREAMS-Adaptive and DREAMS-Fixed
achieve similar performance; this suggests that these higher
speeds do not properly balance speed and safety. In High
noise, DREAMS-Adaptive seems to trade-off collisions and
traversal better. Because the results are mixed, H2 is not
strongly supported.

H3. Fig. 6(c) shows that more sampled plans reduces the
total cost across multiple noise values for DREAMS. The
leveling off at 20 plans shows that the sampled set is fairly
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Fig. 6: Left: Suboptimality plots for (a) Forest and (b) Desert datasets. We perform a Welch’s t-test for difference of means, with a Bonferroni correction
of 90 for all pairwise comparisons involving DREAMS. * : p < 0.01, ** : p < 0.001, *** : p < 0.0001, **** : p < 0.00001. Right: Ablation study for
varying (c) number of sampled plans and (d) number of world samples in evaluation. (Error bars in both figures denote 95% confidence intervals.)
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Fig. 7: Comparison of DREAMS to Direct on the more challenging Forest
dataset. Direct incurs many more collisions because it does not reason about
the likelihood of the plans directly. Note: The suboptimality axis is much
higher than Fig. 6(a).

Algorithm Proposer Time Acceptor Time Total Time

DREAMS-Adaptive 1.55± 0.09 1.59± 0.01 3.14± 0.09
DREAMS-Fixed 1.54± 0.09 0.33± 0.00 1.88± 0.09
DRPS 0.02± 0.00 0.01± 0.00 0.03± 0.00
Sampled A* 1.47± 0.08 1.12± 0.02 2.58± 0.08

TABLE I: Planning time evaluations for each algorithm, on the same set
of 300 evaluation runs. Proposer: DREAMS and Sampled A* plan 100
paths per iteration, while DRPS plans a single path. Because there is no
dependency between planning each independent posterior sample, this can
be easily accelerated by parallelization (results sequential). Acceptor: Since
DRPS only proposes one path, the acceptor time is negligible. DREAMS-
A evaluates five speeds taking more time while DREAMS-F evaluates just
one. Aggregating edge centrality across plans is also relatively expensive for
Sampled A*.

representative of our posterior distribution. H3 is supported.
Surprisingly, Sampled A* performed worse with increased
samples at High noise. We attribute this to High noise causing
a spread out distribution of plans where no plan has a large
mean centrality, resulting in near random choice (See Fig.
5, bottom). Increasing the number of plans introduces more
options for Sampled A* to choose from; if these are likely to
be in collision, this will generally increase the cost incurred.

H4. Fig. 6(d) shows more world samples in evaluation
improves performance for DREAMS-Adaptive at Medium
and High noise. For DREAMS-Fixed, we only see change
in High noise. In this setting, it suggests a few samples
captures the true cost well in Low and Medium noise, but
more samples are needed in High noise. H4 is supported for
High noise.

H5. Fig. 7 shows the suboptimality comparison between
DREAMS-Adaptive and Direct. Direct incurs a very high
collision cost and total suboptimality because it finds paths
with a high likelihood of collisions. We attributed this to the
probability of collision being a multiplicative factor instead of
an actual probability, meaning Direct may choose plans that
are highly unlikely but have a low total cost. H5 is supported.

VI. DISCUSSION

There remain multiple limitations and avenues for future
work. DREAMS currently relies on a hand-tuned cost func-
tion for its evaluation step. While we show it works in our
setting with traversal time and collisions, if an application
considers more costs it could quickly become difficult to
design a good cost function. A learned cost function using
ground truth information or demonstrations may be a more
scalable alternative. Second, we perform sampling on a graph
posterior that is obtained through taking the maximum prob-
ability of collision along an edge. While this heuristic can
give a nice distribution of paths, it is worth exploring other
sampling methods like directly sampling costmaps from the
perception model or sampling paths from a neural planner.

VII. DISCLAIMER

The views, opinions and/or findings expressed are those
of the author and should not be interpreted as representing
the official views or policies of the Department of Defense
or the U.S. Government.
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K. Otsu, B. Ridge, M. Bjelonic, L. Wellhausen, M. Hutter,
and A. Agha-mohammadi, “Self-supervised traversability pre-
diction by learning to reconstruct safe terrain,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems,
2022.

https://www.darpa.mil/program/robotic-autonomy-in-complex-environments-with-resiliency
https://www.darpa.mil/program/robotic-autonomy-in-complex-environments-with-resiliency

	I Introduction
	II Related Work
	III Bayesian Dynamic Motion Planning with Collisions
	IV Proposer-Acceptor Approach
	IV-A DREAMS Proposer
	IV-B DREAMS Acceptor
	IV-B1 DREAMS Evaluation Function
	IV-B2 DREAMS Aggregation Function

	IV-C Benchmark Overview

	V Experiments
	V-A Experimental Setup
	V-A1 Real World Occupancy Grids and Speeds
	V-A2 Limited Range Noisy Observations
	V-A3 Posterior Sampling
	V-A4 Planning and Execution Parameters
	V-A5 Metrics

	V-B Results

	VI Discussion
	VII Disclaimer

