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Abstract In human-human interactions, individuals naturally achieve fluency by
anticipating the partner’s actions. This predictive ability is largely lacking in col-
laborative robots, leading to inefficient human-robot interactions. Fluent meshing
in human-robot collaboration requires the robot to make its intentions clear to its
human collaborator. We propose a unified generative model of human reaching mo-
tions that allows the robot to a) infer human intent, and then b) plan its motion to be
legible, or intent-expressive. We conducted a study on human reaching motion and
constructed an elliptical motion model that is shown to yield a good fit to empirical
data. In future studies, we plan to confirm the effectiveness of this model in predict-
ing human intent and conveying robot intent for achieving fluency in human-robot
handovers.

1 Introduction

We focus on single-arm reaching motions as a natural communication channel in
tightly coupled physical human-robot collaborative tasks, like a human-robot han-
dover scenario shown in Figure 1. Such collaboration requires legible coordination
of the specific behavior of human-robot handovers: as the human reaches out to
handover the water-bottle, the robot should be able to tell early on and reach out to
receive the bottle (Figure 1).

Similar to human-human interactions, attaining fluency in human-robot interac-
tions requires the collaborative robot to be able to infer the intentions of its human
counterparts in order to determine the next appropriate action [1–3]. Likewise, in
taking actions, the robot must balance two, often juxtaposed, objectives: 1) moving
in a predictable (expected) way that the human trusts and understands [4], and 2)
moving in a legible (intent-expressive) way that conveys its intent to the human - it
enables the inference of intentions [5].

Few studies have sought to develop algorithms for the prediction of goal-directed
human reaching motions [6], and generating legible robot motions [5]. These
studies often model human-like motion as complex and time-expensive cost func-
tions capturing different aspects of how the human observer(s) expects the robot to
move [7, 8]. Such trajectory optimization techniques present two major challenges
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Fig. 1: An example of a human-to-robot handover in a shared-workspace collaboration: Human
initial hand motion (A,B) is used to make predictions about the remainder of the path, generating
a suitable trajectory for the robot’s motion to grasp the bottle (C,D).

in high dimensional space: (1) learning the cost function based on context as the ef-
ficiency of robot motion has different interpretations for different observers [9,10]);
and (2) finding an efficient robot trajectory in real time that minimizes such non-
convex cost functions, often subject to local minima [11]. In more ambiguous sit-
uations with many possible reach targets, such as a collaborative assembly tasks,
the robot is faced with a much more challenging burden of conveying its intent.
Modeling fast predictions of how the human observer expects the robot to move to
be intent-expressive is an active research challenge that benefits from investigating
some regularities of biological motion control [12].

Work in neuroscience [13,14] and biomechanics [15,16] suggests that the central
nervous system (CNS) formulates motor commands for human arm reaching move-
ments in terms of spatial trajectories of the hand rather than joint angles [14, 17].
Findings indicate that the hand follows a predictable path with smooth and sym-
metric bell-shaped velocity profiles [18], motivating our investigation of reaching
motion geometry to model human reaching motions.

2 Research Goals and Hypotheses

Our overarching goal is to create a single, unified model for describing reaching mo-
tions that can be solved in real-time for both motion prediction and motion produc-
tion of collaborative robots in various shared human-robot collaborative work-space
paradigms. This requires (a) understanding and predicting how people coordinate
their reaching motions, (b) modeling these mechanisms, and (c) incorporating the
models into robots to produce trajectories that synchronize naturally with human
motion. This work primarily addresses (a) and (b), setting out to better understand
and construct models of human reaching motions.
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To this end, we proposed the following Goal (G1) and Hypothesis (H1):

• G1: Understanding and modeling unconstrained goal-directed human reaching
movements.

• H1: For human reaching movements, the hand trajectory follows a predictable
ellipse-shaped path with smooth velocity profiles.

If H1 holds true, an elliptical fit to the motion early in the path can be predictive
of the remainder of the path, and, subsequently, models of velocity and acceleration
can be used to determine the final timing and location of the reach trajectory early
in the process. This predictive ability is necessary to attaining fluent meshing in
human-robot team activities

3 A Study of Legible Motion

To better understand and construct models of human reaching motions, a high-
fidelity Vicon motion capture system was used to track human participants reaching
movements in a simulated box packing task. The task was designed to represent a
possible warehouse scenario with the goal of generating a sample of reaching move-
ments that would be naturally occurring in the application domain.
Central Insight: Human unconstrained reaching motion tends to follow an arc
shaped trajectory that can be modeled by an ellipse.

3.1 Task

Participants were asked to fulfill the role of a warehouse packer in a shipping opera-
tion while we recorded their movements. Each participant sat at a desk. Surrounding
them were a ramped shelf with five columns of colored ball supplies, a ball holder
with a single space for intermediate ball placement, and a rack consisting of a 3x3
square grid with a total of 9 possible spaces for final packing, Figure 2. The experi-
mental task proceeded in the following phases:

P1. Picking, in which products are staged and scanned to be packed. This phase
involves unshelving and staging a ball by removing a ball from the ramp and
placing it on the ball-holder; followed by

P2. Packing, in which products are packed for shipment. This phase involves un-
racking the current ball from the ball-holder and arranging it on an available
spot on the rack.

The Picking and Packing tasks were repeated 9 times, such that the rack was full.
Participants were instructed to pick and pack balls in any order they desired as the
final arrangement of the balls on the rack was not important— The goal was to allow
participants to focus their attention on completing the task at hand (see discussion
of limitations in Section 6). After, in order to prepare for another round of testing,
participants reset the setup by removing balls from the rack and placing them back
onto the shelf.



4 S. Sheikholeslami et al.

Fig. 2: Simulated Box Packing task designed with the goal of understanding and modeling point-
to-point human reaching movements. P1 corresponds to trajectories collected from the Picking
phase, i.e. from ramped shelf to ball-holder, and P2 corresponds to trajectories collected from the
packing phase, i.e. from from ball-holder to ball-rack.

Each trial was repeated 15 times, yielding a total of 135 unshelving and rack-
ing motion samples (P1), and 135 unracking and packing motion samples (P2) per
participant. For the study, 10 participants were recruited.

3.2 Data Annotation

The Vicon motion capture system used in this study included six cameras that per-
formed data processing to create real-time raw 2D marker data. To minimize dis-
tortion of the movement and improve tracking accuracy (i.e., fill in any gaps in the
trial data), a total of 19 markers were attached to each participant’s upper body to
measure the kinematics of their motion, and construct a calibrated 3D model of their
upper-body skeletal structure1.

The results herein are based on the reconstructed motion of the wrist marker,
placed above the head of the ulnar bone, which we take as representing the move-
ment of the arm in space. Two different categories of reach trajectories were col-
lected from each trial: P1) corresponding to motion samples from the ramp to the
ball-holder during Picking, and P2) corresponding to motion samples from the ball-
holder to the rack during Packing. The start and end of each reach sample was de-
termined through simple heuristics such as the wrist position, velocity, and distance
from the target.

4 Building Elliptical Models of Human Reaching Motion

Ellipses arise as second degree curves generated by the intersection of a plane and a
cone. Therefore, to justify an elliptical fit to the reach data, the reach trajectory must
be planar (Section 4.1). After verifying planarity, an ellipse is fit to the motion points
projected onto the best fit plane; the fit error is measured as the sum of the squared
orthogonal distances between the found ellipse and the motion points (Section 4.2).

1 See Vicon Nexus Documentation at https://docs.vicon.com
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4.1 Modeling Planarity of Reaching Motion

To compute the best fit plane to a motion trajectory, principal component analysis
(PCA) can be applied to each motion trajectory, providing an intuitive visualization
and approximation of a new orthogonal basis along which the motion points are
mainly distributed (cf. Figure 3). In the context of this study, the covariance matrix
Σ is a 3 by 3 positive-definite or positive-semidefinite matrix constructed from the
3D coordinates of a single reach sample as [19]:

Σ =
(X−Xcentroid)(X−Xcentroid)

T

n
(1)

where n is the number of the points collected in one reaching motion, and X is a 3
by n matrix with all the 3D coordinates of the points row-stacked. Xcentroid is the
mean coordinate, i.e., the centroid of the reach points.

Eigenvectors of Σ (i.e. the principal components (PCs)) point to 3 mutually per-
pendicular directions along which the reach points, n, are mainly distributed, and
subsequently, construct the basis of the best fitting plane. The corresponding Eigen-
values of Σ indicate the mean spread of the points along each PC. Therefore, in
practice, due to the presence of noise in laser scanning data, a reach trajectory can
be assumed planar only if the smallest PC, approximating the mean deviation of
the points normal to the best fit plane surface, is found statistically insignificant
compared to the other two non-trivial PCs constructing the plane of the motion.

4.2 Modeling Reaching Motion as an Ellipse

The equation of a an ellipse in cartesian coordinates is a polynomial of degree two
with five conic coefficients, defined as Ax2 +Bxy+Cy2 +Dx+Ey+F = 0. For a
sample trajectory projected onto the best fit plane as described in Section 4.1, each
transformed motion position (x;y) places one constraint on these conic coefficients.
Therefore, the best fit conic to the motion points can be modeled as the null vector of
the matrix obtained from stacking the constraints from n wrist positions as it moves
through space [20].

The type of the conic section, whether elliptical or not, can be determined from
the sign of the invariant discriminant of the conic section. For a conic to be elliptical,
2 conditions must satisfy [21]:

B2−4AC < 0 (2a)

A 6=C (2b)

For elliptical conics, determined by the above conditions, The fit error is mea-
sured as the mean of the squared orthogonal distances between the found ellipse
and the motion points (Section 5.2).

5 Results

Results presented in this section are based on P1 and P2 movements collected from
9 participants. For each participant, the number of sampled trajectories is indicated
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Fig. 3: The 3D view of the box packing experiment. For each phase, (P1, and P2) , φ represents
the angle between the normal vector of the best fit plane to each reach sample, and the Z-axis of
the global coordinate system.

as N, and correspond to the sample of trajectories that we were able to reconstruct
from the scanned data due to the noise inherent in the Vcon system (e.g., Figure 4).

5.1 Analyzing Planarity of Human Reaching Motions

Principal component analysis (PCA) was performed to each of the collected reach-
ing trajectories from P1 and P2 for all participants to model the orthogonal bases
defining the plane of the motion (Figure 4). Motion planarity is approximated by the
smallest principal component which corresponds to the mean offset of the fit motion
plane with respect to the horizontal X-Y plane of the camera.

A. The PCA Solution: The covariance matrix Σ , defined in Section 4.1, has two
degrees of freedom comparing the spread of points along the transformed basis of
the fit plane: the ratios {eigenvalue3 : eigenvalue2 : eigenvalue1)}, or equivalently
the 3 principal components (PCs) less one for scale. Figure 4 provides a visual-
ization of the mean of the smaller of the two ratios, comparing the minor planar
distribution of motion (i.e. along the vertical axis of the fit plane, PC2) to its out of
plane spread (PC3).

Fig. 4: Motion planarity is evaluated from the PCA solution, providing a comparison of the mo-
tion distribution along the minor axis of the modeled motion plan, approximated by PC2, to the
deviation of the motion perpendicular to the plane (PC3).
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Fig. 5: Theta represents the angle between the normal vector of the best fit plane to each reach
sample, and the Z-axis of the global coordinate system.

A repeated measures ANOVA, with a Greenhouse-Geisser correction, to ac-
count for the violation of sphericity assumption, was applied to the PCA solu-
tion of 1574 reconstructed trajectories from 9 participants (collected from Sec-
tion 3) to evaluate the planarity of the sampled motions. Results of this analysis
determined that the mean eigenvalue ratios were statistically significantly different
(F(1.368,3233.32) = 12425.89, p < 0.0001). Further, for each motion category, P1
and P2, a Bonferroni analysis was performed to provide pairwise comparisons of
the motion distribution along each principal direction. This post hoc test revealed
that both motion categories, the distribution of the points perpendicular to the sur-
face of motion, approximated as smallest eigenvalue of Σ (PC3), is significantly
negligible compared to the distribution of the points along PC1 (p < 0.0001), or
PC2 (p < 0.0001), corresponding to the major and minor axis of motion plane, re-
spectively. These experimental results indicate that human reaching motions can be
accurately fitted to a plane, regardless of the constraints imposed during the experi-
mental task (Section 3).

B. Modeling the Motion Plane: The smallest PC represents the vector normal to
the plane of the motion, forming an inclination angle φ with the vertical Z-axis of the
camera frame (Figure 4). our experimental results indicate that the fit planes to both
P1 and P2 reaching movements are at an oblique angle to the vertical Z-axis of the
camera frame, represented as inclination angles φ1 and φ2, respectively (Figure 4).
Analysis of Independent-samples t-tests was performed to the measures of φ from
1574 trajectories across P1 (N = 788) and P2 (N = 788) motion categories; φ1 was
found to be significantly smaller than φ2 for all participants (t(1492.61) = 83.69,
p < 0.0001). This analysis indicates that the participants consistently moved more
horizontally to the camera X-Y plane to perform P2 reaching movements compared
to P1 reaching movements (Figure 5).

5.2 Evaluating the Fit of Elliptical Models to Human Reaching Motion

Analysis of the planar reach trajectories, transformed using PCA (Section 4.1), in-
dicates that human reaching movements can be modeled as an ellipse 89% of the
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Fig. 6: Rate of reach trajectories for both P1 and (P2) data (Section 3.1 that fit to an Elliptical
Conic collected for the box-packing task across the participants.

Fig. 7: The fit error measured as the sum of the squared orthogonal distances between the found
ellipse and the motion points. The bars indicate the margin of error for a 95% confidence interval.

time, for both P1 and P2 motion categories (N : 788,M : 88.35%,SD : 11.50%, and
N = 788,M : 89.64%.SD : 6.76%, respectively), see Figure 6. Supporting H1, evalu-
ation of the performance of an ellipse on approximating the motion path determined
that the model can fit the sampled data within a mean accuracy of ±0.31mm for P1,
and ±0.23mm for P2 motion trajectories, see Figure 7.

Figure 8 illustrates two different views of the 3D coordinates of a sample trajec-
tory collected from a random participant overlaid by the corresponding predictions
of the elliptical model. The predicted ellipse closely fits the reach.

6 Discussion

This work proposes a mathematically simple and very efficient elliptical motion
model of human movements that involves geometric fitting to the motion points,
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.

Fig. 8: A demonstration of the current state of the developed model applied to a sample reaching
trajectory collected from the Vicon cameras: Top (Left) and Isometric (Right) views of the carte-
sian position of the wrist marker, in mm, as it moves through space (blue), and the corresponding
elliptical model approximated to the wrist trajectory (red).

given the entire sampled trajectory. The analysis of our experimental data indicates
that such model exists, and is able fit the motion within a mean accuracy few mil-
limeters (Section 5.2).

A. Implications: Collaborating agents often share spaces, parts, tools and equip-
ment and, in the normal course of their work, encounter conflicts when accessing
such shared resources. To resolve such conflicts, each agent’s selection of antici-
patory actions must have a temporal dependency on the actions of their collaborat-
ing counterpart, and be based on early and fast predictions of the future state of
their collaborator’s motion. Existing motion planning techniques for these contexts
primarily focus on learning and optimizing complex cost functions of biological
motion control, rendering online and fast predictions of human-motion very chal-
lenging. The proposed elliptical motion model (H1) has potential to alleviate some
of these issues due to its simple formulation. Future studies will evaluate the effec-
tiveness of the elliptical model in predicting human intent to robot, and generating
legible motion conveying robot intent for achieving fluency in human-robot han-
dovers.

B. Limitations and Future Work: The presented model is preliminary, and de-
veloped based on the limited data sampled from 9 individuals. To test the validity of
the elliptical model (H1), the experiment was designed to minimize the influence of
any external constraints, such as visual information or proprioceptive disturbances,
on determining the model of an ongoing movement. Our analysis only focused on
the hand positional data, and did not include other types of motion, nor other impor-
tant aspects, such as orientation, grasp condition, or the relative coordination of the
gaze, head and hand.

Future investigations will aim to validate and refine the current model by gener-
ating a more exhaustive exploration of the application domain, incorporating other
constraints and variations. Our current analysis is investigating the effect of intro-
ducing visual cues on the onset of the movement by incorporating data collected



10 S. Sheikholeslami et al.

from an analogous box-packing task (Section 3.1); however, instead of providing
no guidelines to participants, the experiment was modified such that, during each
phase, two computer monitors provided pictographic instructions on the completion
of the task. Another limitation and exciting area of future work that our current anal-
ysis 5 lacks is to evaluate and compare motion consistency among individuals based
on the measures of the inclination angle of the computed motion plane, and/or the
fit ellipse parameters, such as the axis ratio.

6.1 Summary

This work has aimed to understand and construct models of human reaching motions
to facilitate prediction of the timing and location of the end of human arm reaching
motions in tasks such as grasping or object handover. Incorporating the elliptical
model (H1) into robotic devices can improve human-robot interaction fluency by
(1) providing faster predictions of human motion, enabling the robot to make quick
inferences, and (2) generating time-efficient and human-like robot trajectories that
conveys intent, enabling the human collaborator to focus their attention on complet-
ing the task at hand, rather than controlling, or understanding the robot.
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