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Abstract— Autonomous assistive feeding systems need to ac-
quire deformable food items of varying physical characteristics
to be able to feed users. However, bite acquisition of these
deformable food items is challenging without force feedback
of appropriate range and sensitivity. We developed custom
solutions using two widely-used shear sensing fingertip tactile
sensors and calibrated them to the range of forces needed
for manipulating food items. We compared their performance
with traditional force/torque sensors and showed the trade-off
between the range and the sensitivity of the fingertip tactile
sensors in detecting potential bite acquisition successes for
food items with widely varying weights and compliance. We
then developed a control policy, using which a robotic gripper
equipped with the fingertip tactile sensors can autonomously
regulate the sensing range and the sensitivity to be able to
skewer food items of different compliance and detect their bite
acquisition success attempts.

I. INTRODUCTION

Autonomous robotic manipulation systems have the po-
tential to assist people with activities of daily living such
as feeding [1]. To develop an autonomous feeding system, a
robot needs to acquire a bite using some type of utensil from
a plate/bowl and transfer it to a user. However, successful bite
acquisition is challenging without haptic feedback for two
main reasons: visual occlusion when contact is imminent [2],
[3] and the deformability [4]–[6] of food. In a plate full of
food items with varying sizes, shapes, orientations, relative
placements, and degrees of occlusion, skewering a food
item using vision only can be very challenging. Food items
are also deformable with widely varying compliance and,
consequently, skewering failures are inevitable. Thus, the
robotic feeding system not only needs to have appropriate
sensing range to skewer with proper forces but also needs
to have the necessary sensitivity to distinguish the subtle
changes in forces to detect if the skewering attempt is
successful. In general, skewering food items during bite
acquisition needs a wide sensing range to exert enough force
depending on the compliance of food items. For example,
skewering a grape and a carrot would require different forces.
On the other hand, during the bite detection phase, observing
the additional weight on the fork after bite acquisition to
perceive success or failure of the acquisition attempt requires
high sensitivity to measure the weights of light food items.
Therefore, the same system would need to have reasonably
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Fig. 1: Sensing shear force when skewering a food item using fingertip
tactile sensors. Due to the non-linear stress-strain relation of the elastomer,
sensitivity of the sensor is adjustable by trading off with the sensing range.

high sensitivity (See Fig.1) to observe the weight change
after skewering a light item such as grape. Thus, our key
insight is that a robot-assisted feeding system should have a
sensor with wide sensing range and high sensitivity.

One of the most common choices of sensors for haptic
feedback with a fairly wide sensing range and high sensi-
tivity is to use industrial force/torque (F/T) sensors such as
ATI Nano25 F/T sensors. One approach to integrate these
sensors in a robotic feeding system is to instrument the fork
with these sensors as shown in Fig.2(a) and Fig.2(c) [7].
However, these sensors are expensive and present obvious
challenges such as the presence of wires which can interfere
with the feeding motion and the camera view as illustrated
in Fig.2(b) [8]. Another approach could be to put these
sensors under the food plate, but doing so will result in
force feedback that is dependent on the position of a food
item on a plate, which is again not ideal. Additionally,
using traditional fingertip tactile sensors which sense normal
forces are not appropriate for tool-based food manipulation
because contact with a food item happens through a fork
and measuring skewering forces requires the measurement
of shear forces at the fingertips. Thus, our solution is to use
low-cost customizable shear-sensing tactile sensors on the
robot fingertips.

Finding low-cost shear-sensing tactile sensors with wide
sensing range and high sensitivity is challenging. There
have been a lot of developments in tactile sensing tech-
nologies in the recent past [9], [10]. Some of these tactile
sensors are designed or scaled down to be attached to a
robotic fingertip [11]–[19]. Among those fingertip tactile
sensors, most provide pressure distribution or contact normal



F/T Sensor NET F/T Box

(a) System with F/T sensor

(b) Camera view

(c) Forque (d) FingerVision (e) Fingertip GelSight

(f) Camera view

(g) A fork

Fig. 2: Suggested solutions to replace F/T sensor in the Forque (Instrumented fork). The cost and wiring related issues of the F/T sensor can be resolved
by using fingertip tactile sensors, such as FingerVision and Fingertip GelSight sensors.

forces [14], [18], [19] and few of them are able to measure
shear forces [11]–[13], [15], [16], [20]–[22]. In this paper, we
focus on the FingerVision [15] and Fingertip GelSight [22]
sensors because they are not only able to measure shear
forces, but are also affordable, customizable, and relatively
easy to fabricate. FingerVision (See Fig.2(d)) and Fingertip
GelSight (See Fig.2(e)) sensors use cameras and elastomers.
They can estimate shear forces by tracking markers on the
elastomers when the elastomers are deformed by the shear
forces. Some advantages of these types of tactile sensors
are that they are economical, customizable, and easy to
fabricate. However, they have higher latency (100-200ms),
lower accuracy and reliability, and more restricted sensing
range and sensitivity when compared to industrial F/T sen-
sors. For food manipulation applications, it is crucial to have
sensors with wide sensing range and high sensitivity. Even
though the sensing range and sensitivity of these elastomer-
based tactile sensors are restricted, the non-linear stress-
strain relation of hyperelastic materials [23]–[26] allows us
to selectively improve either sensing range or sensitivity of
these sensors by controlling gripping forces [19], [27], as
illustrated in Fig.1. Therefore, by developing a control policy
that intelligently adapts gripping forces, we can use these
sensors for food manipulation applications.

Our contributions are listed below:
1) We customized two low-cost shear sensing fingertip

tactile sensors for feeding tasks.
2) We investigated the trade-offs between sensing range

and sensitivity when measuring shear forces with the
tactile sensors for manipulating food items.

3) We developed a control policy to regulate the sensi-
tivity and the sensing range of these fingertip tactile
sensors by adapting gripping forces.

II. METHODS

We modified FingerVision and Fingertip GelSight sensors
to fit the Kinova gripper (KG-2) and calibrated the forces
to get absolute force measurements in Newtons. Calibration
is necessary to map the data from the sensors to physical
units [28]. We assume that the shape of the fork handle is
fixed and therefore any variations in the calibration due to
contact area [22] are considered negligible.

A. Hardware Setup

To mount fingertip tactile sensors on each of the fingers of
KG-2, we analyzed the mechanical structure and mechanism
of the finger and identified the most suitable way to attach
them. Fig.3(g) shows a schematic of the mechanism of the
finger. KG-2 has two 2-degree-of-freedom (DOF) underactu-
ated fingers [29] and each finger is composed of a proximal
phalanx and a distal phalanx. To attach the fingertip tactile
sensors to KG-2, we modified the design of FingerVision
and designed an adapter for Fingertip GelSight as shown in
Fig.3(a) and Fig.3(b), respectively. We mounted the fingertip
tactile sensors on the proximal phalanges rather than the dis-
tal phalanges of the fingers of KG-2 to provide less backlash
and a higher and more stable gripping force. Furthermore, we
replaced the distal phalanges with a shorter version to remove
the potential for collision between the distal phalanges and
tactile fingertip sensors when fingers are actuated as shown
in Fig.3(g), Fig.3(a), and Fig.3(b). Fig.3(c) shows modified
FingerVision assembled with the proximal phalanx of the
finger of KG-2. Fig.3(d) shows Fingertip GelSight assembled
with the adapter and the proximal phalanx of the finger of
KG-2. Fig.3(e) and Fig.3(f) show the actual implementation
of each case. In the case of Fingertip GelSight, we designed
a dummy Fingertip GelSight for another finger and attached
it as shown in Fig.3(f). We also designed a fork handle to
be compatible with the mounting holes of the F/T sensor
and the fork tip. We designed the fork handle to have a flat
rectangular contact surface and 12mm of thickness which
makes the two fingertip tactile sensors parallel when they
are holding the fork handle. We 3D printed the fork handle
in white as shown in Fig.2(g) because FingerVision works
best with white objects.

B. Force Calibration

We designed the calibration process for FingerVision and
Fingertip GelSight sensors to convert raw sensor values,
which are based on the displacement of markers in pixels,
to absolute force measurements in Newtons. Previous cali-
brations for Fingertip GelSight sensors [22] were done for
a small range of shear forces. However, food manipulation
applications demand a larger range. Calibration for FingerVi-
sion sensors was left to the users as discussed in [15].
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Fig. 3: Hardware design process to attach FingerVision and Fingertip GelSight sensors to KG-2 fingers.

Force calibration is essential to generalize the data from
the fingertip tactile sensors and to specify their character-
istics, such as range, sensitivity, and hysteresis in physical
units. Relevant to the food manipulation task, we specifically
calibrated the shear forces for a range of 0-30N and obtained
the sensitivity for different gripping forces. We expect that
different gripping forces may result in different sensitivities
because of the hyperelastic characteristics of elastomers. We
set the range of shear forces based on the data [30] from our
previous human subject tests for food manipulation [8].

1) Calibration Setup: We attached the fingertip tactile
sensors to the KG-2 as described in Section II-A and placed
the fork vertically between the robot fingers as shown in
Fig.4(a) and Fig.4(b). In between the fork handle and the
tines, we added an ATI Nano25 F/T sensor to obtain true
force measurements. We had the fingertip tactile sensors
grab the instrumented fork vertically as shown in Fig.4(a)
and Fig.4(b) with the maximum gripping force. The robot
arm was mounted on a wheelchair [31] and we placed the
wheelchair in front of a desk. We processed the images of
the tactile sensors at 30Hz for FingerVision sensor and 10Hz
for FingerTip GelSight sensor using our on-board computing
installed on the wrist, and transmitted force data through
wireless communication.

2) Calibration Procedure: We recorded the sensor values
and force measurements from the F/T sensor while the
robot was pushing the instrumented fork vertically on the
table until the force measurements reached around 30N.
We computed the sensor values by averaging the pixelated
vertical displacements of every marker on the FingerVision
and Fingertip GelSight sensors. We repeated this procedure
20 times for three different gripping forces using three
different ROS position parameters: 1.4, 1.2, and 1.1. After
the data collection, we synchronized the values from fingertip

tactile sensors to the force measurements from the F/T sensor
based on linear interpolation. The hysteresis as shown in
Fig.4(c) and Fig.4(d) is mainly caused by the latency of
the cameras. We removed the hysteresis by subtracting the
latency of each fingertip tactile sensor from the time stamps
of the data. We measured the average latency by giving step
forces and found that FingerVision has around 120ms of
latency and Fingertip GelSight has around 130ms of latency.

3) Calibration Results: Fig.4(e) and Fig.4(f) show the
plots of synchronized data from FingerVision, Fingertip Gel-
Sight, and F/T sensors when vertical forces are applied to the
fork with three different gripping forces. We obtained a linear
relationship between the data from fingertip tactile sensors
and the force measurements from F/T sensor using linear
regression. The unit of the slope is in N/pixels. We defined
sensitivity of the sensor as the slope of force data. The
sensitivity of each gripping force for each fingertip tactile
sensor is 10.837 N/pixel and 7.450 N/pixel for FingerVision
when the gripping parameters are 1.4 and 1.2. Fingertip
GelSight has 0.404 N/pixel and 0.317 N/pixel when gripping
parameters are 1.4 and 1.2, respectively. From the calibration
results, we found that lower gripping force improves the
sensitivity of the shear force sensing for both the fingertip
tactile sensors. Interestingly, we see that Fingertip GelSight
has higher sensitivity than that of FingerVision, but has
narrower sensing range. This result comes from the different
hardness of elastomers, where the harder elastomer of the
FingerVision sensor gives lower sensitivity but the wider
sensing range and softer elastomer of the Fingertip GelSight
sensor gives higher sensitivity but a narrower sensing range.
Fig.4(g) shows a calibrated force trajectory while skewering
watermelon with the FingerVision sensor when the gripping
parameter is 1.4 and Fig.4(i) shows a calibrated force tra-
jectory when the gripping parameter is 1.2. Fig.4(h) and
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Fig. 4: Calibration process and force trajectories when skewering watermelon for each fingertip tactile sensor with two different gripping forces.

Fig.4(j) also show the force trajectories while skewering
watermelon with the Fingertip GelSight sensor when the
gripping parameters are 1.4 and 1.2, respectively. Based on
the calibration, we verified that FingerVision and Fingertip
GelSight sensors are able to provide reasonable range and
sensitivity of shear forces when skewering food items.

C. Theoretical Background

The elastomers used in the FingerVision and Fingertip
GelSight sensors are categorized as hyperelastic materials
like most polymers such as rubbers, sponges and other
soft flexible materials. Hyperelastic materials have highly
non-linear stress-strain relation and they get stiffer under
compression [32]. Therefore, larger the gripping force, stiffer
is the elastomer of the sensor and thus higher is the Young’s
modulus, E. This, in turn, increases the shear modulus, G,
given by

G =
E

2(1 + ν)
(1)

where ν indicates Poisson’s ratio, which is constant for
elastomers at around 0.5 [33]. This affects the shear strain
and thus the displacement of the markers which directly
correlates with the sensor input. Therefore, by changing
the gripping force, the displacement of the markers can
be changed which, in turn, changes the sensitivity and the
sensing range.

III. EXPERIMENTS

We designed experiments in which a robot skewers six
different food items using a fork and fingertip tactile sensors
with different gripping forces. We collected force trajectories
of each food item and showed how accurate the fingertip
tactile sensors are. In addition, we also verified that the
fingertip tactile sensors are sensitive enough to detect if a
bite acquisition attempt is successful. Lastly, we designed
a control policy that can adjust the sensing range and
sensitivity by intelligently controlling gripping force.

A. Experiment Setup

We selected six food items: grapes, cherry tomatoes,
apples, celery, watermelons, and hard-boiled eggs, based on
their variation in weight. We categorized grapes and cherry
tomatoes as light food items (average weight < 10g). Apples
and celery were categorized as medium food items (10g ≤
average weight < 25g). Lastly, we categorized watermelons
and hard-boiled eggs as heavy food items (average weight
≥ 25g). We used the fork equipped with the F/T sensor
to obtain not only the sensor data from the fingertip tactile
sensors, but also the ground truth force measurements when
skewering food items.

B. Experiment Procedure

There were two phases in this experiment: the bite acqui-
sition phase and the bite detection phase. Furthermore, we
designed a control policy that utilized the non-linear strain-
stress relation of the elastomer.

1) Bite Acquisition and Bite Detection Phases: The robot
skewered six different food items five times each with two
different gripping forces. We selected the two gripping forces
based on the closing position of the gripper with 1.4 as the
high gripping force and 1.2 as the low gripping force. For
FingerVision, the noise of the sensor is about 0.012 pixel and
this affects the minimum sensing threshold. 1/100th of pixel
noise originated from the computation method for the sensor
output explained in Section II-B.2. If the sensor value went
over the threshold in the bite detection phase, it was able to
tell that a food item was on the fork, and this was marked as
a successful trial. We expected that if the robot was gripping
the fork with high gripping forces, fingertip tactile sensors
would sense the heavy food items but not the medium and
light food items due to the low sensitivity. On the other
hand, we predicted that the robot would be able to detect
even medium and light food items with increased sensitivity
by lowering the gripping force. Finally, after counting the
successful bite prediction trials for each gripping force, we
tested the reliability of the sensor by hitting an empty plate
five times to see if the sensor could detect that no food was
skewered.



Fig. 5: Force trajectories when skewering grapes (top), apples (middle), and
eggs (bottom) with ATI Nano25 F/T (F/T), FingerVision (FV), and Fingertip
GelSight (GS) sensors.

2) Control Policy: Food items are of varying compliance
and thus sometimes may require exerting high forces to
skewer hard items using a tightly-gripped fork. However,
doing so may reduce the sensor sensitivity required to detect
whether a lightweight food item was picked up. Therefore,
we implemented a control policy that would work for varied
food items. We developed this control policy to regulate the
range and the sensitivity of the sensor by controlling the
gripping force. The idea is to grip the fork with maximum
gripping force (gripping parameter of 1.4) to have wide
sensing range during the bite acquisition phase, and lower
the gripping force (gripping parameter of 1.2) to have better
sensitivity during the bite detection phase. We designed this
control policy because the grasped fork may be unstable or
prone to slipping when the gripping force is low due to the
narrow sensing range. We tested this control policy on an
empty plate, one light item, one medium item, and one heavy
item, with five trials for each. We tried this policy on an
empty plate to see if the sensor has enough reliability even
after changing gripping force and hitting something.

C. Experiment Results

1) Bite Acquisition Phase: Fig.5 shows the force trajec-
tories from ATI Nano25 F/T, FingerVision, and Fingertip
GelSight sensors when skewering grapes, apples, and eggs
respectively. The solid lines in the plots show the mean of
force trajectories from five trials for each food item and the
shaded area denotes the standard deviation of force trajecto-
ries. It is evident from the force trajectories that FingerVision
and Fingertip GelSight sensors can detect subtle changes of
shear forces. For example, we observe a rapid drop of forces

when skewering food items that have a relatively hard skin
but are soft inside, such as grapes and tomatoes. [30]. This
subtle but rapid drop of forces right before 1 second is due
to the piercing of the skin by the fork during skewering.
This shows that FingerVision and Fingertip GelSight sensors
have sufficient sensitivity and response rates to detect subtle
changes in forces.

Fig.5 also shows that FingerVision and Fingertip Gel-
Sight sensors provide enough sensing range for shear forces
to skewer both soft and hard food items. For instance,
skewering apples and eggs require around 20N and 6N of
vertical force respectively. Note that we observe a fairly
large standard deviation of force trajectories from Fig.5,
which are comparable to that from F/T sensors. This is not
only from the noise in FingerVision and Fingertip GelSight
sensors but also from the variation in shape and compliance
of food items. Fig.6(a) shows the average root mean squared
error (RMSE) and the standard deviation of forces for each
food item obtained from FingerVision and Fingertip GelSight
sensors with respect to the F/T sensor. Overall, FingerVision
sensor has around 0.942N of RMSE and Fingertip GelSight
sensor has around 0.469N of RMSE.

2) Bite Detection Phase: Fig.6(b) and Fig.6(c) show the
success rates of bite detection for FingerVision and Fingertip
GelSight sensors for different gripping forces. It is evident
from the figures that with low gripping force, a robot has a
higher success rate in detecting whether the bite acquisition
attempt was successful for light and medium foods items.
The sensor completely failed to sense light food items
(grapes and cherry tomatoes) when gripping force was high
but the success rate (0.9) was significantly higher (p-value
< 0.05) when gripping force was low. This result shows that
the weight of light food items (< 10g) is usually lower than
the minimum sensing threshold when gripping force is high,
but still higher than the threshold when gripping force is low.
In general, the minimum sensing threshold is considered to
be the noise floor of the sensor and this can be obtained
by multiplying the noise and the sensitivity of the sensor.
Based on the results from Section II-B.3, the thresholds of
the FingerVision sensor are around 12.5g and 8.93g for high
and low gripping forces, respectively. The thresholds of the
Fingertip GelSight sensor are 10.47g and 9.48g for high
and low gripping forces, respectively. This shows that the
thresholds of the sensors become smaller and stay in the
range of the weight of light food items (7-10g, shaded area
in the graph) when the gripping force decreases as illustrated
in Fig.6(d). Note however, the success rate is comparable for
heavy food items (watermelon and egg) irrespective of high
or low gripping force. This means that the sensitivity is high
enough to sense the weight of heavy food items (25g) for
both high and low gripping forces. For medium food items
(apple and celery), the success rate of bite prediction is 0.2
when gripping force is high and 0.9 when gripping force is
low, and it is statistically significant with the p-value less than
0.05. This significant difference in success rates means that
the weight of medium food items, which is between 10-25g,
is usually lower than the minimum sensing threshold when
gripping force is high. These results clearly show that a robot
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Fig. 6: RMSE of the force trajectories, the success rate of bite acquisition for each sensor, and the minimum sensing threshold for each gripping parameter
(Low grip means 1.2 and high grip means 1.4). Blue shaded region shows the weight range of light items.

can potentially adjust the sensitivity of sensors by controlling
its gripping force, and that the sensor sensitivity with a low
gripping force is high enough to detect the weight of food
items ranging from lightweight to heavyweight. However,
increasing the sensitivity of the fingertip tactile sensors by
decreasing the gripping force has the trade-off of reduced
force sensing range, and also may constrain a robot from
applying larger forces needed to skewer hard food items such
as carrots.

For the experiments when the fork tines hit an empty
plate and nothing was skewered, the fingertip tactile sensors
correctly detected that food was not skewered when the
gripping force was high. However with low gripping force,
two out of five trials incorrectly reported that food was
skewered. This implies that having low gripping force during
the skewering phase could result in false detection. This is
because the force sensing range decreases as gripping force
is decreased, which could lead to unstable gripping while
hitting the empty plate. Therefore, we came up with a control
policy using which the sensing range and sensitivity can be
adapted by intelligently changing the gripping force (See
Section III-C.3).

3) Control Policy: Using our control policy, we performed
the same experiment of hitting an empty plate, and every
time it correctly detected that no food was skewered. We
also found out that changing gripping force and hitting the
plate did not degrade the reliability of the sensor. For the
experiments with food items, we could successfully detect
the bite acquisition for every food item (grape, apple, and
egg) with 100% success rate. Also, the fork was securely
held by the gripper due to the high gripping force while
skewering. This control policy can be very useful especially
when the robot is skewering a food item that is hard but
light, such as a mini carrot, because it requires wide sensing
range due to its hardness and high sensitivity because of its
light weight.

IV. DISCUSSION
In this paper, we analyzed the characteristics of FingerVi-

sion and Fingertip GelSight sensors in terms of sensing shear
forces. We identified that sensitivity changes as gripping
force changes for the these fingertip tactile sensors. We also
showed that this can be a useful feature of the fingertip tactile
sensors for food manipulation by proposing a control policy.
However, there are some assumptions that may need to be
relaxed in real-life applications.

First of all, we assumed that the latency of each fingertip
tactile sensor is constant. However, the latency may vary
depending on the computing and networking environments.
For example, we used 120ms for the FingerVision sensor
and 130ms for the Fingertip GelSight sensor. With varying
latency, the actual exerted forces could be lower or higher
than the force converted with the calibration based on fixed
latency. One solution could be to find a way to get real-time
latency of the cameras. Another solution could be to develop
a prediction model of the fingertip tactile sensors.

Another challenge is that the calibration is not consistent,
especially for the FingerVision sensor. That is because the
FingerVision sensor is affected by lighting conditions and the
color of objects. One possible solution to reduce the influence
of lighting conditions is to have an additional layer on the
surface of the elastomer that blocks lights entering through
the non-contacted area of the elastomer of the FingerVision.
A preliminary test of covering the sides using masking tape
reduced the noise and error in the sensor values. Using
bright-colored objects could also circumvent the problem.

Interestingly, the Fingertip GelSight sensor has higher
sensitivity than that of the FingerVision sensor. However,
the higher sensitivity sometimes leads to larger hysteresis
due to the greater viscosity of the elastomer or a mismatch
in marker tracking algorithms which are difficult to fix. In
addition, the dome shape of the elastomer of the Fingertip
GelSight sensor makes gripping unstable. We had multiple
instances when the fork slipped or rotated during skewering.
The previous versions of the Fingertip GelSight sensor had
flat surfaces which may be more suitable for our application.

Finally, another challenge was to reliably control the
movement of the KG-2 fingers. The fingers of KG-2 move
radially based on position control. This leads to uneven
distribution of forces on the fingertip tactile sensors when
gripping force is low. We can resolve this problem by
designing our own parallel mechanism gripper for KG-2. In
future, we will integrate these sensors with our autonomous
robotic feeding system and use real-time force feedback from
these sensors to feed users.
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