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Abstract— For successful deployment, personal robots must
adapt to ever-changing indoor environments. While dealing
with novel objects is a largely unsolved challenge in AI, it
is easy for people. In this paper we present a framework for
robot supervision through Amazon Mechanical Turk. Unlike
traditional models of teleoperation, people provide semantic
information about the world and subjective judgements. The
robot then autonomously utilizes the additional information to
enhance its capabilities. The information can be collected on
demand in large volumes and at low cost. We demonstrate our
approach on the task of grasping unknown objects.

I. INTRODUCTION

Deploying autonomous mobile and dexterous robots in our
homes presents a number of challenges: building flexible and
inexpensive hardware, developing systems and algorithms to
control the robot to achieve planned tasks, bridging the gap
between human perception and the robot’s world models, just
to name a few.

There are numerous unsolved research challenges even for
a specific task of cleaning up a room. One key challenge is
the availability of accurate models for robustly and safely
picking up objects. The models of the environment can be
built by hand, they can be derived from CAD models or they
can be constructed automatically. To automatically build the
models, the robot must recover the geometry and find unique
features for recognition. The robot must also determine what
constitutes an object, how to call it and what to do with it.

We propose to design autonomous systems that rely on
asynchronous human computation through crowdsourcing.
In the long term, we would like to minimize human input.
In the short term, we would like to maximize human input
to go around hard AI problems like category-level object
recognition, and enable scalable deployments of personal
robots. For the cleanup task, whenever the robot encounters a
novel object or an unknown situation, it will request detailed
analysis of the situation and only take safe actions until the
situation has been explained.

Historically, the failures of robot autonomy are mitigated
through teleoperation. The operator constantly monitors one
or more robots, drives the robot when necessary or provides
high level goals. The defining characteristics of teleoperation
is real-time presence of the operator and the use of a single
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operator per robot. In contrast, crowdsourcing allows hun-
dreds of people teaching a single robot only when necessary.

We demonstrate our approach on the task of grasping novel
objects using the framework illustrated in Fig. 1. We use
state of the art modelling tools[1], [2], [3] to build the object
model: SIFT-based model for recognition and pose estima-
tion; a surface mesh for grasping. The modelling pipeline
requires human-provided segmentations of objects of interest
and provides multiple tuning parameters. We crowdsource
image labeling, object clustering and selecting the final
model to Mechanical Turk. With these tasks powered by
people, we demonstrate that our robot can build models for
novel objects and successfully manipulate them.

While the framework is conceptually simple, we encoun-
tered several research challenges.

Workers typically have limited engineering background,
and very limited attention spans. Breaking down the complex
novel object discovery problem into simpler subproblems
that were easy to describe and reliably executable was a
huge challenge. Workers often produced unusable output if
the tasks were too complex or were described imprecisely.
Constructing the correct interface for workers to use for
image annotation proved to be another challenge.

A bigger challenge was automated quality control. Pro-
ducing a 3D model of the object required good user input
and the tuning of several algorithm parameters. The quality
of the output was quite sensitive to both of those factors. We
used a combination of averaging, grading, and a hierarchy
of evaluators to automatically weed out bad user input and
to automatically tune our algorithm parameters. This proved
to be critical for grasping success.

Another challenge is system latency: the delay between
sending out an image query and obtaining a segmented result.
While it may seem at first sight that such a delay might be
unacceptable for object grasping, we were convinced after
extensive experiments that it was acceptable with proper
scheduling. A personal robot typically has a long list of tasks
it needs to perform. If it encounters an unknown object in
its first task, it could send in the images for query, and move
on to other tasks while awaiting a response. This is much
like a human shopper at any store, picking up other objects
in the list while waiting for the salesperson to show up.

This paper postulates a concept, that unlimited inexpensive
human help is available online and can be harnessed to solve
problems that are hard for robots but easy for humans. We
believe that it is a first step towards greater adoption of
crowdsourcing in mobile manipulation.
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Fig. 1. Modeling pipeline starts with autonomous image acquisition. Blurry images are removed. The sparse 3D cloud is reconstructed using Bundler and
valid images are selected for annotation. Workers provide object outlines and group the objects by type. Each object group generates several watertight
models depending on the modelling parameters. Workers compare resulting models and only the best models are selected. The resulting models are evaluated
on object manipulation task. A demo video of our system is available at http://peopleforrobotsforpeople.com/video/iros2010 movie.mov

II. MECHANICAL TURK

Amazon Mechanical Turk [4] is a marketplace for micro-
tasks. Each task requires human judgment and provides some
monetary reward. Each task defines what needs to be done,
the user interaction, the quality requirements and who can
work on it. Common tasks include content filtering, audio
transcription and online inventory categorization. Most tasks
require very short amounts of time to complete and provide
payments in the range US $0.01-US $0.2.

The tasks are created by requesters, who request the
services from workers. Workers are free to choose any task
and complete it. Once the task is submitted by the worker, it
becomes the responsibility of the requester to validate it. If
the requester accepts the work, Amazon gives the payment
to the worker on behalf of the requester. The requester
has the option of rejecting the submission. In this case the
worker receives no payment and the rejection is counted in
the worker’s statistics. Requesters are expected to accept all
work performed in good faith and reject only malicious and
negligent work.

The requester has additional control over who can work on
their tasks. Mechanical Turk maintains a set of metrics for
each worker: their task approval rate, how many tasks they
have submitted, their location, etc. It is common to require
that the approval rate be above 90%.

Mechanical Turk has very limited tools for quality as-
surance. The most powerful of them are qualification tests.
The worker takes a test and receives a score of his or her
performance. Unless the workers obtain a minimum score,
they are blocked from performing the work. Even simple
tests reduce the amount of spam and improve the quality of
submissions. Finally, there are companies (e.g. CrowdFlower
[5]) who provide commercial services to control quality on
a large range on tasks. Their services charge a small fee
over labor costs in exchange for quality guarantees. Robotics
is currently too narrow of a domain to have commercial
crowdsourcing solutions. We hope that as application of

crowdsourcing becomes more established in robotics, it will
be fully-supported by commercial vendors.

The main advantage of Mechanical Turk is the availability
of a highly scalable on-demand workforce. There are thou-
sands of people participating on the web site and hundreds
of thousands of tasks are posted and get done daily.

A. Design constraints

Mechanical Turk has a number of limiting factors, that
constrain what can be done and where it will be effective.
First, all interactions on Mechanical Turk happen over the
Internet. This delays any communication between the robot
and the supervisor. These delays make very accurate real-
time teleoperation impossible, which suggests that Mechan-
ical Turk is more suitable for higher level tasks rather than
low-level control.

Second, the system works particularly well for large
volumes of simple tasks. Complex tasks must be split into
simpler sub-problems that can be solved independently and
in short time spans. Such structure however has an advan-
tage, because each simple task presents a good target for
automation. If an algorithmic solution becomes available, it
can be used directly instead of human input. At the same
time the human-powered application will generate necessary
volumes of training and benchmark data. The small time-
span of the tasks also requires the instructions to be short
and easy to understand. As each worker will spend little time
doing the tasks, they will also spend little time reading the
instructions.

Third, workers on Mechanical Turk generally have no
engineering background. They have varying command of
English and varying levels of education. The tasks must
thus be designed for the general public and rely only on
a basic level of human abilities. Whenever specific skills
are necessary, appropriate instructions must be given and the
skills must be verified. For example, if strong command of
English is required, a language test is appropriate. Alterna-
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tively, worker location may be constrained to only English-
speaking countries.

Fourth, Mechanical Turk is an open service with minimal
bounds between the requester and the worker. The financial
motivation of the workers is low. As a result, it is virtually
impossible to guarantee that the data posted on Mechanical
Turk will be kept private. At present, most tasks are open
to any public observer. This requires special attention if
Mechanical Turk is used in sensitive domains, such as
outdoor surveillance. In the context of personal robotics, this
will be a minor issue. We believe that advantages of effective
autonomy will outweigh the privacy risks.

B. Task definition

To obtain human supervision, it is necessary to formalize
the interaction with the user and build appropriate user
interfaces. Building a new user interface for every new
task is very expensive. An alternative solution is to use a
general-purpose configurable tools that will accept formal
specification of the interaction and generate the appropriate
user interface automatically. Such tools are then used as
building blocks to define specific human intelligence tasks.

Mechanical Turk [4] and Crowdflower [5] both provide
task design interface and markup languages. They cover
standard form-like user inputs: text boxes, multiple-choice
and checkbox questions. However, these interfaces are not
sufficient for annotation of objects in images.

We developed a general purpose annotation toolkit [6]
that allows to obtain annotation of images with commonly
used primitives: bounding boxes, object outlines, object
segmentation masks, object attributes and text labels.

C. Quality control

Quality control on Mechanical Turk is an area of active
research. The naive method to ensure quality annotations is
to obtain multiple annotation and average. This methodology
is necessary where subjective human judgment is required
and where no definitive answer is possible. It has been
shown [7], that very few workers can outperform an expert
annotator at a fraction of the cost. In our tasks, we use
multiple judgments in grouping and model evaluation to
ensure completeness of coverage and robustness to individual
errors. Averaging the annotations is not a universal tool.
First, not all annotations can be averaged. Second, averaging
requires at least 3 judgments to be collected. If all are correct,
then much work is wasted.

One alternative to averaging is to use grading [8]. In
grading, a worker looks at a small number of submissions
(4-10) and assigns a numeric grade to each. In majority
of tasks, grading is much simpler than the task itself. The
amount of extra work is only a fraction of the actual work.
Unfortunately, grading requires verified and trusted worker
base. At a small scale of a few thousand tasks it will be
difficult to establish.

At low volumes of tasks, it is possible to use a supervisor
- a single dedicated and trusted grader. This approach would
work for a few thousands of tasks per day. At higher volumes

the grading will become a bottleneck. In such case the
grading must be delegated to the Turk and the supervisor
will only adjudicate the cases where grades disagree.

There is a relatively large number of spammers who
intentionally violate the required protocol. They submit blank
annotations or do random things in hope of receiving the
payment. These workers are spotted automatically by looking
at the metadata associated with the submissions. In particular,
submissions with absolutely no work are rejected. Spammers
are identified by multiple incorrect submissions. Once a
worker is declared a spammer, all their submissions are
automatically rejected and they are blocked from performing
any future work.

Finally, some systems(e.g. Crowdflower [5]) use gold
standard data to automatically evaluate workers performance.
Such automated Q/A allows the system to determine how
much a particular worker can be trusted.

III. SYSTEM COMPONENTS

We used HERB [9] - a personal robotics platform. It is
built on a Segway RMP200 platform. It has Barrett WAM
arm, Barrett Arm, two onboard computers, multiple cameras
and laser scanners. The robot is capable of autonomous
navigation, obstacle and people avoidance, safe arm motion
planning and grasping.

A. Image acquisition

To build the models of unknown objects, the robot collects
data from 4 base locations around the table. At each location,
arm motion is planned and safely executed to reach several
requested views of the object. The images collected in each
run are filtered by information content. We measure the
amount of gradient energy and take a local maximum. This
selection removes blurry images that significantly confuse
the reconstruction algorithm.

B. Sparse 3D reconstruction

To build the models, we use MOPED modelling system [2]
based on Bundler [1]. It creates an accurate reconstruction
of SIFT feature 3D positions and 6 DOF camera poses. We
provide camera calibration parameters to the reconstruction
engine. The reconstruction obtained from a single camera
has a single unknown - scale. When a large known object
is present (such as a poster in figure 3), we use it to
recover the scale. Once the calibration object is detected, we
know the correspondence between reconstructed points in the
scene and the model. This gives us the scaling factor of the
reconstruction. When the calibration object is not available,
we can use approximate camera locations measured from
the robot arm configuration. Although the camera locations
are not accurate enough for 3D modelling, the error in
distance between the arm positions is sufficiently low to
obtain accurate scaling of the 3D reconstruction.

The sparse reconstruction provides us with the list of
images that were correctly registered. These images are
submitted for annotation on Mechanical Turk.
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Fig. 2. Annotation user interfaces: outlines, object grouping, model evaluation. Task costs and volumes used.

C. Image annotation and grouping

To obtain annotations on Mechanical Turk, we use open
source annotation toolkit [6]. All annotation tasks were
submitted to the server with a fixed cost per task(fig. 2).
After the tasks were completed, worker submissions were
manually validated.

To get object outlines, we require each worker to draw at
least one outline in an image and type the name of that object.
When no further outlines are possible, the worker marks the
“all done” flag and the image is not considered for further
annotation. The annotation interface and example results is
shown in figure 2. Object labels are collected for future
analysis. We currently use only object outlines to create 3D
models.

As there are multiple objects in each view, we need to
distinguish between different objects. Object labels provided
by the workers are not consistent across different workers,
so we need to associate the exemplar objects more directly.
We use image grouping tasks to obtain explicit judgments
about which objects are the same and which are different.
We present 20 masked object images to a worker and ask
them to place the objects in bins. Each masked image is
automatically generated from the object outlines obtained at
the previous round of annotations. Images placed into the
same bin are considered the same object. When two images
are placed into different bins, they are considered different
objects. The output of this annotation is an object similarity
graph: positive links connect similar instances, negative links
connect dissimilar instances. We cluster objects using this
sparse affinity graph and discard clusters with less than 5
members. Each cluster contains object masks that are used
for dense 3D reconstruction.

D. Dense 3D reconstruction

MOPED models give us only 3D pose of the object and
a sparse collection of 3D visual features associated with
the object. For grasping, we need a surface model with
normal information. We refine the sparse reconstruction into
a dense model using Patch-Based Multi-View Stereo (PMVS)
package [3]. The algorithm works like conventional stereo,
except for the camera positions are arbitrary. The algorithm

requires masks of the regions of interest and reconstructs
only respective parts of the world. These were obtained from
Mechanical Turk in Sec. III-C.

PMVS reconstructs a single oriented 3D patch at every K-
th pixel in the image by minimizing photo-consistency errors
between different camera views that would see that 3D patch.
The photo-consistency is measured via correlation of re-
projected patches. Each patch has size MxM pixels, which
needs to be chosen appropriately. The algorithm performs
multiple reconstruction passes relaxing the photo-consistency
requirement at each pass. First, the most consistent patches
are placed in 3D. Second, their neighbors are placed nearby
if they satisfy less stringent consistency requirement. On
the third pass, the consistency is relaxed once again and
more patches are added. There are several parameters for
to tune: K - the density of the reconstruction, σ - the
scaling of images before the reconstruction occurs, M - the
size of the patch for photo-consistency measurement, τ -
the most stringent photo-consistency threshold. As no single
combination of parameters always produces the best model,
we use 16 different parameter settings to generate multiple
models. Each model will be later judged and only the best
model will be selected for the robot to use.

E. Meshing

The model obtained on the previous stage consists of a set
of oriented patches. For grasp planning it needs to be con-
verted into a trimesh. We use Poisson surface reconstruction
algorithm [10], which we briefly summarize here. Oriented
3D patches form the vector field ~V . This vector field can
be seen as a gradient field for the indicator function χ of
the surface. As shown in [10], the surface indicator function
can be efficiently recovered as the solution of the Poisson
problem: ∆~χ = ∇· ~V . The water-tight triangular mesh is
then extracted from the solution. The implicit representation
of the surface efficiently handles the noise inherent to vision-
based measurements of 3D point locations and normals.

F. Model evaluation

Each object has multiple models corresponding to differ-
ent reconstruction parameters. Each model is textured and

2120



rendered using Blender [11]. The videos of different models
of one object are randomly shuffled and grouped in sets of 4.
Each group is presented to the worker. The task is to assign a
grade from 1(bad) to 10(perfect) to each model. The workers
are explicitly instructed that the better-looking model must
have higher score. All models of the object are randomly
shuffled and presented 3 times. After all models are graded,
the best model for each object is selected as the final model.
As we will see in the experiments, the model evaluation step
currently produces many errors.

G. Object recognition and pose estimation

We use MOPED system [2] for object recognition. The
recognition module requires only a single calibrated camera
and provides full 6DOF pose of detected object. MOPED
extracts SIFT features in the image and matches them
against the 3D models in the database. Once the feature
correspondence is established, full 6DOF pose is recovered
using RANSAC and verified. The recovered pose is highly
accurate and GPU-based feature extraction gives real-time
recognition with hundreds of models [2].

H. Grasping and manipulation

Once we obtain a model for the object and its pose in
the environment we compute grasps for the object using the
algorithm presented in [12]. This algorithm first samples the
surface of the object and computes distances from surface
points to the obstacles in the environment. These distances
are used to inform the cost function of an optimizer, which
quickly generates a set of grasps that are likely to be in force-
closure and collision-free. The grasp set is then checked for
collision and whether or not the grasp is reachable by the
arm.

We then compute the force-closure score for all reachable
and collision-free grasps and pick the highest-scoring grasp.
We compute Inverse Kinematic (IK) for this grasp, which
gives us the joint values of the arm that place the end-
effector in the proper pose. These joint values are passed
to a planning algorithm based on Rapidly-Exploring Random
Trees (RRT) [13], which computes a collision-free path from
the current configuration of the arm to the configuration
given by IK. Once this path is executed, we close the fingers
to grasp the object.

IV. EXPERIMENTS

To validate the presented approach to grasping novel
objects, we performed 6 rounds of reconstruction with vary-
ing difficulty: with and without a calibration target, single
and multiple objects, with and without clutter. The ideal
model must provide reliable recognition, accurate 6DOF pose
estimation and successful grasping.

To evaluate if the models we build are useful for grasping,
we validated whether the robot can detect the object, grasp
it, lift it and drop it into the recycling bin. The objects
were placed one at a time on the table and the robot arm
was positioned so that the palm camera can see the object.
The reconstructed object models were used for detection,

grasp and motion planning. The grasps were generated using
the method described in Section III-H, arm motions were
planned using using RRTs. We measured two metrics: the
overall task completion rate and the flawless execution rate.
In the first case only the fact that the robot places the object
in the bin is counted. In the second case, failure is declared
if the robot grasps the object incorrectly or if the robot or
the object touches any stationary objects in the environment.

We used common household items found in any grocery
store: horizon chocolate milk box, soy on the go cappuccino
drink box, box of pop tarts, salt, Progresso clam chowder
can, bottle of Fuze, Sprite can and a medicine bottle.

To measure the efficiency of the qualification requirement,
we run a smaller subsets of 140 grouping and 100 outline
tasks. The qualification requirements are simple multiple
choice tests measuring that the workers understand the
instructions. The workers must take the test before they can
work on the tasks.

A. Experimental results

Of the 6 rounds of reconstruction, 5 rounds were success-
fully reconstructed and produced 13 models (figure 3). One
round of reconstruction failed, because the scene contained
too little visual information with our current choice of
features. Of the 13 models 2 were rated unusable (best
model scored below 6) by Mechanical Turk. Most models
posses visible defects on the surface, however they all closely
follow the actual object surface. As a result they were
sufficient for the grasp planning and successful grasping.
A short video clip demonstrating our system in action is
available at http://peopleforrobotsforpeople.
com/video/iros2010_movie.mov.

We manually verified all Mechanical Turk submissions
and only good submissions were used in the subsequent
stages of the pipeline. The results of the evaluation are given
in table I. Our findings are consistent with the literature
[7], [14]: a single average worker produces rather poor
results. By averaging 3-5 of them, we can obtain desired
high accuracy (after filtering out trivial spam) at the price of
higher annotation cost. We found that qualification require-
ments significantly improve the results (Table. I). Although
100% performance on the outlines seems too high to us, it
corroborates our findings on a different task unrelated to this
paper. On a simple task of providing boxes around people,
we observed 10 errors out of 4000 tasks. In general we don’t
expect such high accuracy. We expect average good workers
to produce 90%-95% of correct submissions once they fully
understand the task requirements. The qualification-based
model evaluation task is still work in progress. We are
actively working towards for a completely automatic and
verifiable quality assurance strategy.

Our main test was the success rate of the grasping and
manipulation task. In 61.9% of the runs, the robot executed
the tasked flawlessly: detection, grasp planning, grasping,
lifting the object and placing it in the recycling bin. This rate
excludes any errors: executing different grasp, touching the
table with the object, dropping the object due to insufficient
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Fig. 3. Reconstructed models follow the shapes of the objects well. Visible defects are caused by (1) low camera resolution (640x480) (2) limited visibility
at contacts with the table (3) featureless regions (peptco, duck tape), (4) non-planar and specular surfaces (e.g. sprite can)

TABLE I
MECHANICAL TURK SUBMISSION ACCURACY.

Task Good Minor errors Bad Requirements

Outlines 76.98% 2.44% 20.58% none
100.00% 0.00% 0.00% qualification

Grouping 77.95% 11.81% 10.24% none
93.30% 6.67% 0.00% qualification

Evaluation 46.99% 9.04% 43.98% none

force. In 85.7% of the runs, the robot succeeded in placing
the object in the recycling bin despite minor errors, such
as sliding the object along the table. The smaller and more
rounded objects were harder to grasp and manipulate. The
worst object was the sprite can. It’s rounded, metallic and
reflective surface violated assumptions of the reconstruction
algorithm resulting in a noisy model. Smaller models had
more minor failures than bigger models. We believe the
smoothing in Poisson reconstruction generates slightly bigger
surface models than they should be. This would cause more
problems for smaller objects than for bigger ones. We are
looking into calibrating the reconstruction pipeline with
known ground truth models.

V. CONCLUSION

Virtually unlimited amounts of human supervision are
available through online work marketplaces. This supervision
will greatly improve the robustness of deployed systems
and allow us to sidestep hard AI problems on our way
to autonomous robots. Rather than building a completely
automatic system, we engineer our system to rely on mas-
sive human feedback. This shift in thinking opens up new
challenges in algorithm design, user interface design, quality
assurance policies and learning.
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