
Control Synthesis for Dynamic Contact Manipulation∗

Siddhartha S. Srinivasa, Michael A. Erdmann and Matthew T. Mason
The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA - 15213

Abstract— We explore the control synthesis problem for a
robot dynamically manipulating an object in the presence
of multiple frictional contacts. Contacts occur both between
the object and the robot, and between the object and the
environment. Two sets of constraints govern the evolution
of the system — contact velocity constraints that prevent
separation and cause rolling, and, contact force constraints
that arise from Coulomb friction. We combine the constraints
in the space of contact accelerations, obtaining bounds on the
robot acceleration as a function of the system state. We solve
the motion planning problem by providing a feasible path
for the system and generating the controls and the system
trajectory by time-scaling the feasible path. We provide
examples that illustrate the merits and limitations of our
technique and discuss some of the open problems.

Index Terms— dynamic manipulation, friction, control syn-
thesis, time-scaling

I. INTRODUCTION

When a robot manipulates an object, the contacts act
as the coupling between the object and the robot; they
transmit forces from the robot to the object, and impose
motion constraints on the object. The evolution of the
system depends on the laws governing motion and force
at the contacts, and the dynamics of the object and the
robot. In this paper, we focus on synthesizing controls for
the robot that move the robot and the object from a start
location to a goal while satisfying the constraints imposed
at the contacts.

A. Dynamics

In this paper, when we refer to the term dynamic
manipulation, we mean “controlling the motion of the
manipuland during its dynamic phase” as opposed to “hav-
ing plans where the manipuland moves dynamically”. In
general, planners of the latter variety treat statically stable
configurations of the manipuland as the nodes of a planning
graph and use discrete actions that involve dynamics to
transition between nodes. The key point here is that once
a discrete action is initiated, it is terminated only at the
statically stable goal state, there is no feedback during
the action. There have been many elegant demonstrations
of such planners [1], [2], [3]. However, there are many
situations where controlling the motion of the manipuland
during its dynamic phase might be useful or essential:
• Error recovery - Imagine sliding a book about an

edge along a rough horizontal surface with a palm
tilted at some angle. If the variation in the friction
coefficient is large, the book can slip out of the palm.

∗This work was supported in part by NSF grants IIS-9820180, IIS-
9900322, IIS-0082339 and IIS-0222875.

However, if it is possible to act upon the book as it
is falling down, by decreasing the palm angle, the fall
can be stopped.

• Richer actions - By applying time-varying forces on
the manipuland during its dynamic phase, it is possible
to perform tasks that are otherwise impossible. A
simple example is the tipping of a block resting on
a palm. With the right conditions, it is possible to tip
the block by accelerating the palm upwards and to one
side. We provide another motivating example in §I-C.

• Necessity - All of the planners mentioned [1], [2],
[3] assume the existence of statically stable configu-
rations. These configurations are either natural to the
task at hand, or artificially constructed to simplify
the problem. However, there might be cases where
a statically stable configuration might not exist, or the
object might take a long time to settle into one.

B. Environmental contacts

Contacts with the environment occur all the time. They
occur in assembly in peg-in-hole insertion when the peg
contacts the hole, and in part fixturing where the goal is
to immobilize the part against the remote fixtures. Such
contacts occur when we manipulate objects too large and
heavy to lift; when we push on them or topple them. Here,
the environment provides a helping hand, a remote contact
that bears most of the heavy load that we would not be able
to bear by ourselves. Environmental contacts also occur
in mobile manipulation, where a robot uses its wheels
to move the manipuland. Here, the environment provides
an opposing force, remote contacts that together with the
wheel contact, help maintain control of the manipuland and
prevent it from scooting away from the robot. Hence these
contacts are either inevitable, as in the case of assembly,
or essential, as in the case of large object manipulation or
mobile manipulation.

C. A motivating example

Here we consider an example that highlights two char-
acteristics of the problems we are interested in solving —
contact with the environment, and the use of dynamics to
find a solution where a quasi-static analysis fails.

Consider the problem shown in Fig.1(i) where an arm
with one prismatic and one revolute joint (henceforth
referred as a PR arm) manipulates a block resting on a step.
The arm contacts the block at C and the block contacts the
environment at the apex(A) and base(B) of the step. As
shown in the figure, the orientation of the block is denoted
by θ. We control the motion of the robot via its joint
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Fig. 1. (i) : A motivating example, (ii) : Constraint surface and acceleration cone in contact acceleration space, (iii) : Time-scaling phase plot and
phase space trajectory, (iv) : Resulting dynamic trajectory

acceleration. The goal is to synthesize controls to stand
the block up against the step (θ = π

2 ) while maintaining
sliding contacts at A and B and a fixed contact at C.

It can be shown that if the object starts from rest in the
configuration shown in Fig.1(i), any force exerted by the
robot at C causes one of three object motions. Depending
on the direction of the force, the object either loses contact
with B and starts tipping about A, remains immobile, or
starts sliding backward. Hence, quasi-statically, there is no
control that increases θ.

However, we can use the dynamics of the object to
accomplish the task. Intuitively, this involves sliding the
block backward a distance that is sufficient to accelerate
the block forward in such a way that the centripetal force
generated by the motion prevents the block from tipping.
Snapshots of the resulting dynamic trajectory are shown in
Fig.1(iv). We explore this example in detail in §VI.

D. Outline

Motion at the contacts imposes two sets of constraints
on the system. Sliding or rolling at the contacts imposes
velocity constraints on the system. For example, in Fig.1(i),
for the object to remain in contact at A and B, the velocity
of the object normal to the contact must be zero. Likewise,
for the contact C to remain fixed, the velocity of the arm at
C must equal the velocity of the object at C. The laws of
Coulomb friction impose constraints on the contact forces.
For example, the contact force at A and B must lie on the
left edges of the respective friction cones.

In §IV, we combine the two sets of constraints to obtain
a constraint on the control. We show that a function of the
feasible robot joint acceleration must lie within a convex
cone in the contact acceleration space, as illustrated in
Fig.1(ii). In §V, we use the technique of time-scaling to
simplify the problem. We project the constraints on to a
lower dimensional phase space and solve for a feasible

trajectory in this space. The arrows in Fig.1(iii) denote the
constraints on the tangents to the trajectories in phase space
and the solid curve denotes a feasible trajectory. We use
the phase space trajectory to synthesize the controls and
the dynamic trajectory of the system (shown in Fig.1(iv)).
We provide a detailed example in §VI and discuss the
limitations of our technique in §VII.

II. BACKGROUND

Early work on dynamic manipulation focused on dex-
terous manipulation where a robot hand manipulated an
object with multiple frictional fingers. In Cole et al. [4],
[5], some fingers were designated to slide on the object’s
surface while others were designated to roll. The authors
provided a control law that achieved simultaneous tracking
of a pre-planned object trajectory together with the desired
motion at the fingertips using the location of the contacts
and the relative velocity at the contacts as feedback.

There are two key assumptions in Cole et al. . The first
assumption is that the object is held in a force closure grasp
throughout its motion. In such a grasp, contact forces can
be combined to exert an arbitrary wrench on the object.
The second assumption is that each finger is fully actuated.
As a result of these two assumptions the hand can exert
an arbitrary wrench on the object, all object trajectories
are feasible and there are no constraints on the robot joint
accelerations.

In this paper we do not make either assumption. The
object need not be in force closure. We also have contacts
between the object and the environment which are unac-
tuated, where the robot cannot actively control the contact
force exerted.

Brook et al. [6] studied the manipulation of objects in
equilibrium grasps. They showed that most equilibrium
grasps were locally controllable, and stabilizable under
suitable feedback control. They showed that manipulation
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from one equilibrium grasp to another was possible if there
was a continuity of equilibrium grasps between them.

Trinkle and Hunter [7] provided a framework for manip-
ulation planning. They defined a contact formation (CF)
as a qualitative description of a grasp based on contacts
between the vertices, edges and surfaces of the robot and
the object. To plan a motion, they constructed CF-trees with
the start and goal CFs as the parent nodes, the child nodes
being the CFs the parents could transition to, and the arcs
being controls that caused the transitions. A plan existed if
the the start and goal CF-trees had a common node.

Erdmann [3] explored the nonprehensile manipulation of
planar convex objects using two flat palms. He restricted
the actions that could be performed by the palms to four
primitives which caused the object to tilt, rotate, slide, or
be released. Based on a static analysis, he decomposed the
configuration space of the object into regions of invariant
dynamics, and searched for plans in this simplified space.

Song et al. [8] studied the design of fixtures where the
part was subjected to frictional contacts and impact. For a
given set of design parameters and initial conditions, they
computed the dynamic motion of the part using a linear
complementarity formulation. Ideal design parameters for a
given cost function were obtained by solving a constrained
optimization problem.

Sarkar et al. [9] studied the control of a robot in
a cooperative manipulation task ordered to compliantly
follow the motion of an object. They designed a nonlinear
feedback controller that maintained rolling contact.

This paper is motivated by the work of Lynch and Mason
[10]. They studied the planning and control of dynamic
nonprehensile manipulation. They computed controls for a
one degree of freedom arm performing dynamic tasks such
as snatching an object from a table, rolling the object on
the arm, and throwing and catching. They used a nonlinear
optimization technique to search for feasible controls in a
low dimensional state space.

The idea of decoupling path generation and trajectory
planning was first explored in the context of robot arms.
Bobrow et al. [11] and Shin and McKay [12] studied
the problem of moving a manipulator in minimum time
along a specified geometric path subject to constraints on
the actuator torque. Both papers analyzed the problem in
the phase space of the parametrized geometric path and
provided algorithms to compute time optimal trajectories.
Subsequent authors have worked both on improving the ef-
ficiency of the algorithms [13] and on sub-optimal efficient
solutions [14].

III. PROBLEM STATEMENT

We denote the configuration of the object by its pose qo

and the configuration of the robot by its joint angles qr. We
denote the configuration of the system by q = [qo, qr]T ,
the velocity of the system by q̇ = [q̇o, q̇r]T and the state
of the system by the pair [q, q̇]T . We define the dimension
of the configuration space as nq = dim(q). The dimension
of the state space is ns = 2nq.

Motion at the contacts between the object and the robot
gives rise to constraints on the relative velocity between
the object and the robot. These can be written as:

GT
r q̇o = Jq̇r (1)

Likewise, motion at the contacts between the object and
the environment gives rise to constraints:

GT
e q̇o = 0 (2)

Combining the above two constraints:

GT
c q̇o = Jcq̇r (3)

Constraints on the contact force fci at the ith contact are:

fci ∈ Fi

where Fi is the contact friction cone, i = [1, . . . , n] and n
is the number of contacts.

We can combine the force constraints at all contacts as:

fc ∈ F (4)

where fc = [fc1, . . . ,fcn]T and F = F1 ×F2 × · · · Fn.
We control the motion of the robot via its joint acceler-

ation q̈r. The motion of the object is:

Mq̈o = Gfc + no (5)

where M is the mass matrix of the object, G is the grasp
map which relates contact forces to wrenches on the object,
and no is the wrench on the object due to gravity.

The problem can be stated as:
Given a start qs and a goal qg , find the robot joint
acceleration q̈r(t) that will move the system from
the start to the goal without violating the contact
velocity constraints (Eqn.3) or the contact force
constraints (Eqn.4).

IV. COMBINING CONSTRAINTS

In this section, we combine the velocity and the force
constraints of the system. This gives us a range of robot
joint acceleration that does not violate either constraint.

A. The contact acceleration constraints

Theorem 1. For a given configuration q = [qo, qr]T and
velocity q̇ = [q̇o, q̇r]T , the allowable joint acceleration of
the robot q̈r that satisfies both the velocity and the force
constraints is constrained to lie within the cone:

Jcq̈r + V(q̇o, q̇r,no) ∈ A (6)

V(q̇o, q̇r,no) = J̇cq̇r − ĠT
c q̇o − GT

c M−1no

and
A = GT

c M−1G(F)

is the contact acceleration cone.

Proof: The constraints on the system are:

GT
c q̇o − Jcq̇r = 0 (7)

fc ∈ F (8)
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Since the velocity constraint is valid over an interval of
time, its derivative wrt. time is also valid over the interval
of time. We can, thus, differentiate Eqn.7 :

GT
c q̈o + ĠT

c q̇o − Jcq̈r − J̇cq̇r = 0 (9)

We can rewrite the dynamics of the object as:

q̈o = M−1Gfc + M−1no (10)

Multiplying the equation by GT
c and substituting for GT

c q̈o

from Eqn.9, we get:

GT
c q̈o = GT

c M−1Gfc + GT
c M−1no

Jcq̈r − GT
c M−1no − ĠT

c q̇o + J̇cq̇r = GT
c M−1Gfc

Jcq̈r + V(q̇o, q̇r,no) = GT
c M−1Gfc

Incorporating the force constraint from Eqn.8, we can write
the above equation as:

Jcq̈r + V(q̇o, q̇r,no) ∈ GT
c M−1G(F) (11)

where V is a collection of terms comprising of the system
velocity and the weight of the object.

Eqn.6 represents a balance of accelerations in contact
space. The LHS of Eqn.6 represents contact accelerations
that can be produced by the robot. As per the laws of
Coulomb friction, the acceleration must lie within the cone
of contact accelerations that can be produced by forces
belonging to the contact friction cone. The RHS of Eqn.6
maps the contact friction cone into the space of contact
accelerations:

GT
c M−1 G (F)︸︷︷︸

Contact space friction cone︸ ︷︷ ︸
Object space friction cone︸ ︷︷ ︸

Object space acceleration cone︸ ︷︷ ︸
Contact space acceleration cone

(12)

B. Internal forces

n n

q1

q2 q3

q4

no

Fig. 2. An example of the insufficiency of the contact acceleration
constraints

Eqn.6 is a necessary but not a sufficient condition for the
constraints to be satisfied if the system has internal forces
— forces that produce no acceleration of the system.

Internal forces can result if the object is in force closure.
For example, in the system shown in Fig.2, contact forces
pointing inwards do not accelerate the object.

When we apply the contact acceleration constraint for
the system initially at rest and moving to the right, we get:

q̈1 = q̈4 (13)

Eqn.13 prohibits the contacts from separating or penetrat-
ing into the object. However Eqn.13 does not tell us how
much we should squeeze the object in order to balance
its weight. This is because the squeezing force does not
change the acceleration of the robot and hence does not
appear in the contact acceleration constraint.

V. CONTROL SYNTHESIS

In this section, we synthesize controls that move the
system from a start qs to a goal configuration qg while
satisfying the contact acceleration constraints.

A. Time-scaling

Our motivation is to search for controls in a space that
has a lower dimension than ns. We simplify the problem
into two subproblems. The first problem is finding a
feasible path q(s), where s is a parametrization of the path,
from start to goal. This involves searching the configuration
space of the system which has a dimension of ns

2 . Once
a feasible path is found, the second problem is finding a
feasible trajectory along the path. This involves searching
the two dimensional phase space [s, ṡ] for trajectories that
do not violate the contact acceleration constraints. The
choice of ṡ and s̈ for a path is called the time-scaling of
the path.

Definition 1. A feasible path is one that does not violate
the contact kinematic constraints for any time-scaling.

Theorem 2. Every feasible path q(s) = [qo(s), qr(s)]T

satisfies the constraint:

GT
c q′

o(s) = Jcq
′
r(s) (14)

We omit the proof of Thm.2 due to lack of space.
Once a feasible path is generated, we can can apply the

contact acceleration constraint to obtain constraints on the
phase space trajectories. Using Eqn.14 in Eqn.6 we obtain
phase space constraints of the form:

u1(s)s̈ + u2(s)ṡ2 + u3(s) ∈ A(s) (15)

B. Trajectory generation

In planar contact problems we leverage the linearity
of the contact friction cone to obtain a computationally
efficient representation of Eqn.15. Since the mapping from
contact force space to contact acceleration space is linear,
a linear F maps to a linear A. The face normal represen-
tation of A is given by:

A = {g : FAg � 0}

where “�” and “�” denote componentwise inequality.
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Using the face normal representation in Eqn.15, we get:

FA

(
u1(s)s̈ + u2(s)ṡ2 + u3(s)

)
� 0 (16)

At each point [s, ṡ] in phase space, Eqn.16 gives us a set of
constraints on s̈. We can combine the constraints to obtain
bounds on the acceleration s̈ ∈ [s̈min, s̈max].

At each point in phase space, acceleration bounds can
be visualized as cones in the tangent space. The tangent
to a feasible phase space path must lie within the cones.
When the constraints are inconsistent, the cone disappears
and no feasible path can pass through such a point.

For our problem, we pick a phase space acceleration
s̈1 and compute the forward trajectory from the start. We
pick another phase space trajectory s̈2 and compute the
backward trajectory from the goal. At the point where the
two trajectories intersect, we switch from s̈1 to s̈2.

Once a feasible phase space path is computed, we use
Eqn.6 to compute the desired controls.

VI. AN EXAMPLE

In this section, we describe in detail the example from §I.
In the example, a PR arm manipulates a block, as shown in
Fig.1(i). The configuration of the block is qo = (x, y, θ)T ,
where (x, y) is the location of the center of mass of the
block and θ is its orientation. We describe the configuration
of the robot by its joint angles qr = (q1, q2)T .

Our goal is to manipulate the block from a start orien-
tation θs to θg = π

2 , while maintaining sliding contact at
A and B, and a fixed contact at C.

A. The contact acceleration constraints

The arm Jacobian is given by:

J =
[
1 −lr sin(q2)
0 lr cos(q2)

]
where lr is th length of the second link.

Vectors from the center of mass to each contact point
are:

rA = w

(
cos(θ − π

2 )
sin(θ − π

2 )

)
+ (l − h

sin(θ)
)
(
− cos(θ)
− sin(θ)

)
rB = w

(
cos(θ − π

2 )
sin(θ − π

2 )

)
+ l

(
− cos(θ)
− sin(θ)

)
rC = w

(
cos(θ + π

2 )
sin(θ + π

2 )

)
+ (d− l)

(
cos(θ)
sin(θ)

)
where w is the half-width of the block, l is the half-length
of the block, h is the height of C measured along the block,
and d is the height of the step.

Rolling at C enforces the constraint:

GT
r q̇o = Jq̇r

GT
r =

[
1 0 −rCy

0 1 rCx

]
Maintaining contact at A and B enforces the constraint:

GT
e q̇o = 0

GT
e =

[
nA rA × nA

nB rB × nB

]

nA and nB are the contact normals given by:

nA =
(

cos(θ + π
2 )

sin(θ + π
2 )

)
, nB =

(
0
1

)
Combining both the constraints, we get:

Jc =
[
02

J

]
, GT

c =
[
GT

e

GT
r

]
As the block is sliding to the right at contacts A and B,
the contact force is constrained to lie on the left edge of
the friction cone at the contacts. The contact at C is fixed,
so the contact force can range anywhere inside the friction
cone at C. The contact force constraints are:

fc ∈ F = FA ×FB ×FC

FA =
[
− sin(θ + α)
cos(θ + α)

]
λA

FB =
[
− sin(α)
cos(α)

]
λB

FC =
[

sin(θ − α) sin(θ + α)
− cos(θ − α) − cos(θ + α)

]
λC

for λA,λB,λC � 0. α is the angle of repose at each
contact.
FA and FB are the left edges of the friction cones at A

and B respectively and FC is the friction cone at C.
Substituting the above data into Eqn.6, we compute the

contact acceleration constraints of the system.

B. Time-scaling

With the imposed contact velocity constraints the system
has one degree of freedom. We compute a feasible path q
parametrized by the orientation of the block θ:

q(θ) =
(

qo(θ)
qr(θ)

)
Using Eqn.16, we compute the constraints on the trajecto-
ries in the phase space [θ, θ̇] of the form:

FA(θ)
(
u1(θ)θ̈ + u2(θ)θ̇2 + u3(θ)

)
� 0

Furthermore, we impose a limit on the maximum possible
acceleration of the block θ̈ ∈ [−Θ,Θ].

C. Results

The phase plots and phase space trajectories for two
instantiations of the problem are shown in Fig.3 and Fig.4.
The arrows represent tangents. Orientations of the block
that correspond to values in the horizontal axis are shown.

In Fig.3 contact C is at h = 0.3l and the starting
orientation of the block θs = 0.7. In Fig.4 contact C
is at h = l and the starting orientation of the block is
θs = π

3 = 1.05. For both problems Θ = 20.
In Fig.3, the arm is able to push the block forward

and make it stand. The arm accelerates the block until the
switching point is reached after which the arm decelerates
the block to rest. A different strategy is needed in Fig.4.
Here the arm moves the block backward for a duration of
time and then pushes the block forward and stands it up.
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Fig. 4. Phase plot and time-scaling trajectory for h = 1.0l

The different strategies are a result of the phase space
acceleration constraints at the start of motion. For Fig.3, the
phase space acceleration θ̈ is constrained to lie in the range
[−20, 20]. As this range includes a positive acceleration,
the arm can push the block forward from rest. For Fig.4,
the phase space acceleration θ̈ is constrained to lie in the
range [−20,−10.83]. Hence the only motion at the start
that does not violate any of the contact constraints is one
that moves the block backward. The block moves backward
until the constraints allow a positive acceleration. The arm
then decelerates the backward motion to rest, accelerates
the block forward and stands it up.

There is a critical start angle of the block θcrit at which
the switch from the strategy in Fig.3 to Fig.4 occurs. The
critical event that causes the switch is when the left edge
of the contact friction cone at C passes through the contact
A. Start angles up to θcrit will follow the strategy in Fig.3
and start angles in [θcrit,

π
2 ] will follow the strategy in Fig.4.

The solid vertical lines in Fig.3 and Fig.4 show the
critical angles for the two problems. As we lower the
contact C along the block, θcrit decreases. This matches our
intuition, as the higher C is along the block, the greater is
the risk of breaking contact at B and tipping the block if
the arm pushes forward.

VII. DISCUSSION

By separating path generation and trajectory generation,
we have simplified a ns dimensional problem into a 2

dimensional problem. However, finding paths that can be
time-scaled is not easy. The problem of testing if a path can
be successfully time-scaled without having to compute the
phase space constraints is still open. Shin and McKay [15]
showed that time-optimal paths for robot arm dynamics
were geodesics in joint configuration space. We will work
on using some of the ideas in that paper to characterize
paths that can be successfully time-scaled.

The contact friction cone in 3D is nonlinear. Our result
for combining the constraints is general; it is valid both for
planar and 3D contact problems. However, our implemen-
tation uses the linearity of the planar contact acceleration
cone to efficiently compute acceleration bounds. For 3D
problems, Eqn.15 gives us a set of nonlinear constraints
on the allowable s̈ at each [s, ṡ]. A simple way to solve for
the bounds is to perform a 1D search in s̈.

A drawback of the Coulomb friction model is the pos-
sibility of the existence of multiple motions for a given
control. Hence, to obtain a particular motion with certainty
we must ensure that the control is inconsistent with any
other motion. We will work on choosing phase space
trajectories that satisfy this requirement.
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