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Abstract

Manipulation is the art of moving things. At the heart of the problem, an object needs to be
moved from start to goal by a robot that is in contact with the object. The contacts serve
two purposes: they transmit forces and impose motion constraints on the object. Even if
a robot can precisely control its own motion, it is constrained by the interactions at the
contacts for control of the motion of the object. Contact interactions are governed by the
laws of Coulomb friction and are nonlinear and non-Newtonian.

Current solutions to the manipulation problem decompose the problem into first solving
for the forces required to produce a desired object motion and then commanding the robot
to apply the requisite force. This imposed decomposition assumes that the robot is capable
of producing the commanded forces and velocities required for manipulation. However, this
assumption is broken in dynamic manipulation, where the robot operates close to actuator
saturation.

In this thesis, we explore the planning and control of dynamic manipulation subject to
actuator constraints. We describe a mapping of the Coulomb friction constraints and actu-
ator constraints into a common space, obtaining a unified contact acceleration constraint.
We propose two techniques for using this constraint to generate analytical trajectories for
the dynamic manipulation problem. In the first technique of time-scaling, we decouple the
problem into computing a feasible path followed by selecting the speed of motion along the
path that satisfies the constraint. In the second technique of task and shape decomposi-
tion, we recognize that the constraint resides in a low dimensional subspace of the system
state space and project the system dynamics onto, and orthogonal to that subspace. We
use a feedback controller in the constraint space and plan for the orthogonal unconstrained
freedoms. Finally, we demonstrate our techniques on two dynamic manipulation tasks and
a constrained, nonholonomic system.
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Chapter 1

Introduction

We want robots to interact with the world. We want them not just to move around the
world effectively, avoiding obstacles, but to change the world by moving the obstacles. To
achieve this, we need an accurate model of the robot’s interaction with the world. We
also need tools that use this complex model of interaction to plan and control the robot’s
motions.

Manipulation is the art of moving things. At the heart of the manipulation problem,
an object needs to be moved by a robot from a start to a goal. During the course of
manipulation, contacts can be made, maintained or broken, both between the object and
the robot, and between the object and the environment. Contacts that are maintained
either roll (where there is no relative motion between the contacting bodies) or slide (where
there is relative motion between the contacting bodies). An additional specification to the
manipulation problem is the requirement that certain contacts roll, or slide, or never break.
This specification is called the contact mode of the system.

Contacts are important because they act as the coupling between the object, the robot
and the environment. They transmit forces and impose motion constraints. However,
controlling the motion at the contacts is hard because their evolution is governed by the
laws of Coulomb friction which are nonlinear, non-Newtonian and impose constraints that
reside in two different spaces.

A solution to the manipulation problem is a set of robot controls that move the object
from a start to a desired goal while satisfying the specified contact mode.

Versions of the manipulation problem have been well studied in the literature. One of the
earliest problems studied was the insertion of a peg into a hole using a robot while preventing
wedging or jamming of the peg [Whitney, 1982]. In the dexterous manipulation problem, an
object is grasped and manipulated by a robot hand with multiple fingers [Cole et al., 1989,
Cole et al., 1992]. The problems of pushing, orienting, fixturing and assembling parts for
factory automation have also been well studied.
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The analysis of objects with multiple frictional contacts poses two interesting problems.

The first is the forward problem, namely predicting the motion of an object given the
applied force. Solving this problem is essential for simulation. There exist powerful ana-
lytical [Erdmann, 1994] and numerical techniques [Lotstedt, 1984, Trinkle et al., 1997] that
solve this problem.

The second is the inverse problem, namely predicting the applied force that produces
a desired object motion, or the set of applied forces that produce a desired contact mode.
Solving this problem is essential for planning and control. Analytical solutions for the planar
problem are presented in [Erdmann, 1994, Balkcom and Trinkle, 2002, Brost and Mason, 1989]
and sampling-based techniques are explored in [Trinkle and Zeng, 1995].

In the context of a robot manipulating an object, the above solutions make an important
assumption that the robot is capable of producing the forces and velocities that are required
for manipulation. There is an imposed decomposition of the problem into first finding the
force to move the object followed by commanding the robot to apply the requisite force.
Admittedly, this is a useful plan of attack if the required forces and velocities are within the
robot’s limits. However, there exist manipulation problems in which this is not the case.

In dynamic manipulation, the Coriolis and centrifugal forces generated during motion
are significant and cannot be neglected. Intuitively, these are motions where the object and
the robot move fast. Evidently, one of the main reasons for being dynamic is to accomplish
the task quickly, a requirement for many factory automation tasks, or running races. Often,
being dynamic pushes actuators closer to their limits.

Consider the problem of a waiter manipulating a wineglass. His goal is to move the
wineglass from start to goal as fast as possible. We shall consider two strategies for manip-
ulating the wineglass. Note that the third and possibly the fastest strategy would be the
waiter hurling the wineglass as hard as he can at the patron. We shall ignore that strategy
for the purpose of our discussion.

In the first strategy, the waiter has the wineglass grasped in his hand. Once grasped,
the wineglass is unaffected by external forces. Thus, the only constraints on the waiter’s
motion are how fast his limbs can move. This problem of generating time-optimal (fastest)
trajectories for robots subject to actuator torque and velocity limits was introduced by
Kahn and Roth [Kahn, 1969, Kahn and Roth, 1971]. There has been significant work on
this problem since [Hollerbach, 1984, Sahar and Hollerbach, 1985, Shin and McKay, 1985,
Bobrow et al., 1985] and the state of the art solutions are fast, optimal and analytical.

In the second strategy, the waiter has the wineglass resting on a tray. Depending on
the friction between the wineglass and the tray, if the waiter repeats the same motion of
his arms as in the first case, it is possible that the wineglass tips or slides off the tray or
loses contact. Thus, there are two sets of constraints on the waiter’s motions – constraints
due to how fast his limbs can move and constraints imposed by friction at the contact to
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maintain a contact mode. This problem of generating trajectories for a robot manipulating
an object subject to both actuator limits and constraints imposed by friction was explored
by [Lynch and Mason, 1999] in the study of a robot with a single revolute joint. This thesis
expands their result to a class of dynamic manipulation tasks.

This thesis explores the planning and control of dynamic manipulation subject to ac-
tuator constraints. We combine Coulomb friction and actuator constraints in a common
constraint space. Furthermore, we propose a new paradigm of task and shape decompo-
sition for the planning and control of constrained dynamical systems and demonstrate its
applicability to dynamic manipulation and nonholonomic control.

1.1 Contributions

In this section, we discuss the main themes of the thesis. In each item, we provide the
motivation for the theme, an outline of our solution, and a brief discussion of its limitations.

1. Actuator limits are important for dynamic manipulation. In many cases, they are the
bottleneck for performing dynamic tasks.

It is important to map Coulomb friction constraints into a space into which the
actuator constraints can be mapped as well. We use a series of transformations to
map contact velocity constraints and contact force constraints into a common contact
acceleration space. In this space, we describe a technique for computing analytical
solutions for the set of feasible robot joint accelerations that produce a desired contact
mode, for problems involving planar contact.

There exist solutions to the inverse problem for an object with multiple frictional
contacts that do not consider robot constraints. There also exist solutions to the
trajectory generation problem for a constrained robot arm which do not consider
its interaction with an object. We provide a unified constraint that combines both
actuator limits and Coulomb friction constraints.

The contact acceleration constraint is a complete description of the system only in
the absence of internal forces. This is because internal forces are, by definition, forces
that produce no acceleration and reside in the nullspace of our mapping from contact
forces to contact accelerations. Intuitively, these forces are generated due to stresses
and strains internal to the robot and object structure and cannot be measured by an
acceleration sensor. Hence controlling internal forces requires modeling or sensorial
information that is unavailable to us. However, if the system is augmented with a
force-torque sensor, or a model of the deformation of the system, the new information
can be added to the contact acceleration constraint, obtaining a full description of
the system.
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2. Planning and control of constrained dynamic systems in the full-dimensional space is
hard.

It is satisfying the constraints that makes the problem hard. There exist numerous
solutions for the planning and control of unconstrained dynamical systems.

Our key observation is that for many problems the constraints of the system reside in a
lower dimensional subspace of the system state space. We exploit that by decomposing
the system into two subsystems – the shape subsystem which is a projection of the
system dynamics onto the constraints, and task subsystem which is a projection of
the system dynamics that is orthogonal to the constraints. We write a controller
for the shape subsystem that works exclusively to satisfy the constraints. The task
subsystem is unconstrained and its planning and control is easy.

The task and shape decomposition paradigm relies on the fact that the constraints
do reside in a low dimensional space. For problems where the constraint space is a
high or full dimensional subspace of the system state space, our paradigm is of little
use. However, we show that there exists a class of manipulation systems — systems
with kinematic indeterminacy — for whom the contact acceleration constraint does
reside in a low dimensional space.

3. Use natural forces.

Our third contribution is more of an observation.

As mentioned earlier, actuator limits can be a bottleneck in performing dynamic
manipulation tasks. One strategy to reduce the burden on the actuators is to use the
load-bearing ability of contacts with the environment. Human manipulation strategies
exploit this ability — when we move large objects, we tend to pivot them about the
ground rather than lift them altogether. However, contacts with the environment are
hard to control because the robot does not have direct access to them. The robot
has to exert a force on the object which is then transmitted through the object to
the remote contacts. In Ch.3, we describe how we can use the contact acceleration
constraint to control the contact mode at the remote contacts.

Another strategy to reduce actuator load is to exploit the natural dynamics of objects
rather than fight them. Wineglasses tend to topple when pushed and coins tend to
precess when spun. We will show in Ch.6 how it is possible to use the toppling motion
of the wineglass to manipulate it. Using natural dynamics also provides us with a
richer set of actions that can be performed on the object — it turns a kinematically
indeterminate system into a dynamically controllable one.
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1.2 Three problems

In this section, we outline the three problems we will be studying in detail in this thesis.
The solutions to the problems capture the ideas of incorporating actuator constraints in
dynamic manipulation and the use of the task and shape decomposition paradigm.

The block standing problem

The motivation for the block standing problem arises from a mobile robot using its wheels
to slide a block along a step (Fig.1.1(i)). A kinematic skeleton of the problem is shown in
Fig.1.1(ii). The desired contact mode is a fixed contact at C and sliding contacts at A and
B. The goal is to stand the block up on the step (θ =

π

2
).

The block standing problem is interesting for two reasons. First, we show that the
problem does not have a quasi-static solution. This means that the robot has to use the
centrifugal and Coriolis forces generated by accelerating the block to solve the problem.
Second, the robot needs to use its contact at C to control the remote contacts A and B.

In Ch.3, we derive analytical dynamic solutions to the problem by solving the contact
acceleration constraint using the technique of time-scaling. One of the resulting trajectories
is shown in Fig.1.1(iii). Here, the robot pulls the block down a certain distance and then
pushes it forward to stand it up. We show how the trajectories are affected by changes in
the actuator limits, robot and object configuration, and the coefficients of friction.

The Mobipulator problem

The motivation for the Mobipulator problem arises from a mobile manipulator (the Mobip-
ulator, shown in Fig.1.2(i)) manipulating a sheet of paper using its wheels. The goal is to
move the paper from a start to a desired goal while maintaining two wheels on the paper
and the other two wheels on the desktop. For a given orientation of the robot and the
paper, the constraint restricts the possible placement of the robot, as shown by the shaded
polygon in Fig.1.2(ii).

The Mobipulator is a constrained kinematic nonholonomic system residing in a 6D
configuration space. There do not exist any analytical solutions for trajectory planning in
the full dimensional space.

In Ch.5, we use the task and shape decomposition paradigm to generate trajectories
for the Mobipulator problem. We reduce the problem to a nonholonomic planning problem
in a tractable lower dimensional shape space. A snapshot of a trajectory that produces
a rotation of the paper about its geometric center is shown in Fig.1.2(iii). The motion is
akin to that of a tractor pushing a trailer with a moveable hitch placed optimally at each
instant.
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Figure 1.1: (i): The block standing problem. (ii) The kinematic skeleton of the problem.
(iii) Snapshots of a feasible trajectory.
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Figure 1.2: (i): The Mobipulator problem. (ii) The constraint on the shape freedoms. (iii)
Snapshots of a feasible trajectory.
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The waiter’s problem

The motivation for the waiter’s problem arises from a problem described earlier in this
chapter, that of a waiter manipulating a wineglass (Fig.1.3(i)). A kinematic skeleton of the
planar problem is shown in Fig.1.3(ii) with the wineglass represented by a block and the
waiter’s hand represented by a robot arm with two prismatic joints. The goal is to tip the
block from θ = 0 to θ =

π

2
while maintaining a fixed contact between the robot and the

block.

Just like the block standing problem, there exist no quasi-static solutions for the waiter’s
problem. Furthermore, this problem addresses a shortcoming of the time-scaling technique
used to solve the block standing problem — there are very few paths that can be successfully
time-scaled.

In Ch.6, we use both the contact acceleration constraint and the task and shape de-
composition paradigm to compute the space of all feasible trajectories for the system. For
example, Fig.1.3(iii) shows a sampling of the space of all time-optimal trajectories for the
tipping of the block. In all of these trajectories, the angular motion of the block is exactly
the same.

1.3 Background

In this section, we provide background on the planning and control of manipulation. Each
chapter will also carry background material specific to the techniques used in that chapter.

The forward dynamics problem

Central to any model of contact manipulation is a model of friction. The friction model tells
us everything we need to know about the interactions at the contacts — the forces that can
be transmitted and their relationship to the motion at the contacts. The most commonly
used model of friction is the dry Coulomb friction model. The model was empirically derived
by Coulomb [Coulomb, 1781] and mirrors reality to a great extent.

The dry friction model, however, is non-Newtonian, i.e. a force exerted on a block
resting on a surface with dry Coulomb friction might not produce a unique acceleration.
This can lead to inconsistencies in the solutions to the forward dynamics problem. There
are situations where there exist no feasible solutions. There are also situations where
there exist multiple feasible solutions. Painlevé [Painlevé, 1895] was the first to notice
these inconsistencies and hence the situation is known as Painlevé’s paradox. An everyday
occurrence of this phenomenon is when a chalk is pushed over a blackboard, often resulting
in a dotted line. In this case, the dry friction model will show two consistent solutions —
separation and sliding.
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Figure 1.3: (i): The waiter’s problem. (ii) A kinematic skeleton of the problem. (iii) A
sampling of all feasible trajectories.
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Table 1.1: A Survey of Contact Manipulation
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[Whitney, 1982] Y Y Y N N Y N
[Kerr and Roth, 1986] Y N Y N N N Y

[Fearing, 1986] Y N Y N N N N
[Erdmann and Mason, 1988] Y Y Y N N Y Y

[Brock, 1988] Y Y Y N Y N N
[Cole et al., 1989] Y N Y Y Y N Y

[Brost and Mason, 1989] Y Y Y N N Y Y
[Trinkle and Paul, 1990] Y Y Y N N Y Y

[Trinkle and Hunter, 1991] Y Y N Y N Y Y
[Cole et al., 1992] Y Y Y Y N N Y

[Paljug et al., 1994] Y N Y Y N N N
[Rus, 1997] Y Y N Y N N Y

[Sarkar et al., 1997b] Y N N Y Y N Y
[Erdmann, 1998] Y Y Y N N Y Y

[Lynch, 1999] Y N Y Y N N N
[Cherif and Gupta, 1999] Y Y Y N Y N Y

[Harada et al., 2000] Y N N Y Y Y N
[Zheng et al., 2000] Y Y Y Y Y N N
[Liu and Li, 2001] Y N N Y Y N Y

[Maeda et al., 2001] Y N Y N N Y N
[Blind et al., 2001] Y Y N Y N N N

[Bicchi and Marigo, 2002] Y N N Y Y N N
[Harada and Kaneko, 2002] Y Y Y N Y Y Y

[Balkcom and Trinkle, 2002] Y Y Y N N Y Y
[Srinivasa et al., 2005a] Y Y Y Y N Y Y
[Srinivasa et al., 2005b] Y Y Y Y N N N
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The dry friction model was originally applicable to point contacts. Erdmann [Erdmann, 1994]
generalized the model to include bodies with extent and constructed friction cones in the
configuration space of rigid bodies. Using the construct, he was able to solve for the accelera-
tions of rigid bodies in frictional contact. Erdmann also discussed situations where the solu-
tions became inconsistent. [Lotstedt, 1981, Trinkle et al., 1997, Anitescu and Potra, 1997]
used a more algebraic approach and showed that the forward dynamics problem belonged
to a class of problems known as linear complementarity problems (LCP). They were then
able to solve the problem using results from the well researched field of LCPs. Lotstedt
[Lotstedt, 1981, Lotstedt, 1982, Lotstedt, 1984] applied the solutions to simulate multi-
body dynamics with frictional contacts. He was also able to provide some theoretical
results on the inconsistencies of the solutions based on existing results on LCPs.

Manipulation with hands

Dexterous manipulation refers to the manipulation of objects using the fingers of a robot
hand. Research in dexterous manipulation has focussed both on the development of tactile
sensors to better sense contact, slip and the forces exerted at the fingertips, and on the
development of control algorithms to manipulate objects. We refer the reader to Okamura
et al.[Okamura et al., 2002] for a review of the state of the art in tactile sensing. We shall
focus on the latter development.

Kerr and Roth [Kerr and Roth, 1986] discussed three problems related to dexterous
manipulation. The first problem was the selection of internal grasp forces — contact forces
that cause no motion of the object. These forces lie in the nullspace of the grasp matrix.
They framed the problem of finding the contact forces required to balance a given external
wrench as a linear program. The constraints of the problem were Coulumb friction at
each contact and actuator torque limits. The objective function they maximized was the
Euclidean distance of the internal force from the constraints. The second problem was the
kinematics of the manipulating hand for a given object motion. They derived the equations
of motion of the robot hand given the motion of the object, for the case of rolling contacts.
The third problem was the derivation of hand workspaces based on the observation that in
the case of fixed point contacts, the object and the hand could together be represented as
a closed chain manipulator.

Fearing [Fearing, 1986] explored the reorientation of grasped objects using a manipula-
tion strategy called a twirling rotation. The motion is akin to twirling a pencil with three
fingers, albeit quasi-static. He demonstrated the twirling of a baton using the three-fingered
Stanford/JPL hand. The focus was more on developing a robust force control strategy that
could be demonstrated on a robot than motion planning. Fearing studied the failure of the
strategy due to slip and the effect of rolling at the cylindrical fingertips.
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Brock [Brock, 1988] described the use of controlled slip — allowing fingers to slide on
the object without the requirement of a stable grasp — as a manipulation strategy. For
a particular contact mode, he used a quasi-static graphical analysis to compute the range
of finger torques that causes a desired contact to slip. He demonstrated how the analysis
could be used to plan the reorientation of a cylinder using controlled slip.

Cole, Hauser, and Sastry [Cole et al., 1989, Cole et al., 1992] considered the problem of
dynamic control of a multi-fingered hand manipulating a planar object, where some of the
fingers were designated to slide on the object’s surface while the others were designated to
roll. They suggested that these motions might be used by the hand to regrasp the object, if
needed. The authors provided a dynamic control law that achieved simultaneous tracking
of a pre-planned object trajectory together with the desired sliding motion at the fingertips.
The authors assumed that the location of the contact points, and the relative velocity at
the contact points were available for feedback.

Paljug et al.[Paljug et al., 1994] considered a cooperative manipulation task where two
3DOF robots controlled a smooth planar object. While the motion was dynamic, the
two contacts on the object were positioned to guarantee force closure at all times. The
authors proposed a nonlinear feedback scheme for motion control as well as an algorithm for
the placement and motion of the contacts which considered both limits on the magnitude
of contact forces (to prevent fragile objects from shattering) and robustness to external
disturbance wrenches.

Li, Canny and Sastry [Li et al., 1989] provided a differential geometric framework for
dexterous manipulation. They decomposed the problem into various manipulation modes
— coordinated manipulation, rolling motion, sliding motion, and finger relocation — and
described the force and motion constraints for each mode. This was Part I, with the promise
that Part II would solve the motion planning problem for dexterous manipulation. Sadly,
there was no Part II.

Trinkle and Hunter [Trinkle and Hunter, 1991] also provided a framework for dexterous
manipulation planning. They defined a contact formation (CF) as a qualitative description
of a grasp based on contacts between the vertices, edges and surfaces of the robot and the
object. To plan a motion from a start CF to a goal CF, they constructed CF-trees with the
start and goal CFs as the parent nodes, the child nodes being the CFs the parents could
transition to, and the arcs being joint angles and input torques that caused the transitions.
A plan was returned when the the start and goal CF-trees had a common node.

Li and Sastry [Li and Sastry, 1988] provided a grasp metric that was based on the task
that had to be accomplished. Based on the force and torque requirements of the task, they
constructed a task ellipsoid in the object’s wrench space. The shape of the ellipsoid was
chosen based on the expected load along the different axes of the object’s wrench space due
to external forces. The metric was the largest radius of the ellipsoid that could be embedded



1.3. BACKGROUND 13

in the range of the grasp map. This metric is somewhat equivalent to the smallest eigenvalue
of the grasp map with the eigenvalues weighted by the importance of their corresponding
eigenvectors to the task.

Bicchi [Bicchi, 1994] studied the problem of immobilizing an object which is in contact
both with the robot and the environment. By including the kinematics of the robot in the
grasp equations of the object, he was able to decompose the wrench space of the object
into three subspaces — a subspace where a force applied by the robot produced a wrench
on the object, a subspace where a force applied by the robot produced no wrench on the
object (called the space of active internal forces) and a subspace where a force applied by
the environment produced no wrench on the object (called the space of preload internal
forces). Using a metric based on the three subspaces, he was able to construct optimal
grasps for the object.

Rus [Rus, 1997] addressed the reorientation of 3D polyhedra with four frictionless point
fingertips. The manipulation strategy, called finger tracking, consisted of moving one fin-
gertip compliantly along the object while keeping the other fingers stationary. Rus showed
that, using this strategy, the dynamics of the object was reduced to an instantaneously
linear problem and constructed a planner and a controller to reorient 3D polyhedra. Gupta
[Gupta, 1995] used the linearity result to construct a planner for reorienting polyhedra by
searching a tree of landmarks placed randomly in the state space of the object.

Cherif and Gupta [Cherif and Gupta, 1999] studied the manipulation of a smooth 3D
object by a hand whose fingers were allowed to both roll and slide on the object, but not
make or break contact. They decomposed the motion planning problem into a discrete grid-
based global search in the object’s configuration space coupled with a local search for finger
motions that would cause the desired object motion from one grid point to another. The
local search was performed using a quasi-static analysis and by choosing feasible contact
modes at random. The authors used a pyramidal approximation for the contact friction
cone and discretized the number of sliding directions at each contact point.

Zheng et al.[Zheng et al., 2000] studied the manipulation of an object in 3D by a three-
fingered hand. They allowed one of the fingers to slide compliantly on the object while the
other two fingers maintained a fixed contact with the object. For a given system state and
a desired object motion, they derived a condition for the allowable sliding directions for the
sliding finger. Planning was done by sampling the space of allowable sliding directions and
choosing a feasible direction.

Manipulation without hands

In this section, we discuss background work on flavors of manipulation that do not involve
a robot hand interacting with an object. These include the use of fixtures, palms, pins
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and even other objects as manipulators. Many of these works are motivated by the idea of
minimalism, finding the simplest actuator that can perform the specific task, as opposed to
the idea of general purpose actuators, hands that could be used to to perform several tasks,
that motivated a lot of the research in dexterous manipulation.

The peg-in-hole problem —inserting a rectangular peg into a sightly larger hole —
was perhaps the first manipulation problem that generated a huge amount of interest and
publications. We refer the reader to Simunovic’s thesis [Simunovic, 1975] and Whitney’s
paper [Whitney, 1982] for a detailed review. Whitney and his colleagues at the Draper
Labs analyzed the effects of friction on manipulation and proposed a controller (a physical
support known as the Remote Center of Compliance) to make peg-in-hole insertion robust
to failures due to jamming and wedging.

Balkcom and Trinkle [Balkcom and Trinkle, 2002] analyzed the quasi-dynamic manip-
ulation of planar parts subject to contacts with the environment, in the context of part-
fixturing. Given a part and a set of frictional fixture locations, they planned for insertion
force required to ensure that the part fit securely in the fixtures. Furthermore, they solved
the problem of finding the set of fixture locations for a given line of action of the insertion
force.

Blind et al.[Blind et al., 2001] proposed a novel technique for manipulation using a grid
of retractable pins mounted on a vertical plate, much like a Pachinko machine. They
computed pin configurations such that any part that was dropped into the machine would
be trapped by the pins. To manipulate the part from one pin configuration to another,
they simply retracted the former and pushed out the latter set of pins. Their technique is
unique because it is insensitive to environmental dynamics. The exact motion of the part
during its dynamic phase is irrelevant, and it always ends up being captured by the pins.

In an earlier paper, Erdmann and Mason [Erdmann and Mason, 1988] explored the
similar idea of using environmental contacts to reduce uncertainty in the pose of the ma-
nipuland. They dynamically manipulated a polygonal part placed inside a tray by tilting
the tray. Their planner generated tilt sequences that resulted in a unique final part pose
independent of its starting pose. No matter what pose the part started in, at the end of a
tilt it ended up in one of a finite set of statically stable configurations. Each successive tilt
operation further reduced the pose uncertainty until, eventually, the set of possible poses
was reduced to a singleton set, signifying the success of the plan.

Bicchi and Marigo [Bicchi and Marigo, 2002] manipulated objects by rolling them be-
tween the jaws of a parallel jaw gripper. They ensured rolling contacts by coating the
gripper with a high friction material. They explored both the problem of shape recovery
from tactile information and the problem of planning jaw motions for the desired manipu-
lation of the object.

Harada et al.[Harada et al., 2000] analyzed the dynamic manipulation and grasping of
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multiple objects using a robot hand. They provided constraints on the geometry of the
objects and on the friction that would result in a unique contact mode, namely rolling at
each and every one of the remote contacts. Under the conditions of rolling, they developed
a control scheme that robustly manipulated the multiple objects.

Sarkar, Yun, and Kumar [Sarkar et al., 1997a] explored the problem where a robot had
to maintain rolling contact with an object, the motion of which was given to the robot.
They motivated the problem with the example of cooperative manipulation, a task where
two or more robots synergistically manipulated an object. They likened their problem to the
problem of a slave robot in the cooperative manipulation task, ordered to compliantly follow
the motion of the object. They designed a nonlinear feedback controller that successfully
maintained rolling contact.

Lynch and Mason [Lynch and Mason, 1999] used a robot arm with a single revolute
degree of freedom to demonstrated dynamic tasks such as snatching, rolling, throwing and
catching an object. This work was the inspiration for the waiter’s problem and will be
described in more detail in Ch.6.

Erdmann [Erdmann, 1998] explored the nonprehensile manipulation of planar convex
objects using two flat palms, each of which had three degrees of freedom. The aim was
to construct palm motions that manipulated the object from a starting (x, y, θ) pose to a
desired pose. Erdmann restricted the actions that could be performed by the palms to four
primitives — TILT, ROTATE (REGRIP)1, SLIDE and RELEASE — each corresponding to
a different contact mode. Based on a static analysis, Erdmann decomposed the configuration
space into regions of invariant contact mode, and searched for plans in this simplified space.

The idea of decomposing configuration space into regions of invariance was first pro-
posed by Schwartz and Sharir [Schwartz and Sharir, 1983a, Schwartz and Sharir, 1983b,
Schwartz and Sharir, 1983c, Schwartz and Sharir, 1984] to solve the, now famous, Piano
mover’s problem. The problem involves computing a continuous obstacle-avoiding motion
of the piano (3D polyhedra) in a cluttered room (3D obstacle field). To obtain a discrete
representation of the free configuration space of the object, they decomposed the space
into path-connected components — a collision-free path existed between two configurations
if and only if they were both in the same connected component. They then constructed
a connectivity graph whose nodes represented the components and whose edges connected
portions that were adjacent to each other in the free configuration space. By doing so, they
reduced the continuous motion planning problem into a discrete problem of searching for a
path in the connectivity graph.

To compute an algebraic representation of the path connected components, Schwarz and

1ROTATE and REGRIP share the same contact mode, namely rolling at each contact, but perform
fundamentally different actions. In ROTATE, one palm rotates about the other palm’s contact point, while
in REGRIP the palm rotates about its own contact point.
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Sharir [Schwartz and Sharir, 1983b] used a variant of Collins’ cylindrical algebraic decom-
position technique [Collins, 1975] — a recursive technique whose input is a set of collision
constraints (or critical events) which formed the boundaries of the components and whose
output is a decomposition of the free configuration space into components. It must be noted
that the cylindrical algebraic decomposition provides no guarantees that the generated de-
composition will possess the least number of components. A similar technique was used by
Erdmann [Erdmann, 1998] to compute regions of invariant contact mode.

Table 1.1 summarizes the background work detailed in the last two sections by classifying
contact manipulation based on seven attributes — the treatment of rolling and sliding
contacts, the use of the Coulomb friction contact model, a dynamic model of manipulation,
motion in 3D as opposed to planar motion, the presence of contact with the environment,
and the generality of the result. The last attribute distinguishes a result that can be applied
to a class of problems (for example, the results of Erdmann [Erdmann, 1998] can be applied
to the class of convex polygons) as opposed to a result for a specific instance of a problem
(for example, the results of Fearing [Fearing, 1986] are specific to a three-fingered hand
performing a twirling operation).

1.4 Roadmap

Ch.2 describes the technique for combining actuator constraints and Coulomb friction con-
straints into a common contact acceleration space. Ch.3 describes and solves the block-
standing problem. Ch.4 describes the task and shape decomposition paradigm for solving
constrained dynamical systems. Ch.5 and Ch.6 use the paradigm to solve the Mobipulator
problem and the waiter’s problem, respectively. Ch.7 discusses the contributions of the
thesis and future work.

1.5 Dependencies

The following information is useful for readers interested in reading individual chapters.

• Ch.1, Ch.2, and Ch.4 are self-contained.

• Ch.3 requires Ch.2.

• Ch.5 requires Ch.4.

• Ch.6 requires Ch.2 and Ch.4.
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1.6 Publication note

Most of Ch.2 and Ch.3 appeared in [Srinivasa et al., 2005a]. Parts of Ch.5 appeared in
[Srinivasa et al., 2002] and [Srinivasa et al., 2003]. Parts of Ch.4 and Ch.6 appeared in
[Srinivasa et al., 2005b]. The design and construction of the Mobipulator described in Ch.5
is joint work with Cristopher Baker and Greg Reshko. The configuration space planner
described in Ch.5 is joint work with Elisha Sacks. Research on walking in Ch.7 is joint
work with Jonathan Hurst. Research on motion retargeting in Ch.7 is joint work with
Nancy Pollard.





Chapter 2

Combining robot and object

constraints

In this chapter, we discuss the combination of the constraints on the manipulator and the
constraints imposed by the laws of Coulomb friction for the maintenance of a desired contact
mode. In §2.1 we introduce the nomenclature used in this thesis and provide a definition
of the problem. In subsequent sections, we combine the constraints using algebraic matrix
operations and provide a geometric intuition for the algebra for the case of a single point
contact.

2.1 Nomenclature

We denote the configuration of the object by its pose qo and the configuration of the robot
by its joint variables qr. We denote the configuration of the system by q = [qo, qr]T , the
velocity of the system by q̇ = [q̇o, q̇r]T and the state of the system by the pair [q, q̇]T .

Motion at the contacts between the object and the robot gives rise to constraints on the
relative velocity between the object and the robot. These can be written as:

GT
r q̇o = Jrq̇r (2.1)

where GT
r is the mapping from the velocity of the object q̇o to the velocity of the object at

the points of contact between the object and the robot. Likewise, Jr maps the velocity of
the joint variables of the robot to the velocity of the robot at the points of contact between
the robot and the object. In case of a rolling contact, the relative velocity at the contact
is zero while in the case of a sliding contact, the relative velocity at the contact normal to
the contacting bodies is zero.

Constraints on the motion at the contacts between the object and the environment can



20 CHAPTER 2. COMBINING ROBOT AND OBJECT CONSTRAINTS

be written as:
GT

e q̇o = 0 (2.2)

where GT
e is the mapping from the velocity of the object q̇o to the velocity of the object

at the points of contact between the object and the environment. Since the environment is
static, in the case of a rolling contact, the velocity of the object at the contact point is zero
while in the case of a sliding contact, the velocity of the object at the contact point which
is normal to the environment is zero.

We can combine the above two constraints as:

GT
c q̇o = Jcq̇r (2.3)

Constraints on the contact force fci at the ith contact are:

fci ∈ Fi

where Fi is either the contact friction cone in the case of a rolling contact or the edge of
the friction cone that opposes motion in the case of a sliding contact, i = [1, . . . , n] and n

is the number of contacts.

We can combine the force constraints at all contacts as:

fc ∈ F (2.4)

where fc = [fc1, . . . ,fcn]T and F = F1 ×F2 × · · · Fn.

The equations of motion of the object can be written as:

Mq̈o + C(qo, q̇o) = Gfc + no (2.5)

where M is the inertia matrix of the object, C(qo, q̇o) is a collection of the centrifugal and
Coriolis terms, G is the grasp map which maps the forces acting on the object at the contact
points to wrenches about the object’s center of gravity, and no is the wrench on the object
due to gravity.

Actuator constraints appear in the form of constraints on joint acceleration q̈r. These
constraints can be state dependent.

2.2 A simple example

We will now present a simple example to familiarize the reader with the various mappings
introduced in the previous section. Consider a planar rigid body which is in contact both
with a vertical wall and with a robot with a prismatic joint. As shown in Fig.2.1, the rod
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Figure 2.1: A simple example

is in contact with the wall at A and the robot at B. The center of mass of the rod is
located at its geometric center and is a distance l away from both A and B. We denote the
configuration of the rod by the location of its center of mass (x, y) and its orientation θ.

We desire a fixed contact at B and a sliding contact at A.

In this section, we will worry only about defining the maps and not about whether the
desired motion is possible or not. As an aside, if the system is initially at rest and the line
AB is enclosed by the friction cones at A and B, then the only way the desired motion can
be satisfied is if the rod free falls, i.e.if the arm moves downward with an acceleration of g

(this geometric condition for two point contact is called Nguyen’s condition [Nguyen, 1988]).

Since contact B is fixed, the velocity of the robot at B must equal the velocity of the
rod at B. This gives us:

Jr =

[
0
1

]
(2.6)

GT
r =

[
1 0 l sin(θ)
0 1 −l cos(θ)

]
(2.7)

Since contact A is sliding, the velocity of the rod at A normal to the surface must be
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zero to prevent separation or penetration. This gives us:

GT
e =

[
1 0 −l sin(θ)

]
(2.8)

The combined maps are given by:

GT
c =

1 0 l sin(θ)
0 1 −l cos(θ)
1 0 −l sin(θ)

 (2.9)

Jc =

0
1
0

 (2.10)

The grasp map is given by:

G =

 1 0 1 0
0 1 0 1

l sin(θ) −l cos(θ) −l sin(θ) l cos(θ)

 (2.11)

In the next section, we map the velocity and force constraints on the system into a
common contact acceleration space. In the subsequent sections, we will show how actuator
constraints can be incorporated in this space.

2.3 Combining constraints

Theorem 1. For a given configuration q = [qo, qr]T and velocity q̇ = [q̇o, q̇r]T , the allow-
able joint acceleration of the robot q̈r that satisfies both the velocity and the force constraints
is constrained to lie within the cone:

Jcq̈r + V(qo, qr, q̇o, q̇r,no) ∈ A (2.12)

V(qo, qr, q̇o, q̇r,no) = J̇cq̇r − ĠT
c q̇o − GT

c M−1(no −C(qo, q̇o))

and
A = GT

c M−1G(F)

is the contact acceleration cone.

Proof. The constraints on the system are:

GT
c q̇o − Jcq̇r = 0 (2.13)
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fc ∈ F (2.14)

Since the velocity constraint is valid over an interval of time, its derivative wrt. time is also
valid over the interval of time. We can, thus, differentiate Eqn.2.13 :

GT
c q̈o + ĠT

c q̇o − Jcq̈r − J̇cq̇r = 0 (2.15)

We can rewrite the dynamics of the object as:

q̈o = M−1Gfc + M−1(no −C(qo, q̇o)) (2.16)

Multiplying the equation by GT
c and substituting for GT

c q̈o from Eqn.2.15, we get:

GT
c q̈o = GT

c M−1Gfc + GT
c M−1(no −C(qo, q̇o))

Jcq̈r − GT
c M−1(no −C(qo, q̇o))− ĠT

c q̇o + J̇cq̇r = GT
c M−1Gfc

Jcq̈r + V(qo, qr.q̇o, q̇r,no) = GT
c M−1Gfc

Incorporating the force constraint from Eqn.2.14, we can write the above equation as:

Jcq̈r + V(qo, qr, q̇o, q̇r,no) ∈ GT
c M−1G(F) (2.17)

where V is a collection of terms comprising of the system velocity and the weight of the
object.

Eqn.2.12 represents a balance of accelerations in contact space. The LHS of Eqn.2.12
represents contact accelerations that can be produced by the robot. As per the laws of
Coulomb friction, the acceleration must lie within the cone of contact accelerations that
can be produced by forces belonging to the contact friction cone. A sketch of the various
mappings is shown in Fig.2.2. The RHS of Eqn.2.12 maps the contact friction cone into the
space of contact accelerations:

GT
c M−1 G (F)︸︷︷︸

Contact space friction cone︸ ︷︷ ︸
Object space friction cone︸ ︷︷ ︸

Object space acceleration cone︸ ︷︷ ︸
Contact space acceleration cone

(2.18)

We shall, henceforth, refer to this map as the contact map.
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Figure 2.2: A series of transformations map the contact force constraints and the contact
velocity constraints into the contact acceleration space.

It is important to observe that the contact map depends only on the configuration of the
object and not on its velocity. This is indeed desirable because we know that the contact
friction cone is unaffected by the velocity of the object and we would want the contact
acceleration cone to share the same property. With Eqn.2.12, we achieve a decoupling of
the dynamics of the object (given in the LHS) and the Coulomb friction constraints on
the object (given in the RHS). An advantage of this decoupling for planning is that we
can reuse the contact acceleration cone for different velocities of the object with the same
configuration, saving computation.

2.4 Internal forces

Eqn.2.12 is a necessary but not a sufficient condition for the desired contact mode to be
guaranteed if the system has internal forces — forces that produce no acceleration of the
system.

Internal forces can result if the object is in force closure. For example, in the system
shown in Fig.2.3, contact forces pointing inwards do not accelerate the object.

When we apply the contact acceleration constraint for the system initially at rest and



2.5. SINGLE POINT CONTACT 25

q1

q2 q3

q4

no

Figure 2.3: An example of the insufficiency of the contact acceleration constraints

moving to the right, we get:
q̈1 = q̈4 (2.19)

Eqn.2.19 prohibits the contacts from separating or penetrating into the object. However
Eqn.2.19 does not tell us how much we should squeeze the object in order to balance its
weight no. This is because the squeezing force does not change the acceleration of the robot
and hence does not appear in the contact acceleration constraint.

To obtain information about the internal forces, we need to augment the contact accel-
eration constraint with either a model of the stresses and strains of the system or a sensor
that can help us compute the internal forces. For example, if in the above example, the
robot arm was augmented with a force/torque sensor that measured the internal squeezing
force, we can guarantee that the object will not fall through by commanding the arms to
squeeze until an internal force threshold was reached.

2.5 Single point contact

In this section, we will analyze another example problem — a planar rigid body in single
point frictional contact. This particular problem has been analyzed both by Erdmann
[Erdmann, 1994] and by Lynch [Lynch, 1996, pp.89]. We will show how our theorem relates
to both works.

The contact map

The example problem is illustrated in Fig.2.4. We denote the pose of the object by the
location of its center of mass (xc, yc) in a world frame and its orientation θ. We denote the
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Figure 2.4: The mapping from contact forces to contact accelerations for a planar rigid
body with a single point contact. Solid arrows are used to denote forces and wrenches
while unfilled arrows are used to denote accelerations and twists.

mass of the object by m and its radius of gyration by ρ. We denote the distance from the
center of mass to the contact point P by d. We desire a fixed contact at P .

The relevant maps for this system are given by:

Gr =

 1 0
0 1

d sin(θ) −d cos(θ)

 (2.20)

Since there is no contact with the environment,

Ge = ∅ (2.21)
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giving us:
Gc = Gr (2.22)

Furthermore, the grasp map G is given by:

G = Gr (2.23)

Since the maps Gr, Gc and G are identical for this example, we shall henceforth denote
them all by G to reduce the subscript clutter.

The inertia matrix of the object is given by:

M = m

1 0 0
0 1 0
0 0 ρ2

 (2.24)

The inverse of the inertia matrix is given by:

M−1 =
1

mρ2

ρ2 0 0
0 ρ2 0
0 0 1

 (2.25)

The contact map is given by:

GTM−1G =
1

mρ2

[
ρ2 + y2 −xy

−xy ρ2 + x2

]
(2.26)

where

x = −d cos(θ)

y = −d sin(θ)

i.e.(x, y) are the coordinates of the vector from the center of mass to the point of contact.

The maps are illustrated in Fig.2.4. The contact space friction cone is shown in the
lower left. The grasp map G maps the friction cone to a cone in wrench space. Notice that
the wrench space cone spans a two dimensional subspace of the three dimensional wrench
space. The map M−1 transforms the wrench space cone to a cone in acceleration twist
space. Since the inertia matrix is full rank, it maps the two dimensional wrench cone to a
two dimensional cone in acceleration twist space. The map GT then projects the cone onto
the two dimensional contact acceleration space it resides in. This is shown as the topmost
plot in Fig.2.4. The original two dimensional friction cone is also shown in that plot. Notice
that while the contact friction cone is symmetric, the contact acceleration cone is not. This
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is evident from the off-diagonal terms in the contact map in Eqn.2.26.

Geometric interpretation

The geometric interpretation of the contact map stems from Lynch’s [Lynch, 1996] obser-
vation that the mapping between the applied wrench w on an object and the acceleration
twist a produced can be represented by an ellipsoidal surface whose dimensions depend on
the inertial properties of the rigid body. For the case of our planar rigid body, the ellipsoid
is given by:

F (w) =
1
2
wT M−1w (2.27)

It is easy to see that the acceleration twist produced is given by the gradient to the
ellipsoidal surface:

a = ∇(F ) = M−1w (2.28)

Now, suppose that the wrench is measured about a frame that is not the inertial frame,
but one that is aligned with the inertial frame but located at (x, y) away from the inertial
frame, then that wrench w′ is related to w by a shear matrix S given by:

S =

 1 0 0
0 1 0
−y x 1

 (2.29)

w = Sw′ (2.30)

Substituting for w, we get:

F ′(w′) =
1
2
w′T STM−1Sw′ (2.31)

Furthermore, if the wrenches in the new coordinate frame are of the form w′ = (f , 0),
i.e.if the wrenches in the new coordinate frame are pure forces that do not produce any
torques, then we can further simplify Eqn.2.31 as:

F ′(f) =
1
2
(f , 0)T STM−1S(f , 0) =

1
2
fT M′−1f (2.32)

Substituting for S in Eqn.2.32, we get:

M′−1 =
1

mρ2

[
ρ2 + y2 −xy

−xy ρ2 + x2

]
(2.33)
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Taking the gradient of the ellipsoid F ′(f), as before, we get:

a′ = M′−1f (2.34)

where a′ is a pure translational acceleration. This matches our intuition that a force passing
through a point cannot produce an angular acceleration about that point.

Comparing with Eqn.2.26, we see that the two maps are identical:

M′−1 = GTM−1G (2.35)

Hence, the contact map is the equivalent of an inertia matrix (or rather, its inverse) in
a reference frame that is located at the contact point — mapping contact forces to contact
accelerations.

Relationship to the configuration space friction cone

In [Erdmann, 1994], Erdmann described a geometric method for determining the possible
motions of a part with multiple frictional contacts subjected to an applied force and torque.
His motivation was the observation that for a point mass in frictional contact, the reaction
force of the ground can be computed by geometrically projecting the applied force onto the
friction cone. To be able to do the same for a rigid body in frictional contact, one needs to
have a representation of the friction cone in wrench space.

Erdmann first constructed a generalized velocity space and, its dual, a generalized force
space. The generalized velocity space was constructed such that the dot product between
any two elements of the space was equivalent to the normal dot product in R3. This is
achieved by scaling the angular velocity of the planar rigid body by its radius of gyration.
The geometric consequence of this space is that the inertia ellipsoid in wrench space is
mapped to a sphere in generalized force space. Since the gradient of a sphere at any point
is directed along the corresponding radius vector, the generalized acceleration is always
directed along the causal generalized force. Hence one can directly compare (take normal
dot products of) forces and accelerations without having to go through the inertia matrix.
In other words, directions in the the generalized force space and the generalized acceleration
space are identical, with the magnitudes scaled by the mass.

Erdmann showed that the generalized friction cone was a two dimensional planar subset
of the three dimensional generalized force space. Furthermore, he showed that the friction
cone was orthogonal to the vector tr which corresponded to a pure rotation about the
contact point, a motion that the contact forces cannot generate by themselves.

The contact map is a projection of the contact forces to the plane perpendicular to tr.
We will show this by first relating tr to G. All motions that can be generated by the contact
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forces lie in the range of GT. Hence any motion that cannot be generated by the contact
forces must lie in the nullspace of GT. Thus,

tr ∈ N (GT) (2.36)

We will now show that the contact map annihilates any twist that lies along tr. Now, tr

is an acceleration twist and hence has already passed through the M−1G projections of the
contact map (it lies in the rightmost space in Fig.2.2). We are left to show that GTtr = 0,
which is evident from Eqn.2.36.

Hence, the contact map is a projection of the contact forces onto the two dimensional
subspace in which the configuration space friction cone resides.

Adding actuator constraints

Our discussion until now has involved only the grasp map G and not the actuator’s dynamics
or constraints. Let the single point contact we have been analyzing be between the planar
rigid body and the end effector of a robot arm with two prismatic joints, as shown in Fig.2.5.
We denote the configuration of the arm by its joint variables (q1, q2). The end effector is
rigidly attached to the arm and is always horizontal.

Our constraint on the robot arm is that the magnitude of the acceleration of each joint
must be less than a maximum am.

The contact acceleration constraint on this system can be derived by using these addi-
tional maps:

J =

[
1 0
0 1

]
(2.37)

Jc = J (2.38)

where J is the Jacobian of the arm. Using these maps and the grasp map described earlier,
we can obtain the contact acceleration constraint as:(

q̈1

q̈2

)
+

(
x

y

)
θ̇2 +

(
0
g

)
∈ 1

mρ2

[
ρ2 + y2 −xy

−xy ρ2 + x2

]
F (2.39)

Notice that Eqn.2.39 relates the joint accelerations (q̈1, q̈2) and the constraint due to the
fixed contact. A graphical representation of the combination of the two sets of constraints
is shown in Fig.2.5. The limit on the magnitude of the allowable acceleration constrains
the feasible accelerations to a square of dimension 2am. The constraint due to Coulomb
friction, represented by the contact acceleration cone further restricts the set of feasible
accelerations to the shaded polygon shown in Fig.2.5.
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Figure 2.5: Combining actuator constraints and friction constraints for a single point contact

2.6 Summary

In this chapter, we described how we can combine constraints on the actuator and con-
straints due to Coulomb friction in a common space. Furthermore, we gave a geometric
description of the mapping and related it to the configuration space friction cone.

What we have is an instantaneous solution to the inverse problem — given a state of
the system, a desired contact mode, and actuator constraints, we can provide the set of
feasible joint accelerations. Using this set to plan trajectories for the system is still a hard
problem. We tackle that problem in the following chapters. We provide two techniques for
planning dynamic manipulation tasks. The first is the technique of time-scaling, one that
has been used to plan time-optimal trajectories for robot arms with actuator constraints.
In §3, we describe how we can use this technique to solve for trajectories for dynamic
manipulation with the contact acceleration constraint. The second is the technique of task
and shape decomposition. This is a paradigm for motion planning that we propose in §4
and demonstrate with both a dynamic manipulation task in §6 and a nonholonomically
constrained system in §5.





Chapter 3

The block standing problem

In this chapter, we explore the synthesis of controls for a robot dynamically manipulating
an object in the presence of multiple frictional contacts. Contacts occur both between the
object and the robot, and between the object and the environment. As detailed in §2, two
sets of constraints govern the evolution of the system — contact velocity constraints that
prevent separation and cause rolling, and contact force constraints that arise from Coulomb
friction. We combined the constraints in the space of contact accelerations, obtaining
bounds on the robot acceleration as a function of the system state.

We provide a solution to the motion planning problem by first computing a feasible path
for the system and then generating the controls and the system trajectory by time-scaling
the feasible path to satisfies the dynamic constraints.

We consider an example that highlights two characteristics of the problems we are
interested in solving — contact with the environment, and the use of dynamics to find a
solution where a quasi-static analysis fails.

Contacts with the environment occur frequently in manipulation. They occur in peg-
in-hole insertion when the peg contacts the hole, and in part fixturing where the goal is to
immobilize the part against the remote fixtures. Such contacts occur when we manipulate
objects too large and heavy to lift; when we push on them or topple them. Here, the
environment provides a helping hand, a remote contact that bears most of the heavy load
that we would not be able to bear by ourselves. Environmental contacts also occur in
mobile manipulation, where a robot uses its wheels to move the manipuland. Here, the
environment provides an opposing force, remote contacts that together with the wheel
contact help maintain control of the manipuland and prevent it from scooting away from
the robot. Hence these contacts are either inevitable, as in the case of assembly, or essential,
as in the case of large object manipulation or mobile manipulation.

While contacts with the environment can be beneficial, controlling the motion of the
object and the contact mode poses a challenging problem. The reason for this is that the
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Figure 3.1: The block standing problem — (i): A mobile manipulator uses its wheels to
push a block against a step. The goal is to go from a starting θ to θ = π

2 while maintaining
sliding contacts with the step and a fixed contact between the block and the wheel. (ii):
a PR arm models the kinematic skeleton of the mobile robot. The allowable forces at the
contact points, as per Coulomb friction, are shown.
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robot cannot directly control the forces and the motion at these contacts. It has to exert a
force on its contact with the object, which then gets transmitted through the object to the
remote contact.

Consider the problem shown in Fig.3.1(ii) where an arm with one prismatic and one
revolute joint (henceforth referred as a PR arm) manipulates a block resting on a step.
The arm contacts the block at C and the block contacts the environment at the apex(A)
and base(B) of the step. As shown in the figure, the orientation of the block is denoted by
θ. We control the motion of the robot via its joint acceleration. The goal is to synthesize
controls to stand the block up against the step (θ = π

2 ) while maintaining sliding contacts
at A and B and a fixed contact at C.

The motivation for the problem arises from the mobile manipulation problem shown in
Fig.3.1(i). Here, a mobile robot manipulates a block resting on a step, using its wheels to
push on the block. During manipulation, the wheels that are in contact with the block are
locked. This is to ensure that the robot does not climb up the block when the wheels on
the ground push forward. This is the motivation for the fixed contact at C.

If the object starts from rest in the configuration shown in Fig.3.1, any force exerted
by the robot at C causes one of three object motions. Depending on the direction of the
force, the object either loses contact with B and starts tipping about A, remains immobile,
or starts sliding backward. Quasi-statically there is no control that increases θ.

Fig.3.2 presents a graphical proof of the claim using the technique of moment labeling
introduced by Mason [Mason, 1991]. This technique can be used to graphically compute
the resultant of a set of forces. Forces acting on the block comprise of the force exerted by
the robot at C, the contact forces at A and B and gravity. According to Newton’s laws, the
net force acting on the block must equal its inertia times its acceleration, also referred to as
the dynamic load. Let us assume that the block is sliding to the right. Then, the contact
forces at A and B lie on the left edge of the friction cone. Mason provided technique for
computing the direction of the dynamic load on the block. The force exerted by the robot
at A must then equal the difference of the dynamic load and the sum of the frictional forces
and gravity. The moment labels of this difference are denoted by the two shaded regions
marked “+” and “-” in Fig.3.2. For the desired motion to be produced, there must exist at
least one line of action of the force at C that does not intersect either region. This is not
possible since the point C lies within the region marked “+”. Hence there is no force that
can be exerted at C that slides the block forward.

However, we can use the dynamics of the object to accomplish the task. Intuitively,
this involves sliding the block backward a distance that is sufficient to accelerate the block
forward in such a way that the centripetal force generated by the motion prevents the block
from tipping. Snapshots of the resulting dynamic trajectory are shown in Fig.3.7. We
explore this example in detail in §3.3.
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Figure 3.2: Moment labels for right sliding showing that it is not possible to apply a force
at C that causes the block to slide up the step
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We provide a clear definition of the block standing problem in §3.1. In §3.2, we use
the technique of time-scaling to simplify the problem. We project the constraints on to a
lower dimensional phase space and solve for a feasible trajectory in this space. We use the
phase space trajectory to synthesize the controls and the dynamic trajectory of the system
(shown in Fig.3.7). We describe two strategies for solving the problem in §3.3 and discuss
the limitations of our technique in §3.4.

3.1 Problem statement

We denote the configuration of the block as qo = (x, y, θ)T , where (x, y) is the location of
the center of mass of the block and θ is its orientation. We denote the configuration of the
robot by its joint variables qr = (q1, q2)T .

The Jacobian of the PR arm is given by:

J =

[
1 −lr sin(q2)
0 lr cos(q2)

]

where lr is th length of the second link.

Vectors from the center of mass to each contact point are:

rA = w

(
cos(θ − π

2 )
sin(θ − π

2 )

)
+ (l − h

sin(θ)
)

(
− cos(θ)
− sin(θ)

)

rB = w

(
cos(θ − π

2 )
sin(θ − π

2 )

)
+ l

(
− cos(θ)
− sin(θ)

)

rC = w

(
cos(θ + π

2 )
sin(θ + π

2 )

)
+ (d− l)

(
cos(θ)
sin(θ)

)

where w is the half-width of the block, l is the half-length of the block, h is the height of C

measured along the block, and d is the height of the step.

A fixed contact at C enforces the constraint that the velocity of the robot at C must
equal the velocity of the block at C. This can be written as:

GT
r q̇o = Jq̇r (3.1)

GT
r =

[
1 0 −rCy

0 1 rCx

]
A sliding contact at A and B enforces the constraint that the velocity of the block

normal to the step at A and B must be zero, to prevent separation or penetration at the
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contacts. This can be written as:
GT

e q̇o = 0 (3.2)

GT
e =

[
nA rA × nA

nB rB × nB

]
The contact normals at A and B, nA and nB, respectively, are given by:

nA =

(
cos(θ + π

2 )
sin(θ + π

2 )

)

nB =

(
0
1

)

Combining both the constraints, we get:

GT
c q̇o = Jcq̇r (3.3)

Jc =

[
02

J

]

GT
c =

[
GT

e

GT
r

]

If the block is sliding to the right at contacts A and B, the contact force is constrained
to lie on the left edge of the contact friction cones at A and B. The contact at C is fixed,
so the contact force can range anywhere inside the contact friction cone at C. The contact
force constraints can be written as:

fc ∈ F = FA ×FB ×FC (3.4)

FA =

[
− sin(θ + αb)
cos(θ + αb)

]
λA

FB =

[
− sin(αb)
cos(αb)

]
λB

FC =

[
sin(θ − αr) sin(θ + αr)
− cos(θ − αr) − cos(θ + αr)

]
λC

for λA,λB,λC � 0. The angle of repose between the block and the step is given by αb

while the angle of repose between the robot and the block is given by αr. Note that the
angle of repose α is related to the coefficient of friction µ by α = arctan(µ).
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FA and FB are the left edges of the friction cones at A and B respectively and FC is
the friction cone at C.

The problem can be stated as:

Given a start orientation of the block θs and a goal orientation of the block
θs =

π

2
, find the robot joint acceleration q̈r(t) that will move the system from

the start to the goal without violating the contact velocity constraint (Eqn.3.3)
or the contact force constraint (Eqn.3.4).

3.2 Control synthesis

In this section, we describe a general technique for solving the control synthesis problem.
We define the configuration of the system by q = (qo, qr)T and the velocity of the system by
q̇=(q̇o, q̇r)T . We define the state of the system by (q, q̇)

T . In general, for the manipulation
problem, we desire a trajectory from a start state (qs, q̇s)T to a goal state (qg, q̇g)T which
satisfies the contact acceleration constraint at each point.

The contact acceleration constraint is a constraint on the dynamics of the system, hence
trajectory generation must occur in the state space of the system. Computing analytical
solutions in high dimensional state spaces is usually hard. We use the technique of time-
scaling to reduce the dimensionality of the space in which we need to plan.

Time-scaling

Our motivation is to search for controls in a space that has a lower dimension than the
system state space (whose dimension we denote by ns). We simplify the problem into two
subproblems. The first problem is finding a feasible path q(s), where s is a parametrization
of the path, from start to goal. This involves searching the configuration space of the system
which has a dimension of ns

2 . Once a feasible path is found, the second problem is finding a
feasible trajectory along the path. This involves searching the two dimensional phase space
[s, ṡ] for trajectories that do not violate the contact acceleration constraints. The choice of
ṡ and s̈ for a path is called the time-scaling of the path. The time-scaling idea is illustrated
in Fig.3.3.

Definition 1. A feasible path is one that does not violate the contact kinematic constraints
for any time-scaling.

Theorem 2. Every feasible path q(s) = [qo(s), qr(s)]T satisfies the constraint:

GT
c q′

o(s) = Jcq
′
r(s) (3.5)
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Figure 3.3: A sketch of the time-scaling concept. Trajectory generation is divided into path
planning in configuration space followed by time-scaling the path to satisfy the dynamic
constraints

Proof. The contact kinematic constraints are:

GT
c q̇o − Jq̇r = 0

Motion of the object and robot along a path is given by:

q̇o = q′
o(s)ṡ (3.6)

q̇r = q′
r(s)ṡ (3.7)
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Since a feasible path satisfies the contact kinematic constraints,

GT
c q′

o(s)ṡ− Jcq
′
r(s)ṡ = 0(

GT
c q′

o(s)− Jcq
′
r(s)

)
ṡ = 0

For the above equation to be true for all time-scalings ṡ,

GT
c q′

o(s)− Jcq
′
r(s) = 0

Once a feasible path is generated, we can can apply the contact acceleration constraint
to obtain constraints on the phase space trajectories. Recall from §2 that the contact
acceleration constraint is given by:

Jcq̈r + V(q̇o, q̇r,no) ∈ A (3.8)

Using Eqn.3.6 and Eqn.3.7 in Eqn.3.8 we obtain phase space constraints of the form:

v1(s)s̈ + v2(s)ṡ2 + v3(s) ∈ A(s) (3.9)

Here we have collected the terms that depend on s̈,ṡ and s as the vectors v1, v2 and v3.

Trajectory generation

In planar contact problems we leverage the linearity of the contact friction cone to obtain a
computationally efficient representation of Eqn.3.9. Since the mapping from contact force
space to contact acceleration space is linear, a linear F maps to a linear A.

There are two representations of linear cones — the span representation and the face
normal representation. In the span representation, the cone is described as the positive
linear span of a set of vectors. This can be written as:

A = {g : g = GAz,z � 0}

where the matrix GA is a collection of the vectors that make up the positive linear span.

In the face normal representation, the cone is described as the intersection of a set of
half-spaces. This can be written as:

A = {g : FAg � 0}

where the matrix FA is a collection of the normals to the half-spaces.
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Using the face normal representation in Eqn.3.9, we get:

FA

(
v1(s)s̈ + v2(s)ṡ2 + v3(s)

)
� 0 (3.10)

At each point [s, ṡ] in phase space, Eqn.3.10 gives us a set of linear constraints on s̈. We
can solve the constraints to obtain bounds on the feasible acceleration s̈ ∈ [s̈min, s̈max].

The acceleration bounds can be visualized as cones in the tangent space. At each point
in phase space, the tangent to a feasible phase space path must lie within the cone. When
the constraints are inconsistent, the cone disappears and no feasible path can pass through
such a point. This corresponds to a physically unrealizable motion of the system for the
given actuator limits and contact mode.

There is substantial literature on computing analytical solutions for trajectory genera-
tion in two dimensions [Bobrow et al., 1985, Shin and McKay, 1985, Slotine and Yang, 1989,
Wen and Desrochers, 1986, Butler and Tomizuka, 1992]. For example, as a bang-bang so-
lution, we can pick a phase space acceleration s̈1 and compute the forward trajectory from
the start. We can pick another phase space trajectory s̈2 and compute the backward tra-
jectory from the goal. At the point where the two trajectories intersect, we can switch from
s̈1 to s̈2.

3.3 Trajectories for the block standing problem

In this section, we describe the application of the time-scaling concept to the block standing
problem. We will see that there are two strategies for solving the problem and the location
of the contact C causes a switch from one strategy to the other. We will discuss the effects
of changing the coefficients of friction on the solutions to the system. We will show that
it is harder to solve the problem as the coefficient of friction between the block and the
ground is increased.

Time-scaling

With the imposed contact velocity constraints, the system composed of the block and the
robot has one degree of freedom. The unconstrained block has three degrees of freedom
and we are applying two constraints on its motion, one each to maintain contact at A and
B, thereby restricting its motion to one degree of freedom. This is illustrated in Fig.3.4.
The figure shows the configuration space obstacle (the step) for the block. Each face of the
configuration space obstacle corresponds to the contact between an edge of the block and an
edge of the step. Maintaining contact with a face imposes one constraint on the motion of
the block. The feasible path for the block standing problem corresponds to the intersection
of two such faces, the base and the apex of the step, and is shown by the path AB −AB′.
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Figure 3.4: A portion of the configuration space of the block from θ ∈ [0, π
2 ].

The obstacle was constructed using the algorithm proposed in Brost’s thesis [Brost, 1991].
The unconstrained PR arm has two degrees of freedom. The contact at C imposes one
constraint on the motion of the arm, giving it one constrained degree of freedom.

We compute a feasible path q parametrized by the orientation of the block θ:

q(θ) =

(
qo(θ)
qr(θ)

)

Using Eqn.3.10, we compute the constraints on the trajectories in the phase space [θ, θ̇] of
the form:

FA(θ)
(
v1(θ)θ̈ + v2(θ)θ̇2 + v3(θ)

)
� 0

Once a parametrized feasible path is chosen, we can transform the actuator constraints
into constraints on the acceleration of the block in phase space. The acceleration of the
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robot is related to the acceleration of the block as follows:

q̈r = q̇r(θ)θ̇2 + qr(θ)θ̈ (3.11)

At each [θ, θ̇], this gives us a linear map between q̈r and θ̈. We use this map to convert
limits on the actuator joint acceleration into limits on θ̈.

Results
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Figure 3.5: Phase plot and time-scaling trajectory for h = 0.3l

The phase plots and phase space trajectories for two instantiations of the problem are
shown in Fig.3.5 and Fig.3.6. The arrows represent tangents. Orientations of the block
that correspond to values in the horizontal axis are shown.

In Fig.3.5 contact C is at h = 0.3l and the starting orientation of the block θs = 0.7. In
Fig.3.6 contact C is at h = l and the starting orientation of the block is θs = π

3 = 1.05.

In Fig.3.5, the arm is able to push the block forward and make it stand. The arm
accelerates the block until the switching point is reached after which the arm decelerates
the block to rest. A different strategy is needed in Fig.3.6. Here the arm moves the block
backward for a duration of time and then pushes the block forward and stands it up. The
different strategies are a result of the phase space acceleration constraints at the start of
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w=0.25 l = 1.00 h = 1.00 s = 1.00 lr = 2.00 m = 1.00 I = 1.00 alpha = 1.05 g = 9.81
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Figure 3.6: Phase plot and time-scaling trajectory for h = 1.0l

Figure 3.7: A solution trajectory for the block standing problem. The robot pulls the block
back and shoots it forward to stand it up.
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motion. For Fig.3.5, the phase space acceleration θ̈ at the start of motion is constrained
to lie in the range [−20, 20]. As this range includes a positive acceleration, the arm can
push the block forward from rest. For Fig.3.6, the phase space acceleration θ̈ at the start of
motion is constrained to lie in the range [−20,−10.83]. Hence the only motion at the start
that does not violate any of the contact constraints is one that moves the block backward.
The block moves backward until the constraints allow a positive acceleration. The arm
then decelerates the backward motion to rest, accelerates the block forward and stands it
up. Snapshots of the trajectory are shown in Fig.3.7.

There is a critical start angle of the block θcrit at which the switch from the strategy in
Fig.3.5 to Fig.3.6 occurs. The critical event that causes the switch is when the left edge of
the contact friction cone at C passes through the contact A. Start angles up to θcrit will
follow the strategy in Fig.3.5 and start angles in [θcrit,

π
2 ] will follow the strategy in Fig.3.6.

The solid vertical lines in Fig.3.5 and Fig.3.6 show the critical angles for the two prob-
lems. As we lower the contact C along the block, θcrit decreases. This matches our intuition,
as the higher C is along the block, the greater is the risk of breaking contact at B and tipping
the block if the arm pushes forward.

Parameter variation

In this section, we study the variation of the coefficients of friction between the block and
the step, and the block and the robot on the allowable time-scalings of the feasible path for
the block standing problem.

We will first show the effect of varying the coefficient of friction between the block and
the step on the feasible phase volume. Note that the coefficient of friction is the same at
both contacts A and B. The figures Fig.3.8, Fig.3.9, Fig.3.10 and Fig.3.11 show the phase
volume for αb = 0.48, 0.70, 0.79 and 0.88, respectively. The angle of repose between the
robot and the block is held constant at π

3 . We see that as the αb increases, the allowable
phase volume reduces. At Fig.3.9, the maximal and minimal surfaces intersect, forming an
infeasible island (the term island for such a structure was coined by [Shin and McKay, 1985]
who observed the same phenomenon for robot arm trajectories). As αb increases to 0.88, the
island has grown enough to completely cut off one section of the state space from another.
At this coefficient of friction, no feasible trajectories are possible for a starting θ of 0.8 or
lesser.

The intuition behind this observation is that it gets harder to slide the block on the step
as the step gets stickier. With a greater coefficient of friction, there is a greater tendency
for the block to jam against the step rather than slide on it.

The figures Fig.3.12 and Fig.3.13 show the effect of varying the coefficient of friction
between the robot and the block on the feasible phase volume. For Fig.3.12, αr = 0.52 and
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for Fig.3.13, αr = 1.01. The angle of repose between the block and the step is held constant
at π

6 . We observe the appearance of the island in Fig.3.12. We also notice that the phase
volume increases as the coefficient of friction between the robot and the block increases.

The intuition behind this observation is that as the angle of repose between the robot
and the block increases, the robot has a greater angular range of forces to apply on the
block and can thus produce a greater range of accelerations of the block.
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Figure 3.8: Phase volume for αb = 0.48 and αr = π
3

3.4 Summary

Issues with time-scaling

By separating path generation and trajectory generation, we have simplified a planning
problem in the state space of the system into a planning problem in the 2 dimensional
phase space of time-scalings. However, there can exist problems where finding paths that
can be successfully time-scaled is very hard. In such problems, we might be stuck in the
cycle of selecting a path, testing for a feasible time-scaling, and returning a failure, for a
significant amount of time.

For the block standing problem with the desired contact mode, it turned out that the
system had only one path that it could follow. Hence the planning problem of selecting a



48 CHAPTER 3. THE BLOCK STANDING PROBLEM

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-3

-2

-1

0

1

2

3

-5

-4

-3

-2

-1

0

1

2

3

4

5

θ (rad)

θ (rad/s)

θ (rad/s^2)
..

.

alphab = 0.70 alphar = pi/3

Figure 3.9: Phase volume for αb = 0.70 and αr = π
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Figure 3.10: Phase volume for αb = 0.79 and αr = π
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Figure 3.11: Phase volume for αb = 0.88 and αr = π
3

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-3

-2

-1

0

1

2

3

-5

-3

-1

1

3

5

alphar = 0.52 alphab = pi/6

θ (rad)

θ (rad/s)

θ (rad/s^2)
..

.

Figure 3.12: Phase volume for αr = 0.52 and αb = π
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Figure 3.13: Phase volume for αr = 1.01 and αb = π
6

path was trivial. It is important to note that this is rarely the case. For example, consider
the same block standing problem with a different desired contact behavior for the contact
C between the block and the robot. Let the desired mode there be sliding, i.e., we desire
sliding at all the contacts A, B and C. With this contact mode, the system has two degrees
of freedom — the angle θ that the block makes with the horizontal and the location h

of the contact point A along the block. A path parametrized by θ must now also specify
the change of h as a function of θ, a problem which is potentially as hard as solving the
trajectory generation problem.

There are two potential solutions to this problem.

The first solution is a test which can tell us if a path can be successfully time-scaled
without having to compute the phase space constraints. The contact acceleration constraint
possesses local information on the tangent and the curvature of allowable paths. A future
direction of research is the characterization of paths for manipulation problems that can be
successfully time-scaled using this local information.

The second solution is to use our knowledge of the system dynamics to reduce the
problem into a form where a large number of paths can be successfully time-scaled. In §6,
we will describe a problem where only a small sliver of paths in the full configuration space
can be successfully time-scaled and discuss a technique for projecting the dynamics down
to a two-dimensional reduced space where the problem can be solved.



3.4. SUMMARY 51

Planar vs. 3D

The contact friction cone in 3D is nonlinear. Our result for combining the constraints is
general; it is valid both for planar and 3D contact problems. However, our implementation
uses the linearity of the planar contact acceleration cone to efficiently compute acceleration
bounds. For 3D problems, Eqn.3.9 gives us a set of nonlinear constraints on the allowable s̈

at each [s, ṡ]. Using the time-scaling technique, given a path, one can solve for the bounds
by performing a 1D search in s̈.

Multiple solutions

A drawback of the Coulomb friction model is the possibility of the existence of multiple
motions for a given control. Hence, to achieve a particular contact mode with certainty, one
must ensure that the control is inconsistent with any other contact mode. Choosing phase
space trajectories that satisfy this requirement entails searching over all feasible contact
modes, which can be expensive. Given a feasible path, finding phase space trajectories
where a particular contact mode is guaranteed without having to explicitly search over all
contact modes is an interesting open problem.





Chapter 4

Task and shape decomposition

In this chapter, we discuss the task and shape decomposition paradigm for solving con-
strained dynamical systems. The motivation for the paradigm is the importance of satisfy-
ing constraints — the breaking of constraints either results in the system failing or in the
system transitioning to a dynamic regime that is undesirable or unknown.

This chapter is arranged as follows. In §4.1, we introduce the paradigm of task and
shape decomposition. In §4.2, we apply the paradigm for the specific case of manipulation
systems and derive a condition for the applicability of the decomposition. In §4.3, we discuss
the limitations of our technique and briefly describe the two examples that we will explore
in detail in §5 and §6.

4.1 The paradigm

The systems that we are interested in are of the form:

ẋ = f(x,u, t) (4.1)

where x ∈ Rn is the state variable, u ∈ Rm is the control variable, and f describes the
evolution of the system.

The system can be subject to constraints both on the state and on the controls of the
form:

g(x, t) � 0 (4.2)

h(u,x, t) � 0 (4.3)

We wish to generate a set of controls u(t) that move the system Eqn.4.1 from a start
state to a goal state without violating the constraints Eqn.4.2 and Eqn.4.3.

Our paradigm is has two motivations.
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Shape Freedoms

Task Freedoms

Figure 4.1: The task and shape decomposition paradigm

The first motivation is that computing trajectories for constrained dynamical systems
in high dimensional state spaces is hard. There exist analytical time-optimal solutions for
low dimensional spaces [Bobrow et al., 1985, Shin and McKay, 1985]. There also exist nu-
merical techniques like dynamic programming [Bellman, 1957] which can be used, but they
suffer from the curse of dimensionality as well. Hence, planning in a reduced dimensional
space is important both for the analytical and numerical solution techniques. Of course,
one can argue the use of a randomized technique like a rapidly-expanding random tree
(RRT) [LaValle and Kuffner, 2001] for trajectory generation in such a high dimensional
space. However, these techniques produce trajectories and not controllers for the system.
This distinction leads us to the second motivation for our paradigm.

The second motivation is that ensuring that the constraints of the system Eqn.4.2 and
Eqn.4.3 are satisfied is of primary importance. We need to ensure that the constraints are
not broken even in the presence of control noise and modeling errors. As mentioned earlier,
if the constraints are broken, the system is, in may case, irrecoverable. Hence, there is the
need to write a robust feedback controller to ensure that the constraints are guaranteed to
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be satisfied.

The key observation in the task and shape decomposition paradigm is that, for many
problems, the constraints Eqn.4.2 and Eqn.4.3 reside in a space that has a lower dimension
than the system state space. We exploit this by projecting the system equation Eqn.4.1 onto
and orthogonal to the system constraints. We call the subspace in which the constraints
reside the space of shape freedoms of the system and the subspace of the unconstrained
variables the space of the task freedoms of the system.

The idea of decomposing a system into subsystems was studied in robotics in the control
of robot arms by Hanafusa, Yoshikawa and Nakamura [Hanafusa et al., 1981, Nakamura, 1991].
In their formulation, they defined the kinematic output of a manipulator as the manipula-
tion variables. These variables were task dependent and might be, for example, the pose
of the end effector, the manipulability of the arm, or any other function of the joint an-
gles. If there were more joints than manipulation variables, the arm was termed redundant.
Baillieul [Baillieul, 1985] used the extended Jacobian technique to use the redundancy to
satisfy other task requirements, like obstacle avoidance. In their task-priority formulation,
Hanafusa et al. studied the satisfaction of two tasks, a primary and a secondary task, each
with its own set of manipulation variables. Their idea was to exactly satisfy the first task’s
requirements and use the redundant freedoms to get as close to satisfying the second task
as possible, without affecting the first task. The first task, in effect, had a higher priority
than the second task.

We can describe the evolution of the shape freedoms as:

ẋs = fs(xs,xt,us, t) (4.4)

gs(xs, t) � 0 (4.5)

hs(us,xs, t) � 0 (4.6)

We can describe the evolution of the task freedoms as:

ẋt = ft(xt,ut, t) (4.7)

Now that we have isolated the constraints and the evolution of the constraints (which
is given by the evolution of the shape freedoms Eqn.4.4), we can write a controller in this
lower dimensional subspace exclusively to satisfy the constraints. This addresses both our
motivations — planning is done in a low dimensional space and a controller is written to
ensure robust constraint satisfaction. Since the task freedoms are unconstrained, computing
their trajectories is easy. In our examples, we give the user control of the task freedoms,
with the guarantee that no matter what he does, the constraints will be satisfied. A sketch
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of the task and shape decomposition paradigm is shown in Eqn.4.1. The arrows denote
constraints in the shape space and the solid lines indicate feasible system trajectories.

It is important to note that it is not always possible to completely decouple the two
subsystems. This is manifested by the appearance of the task freedom xt in the system
equation Eqn.4.4 of the shape freedoms. In essence, the task freedoms appear as drift terms
in the shape subsystem. In the case of an adversarial user, this drift can push the shape
subsystem into a situation where the constraint will be broken, despite the best efforts
of the controller. In §5, we will describe a solution to this problem using the technique
of bilateral time-scaling. In §6, we will discuss a problem where the two subsystems can
indeed be decoupled. In this case, planning and control are much easier, and an adversarial
user can do us no harm (at least with regard to constraint satisfaction).

Another important point is that while a user can control the task freedoms, there is no
guarantee that these are the freedoms that the user desires to control i.e.the user cannot
select a set of state variables and call them his task freedoms and hope to control them in
an unconstrained fashion. The decomposition is driven by the shape freedoms.

4.2 Manipulation systems

(a) (b)

Figure 4.2: Kinematic indeterminacy in manipulation systems due to (a) Underactuation:
the rotational motion of the block about the point of contact is kinematically indeterminate
(b) Sliding contacts: although the robot is fully actuated, the rotational motion of the ellipse
about the instantaneous velocity center is kinematically indeterminate

The key observation in the task and shape decomposition paradigm is that constraints of
many systems reside in a space that has a lower dimension than the system state space. In
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this section, we will describe a condition for manipulation systems that will ensure that the
constraint of the system, the contact acceleration constraint, resides in a low dimensional
space.

Recall that the contact acceleration constraint can be written as:

Jcq̈r + V(q̇o, q̇r,no) ∈ A (4.8)

where
A = GT

c M−1G(F) (4.9)

is the contact acceleration cone.
Also recall that we showed that the contact acceleration cone resides in a subspace of

the acceleration twist space that is orthogonal to the nullspace of GT
c (denoted by N (GT

c )).
Hence any motion of the system along N (GT

c ) is a motion that is orthogonal to the contact
acceleration constraint Eqn.4.9.

The physical interpretation of this result for manipulation systems requires one further
definition. We denote a manipulation system as kinematically indeterminate if, for a given
contact mode, the motion of the object cannot completely be described by the motion of the
robot. If the manipulation system is kinematically indeterminate, then N (GT

c ) exists, and
the contact acceleration constraint resides in a subspace that is orthogonal to the nullspace.

There are two cases where kinematic indeterminacy can occur in manipulation systems.
The first case is in the case of underactuated manipulation where there are fewer controls
than degrees of freedom. This is illustrated in Fig.4.2(a). Here, the block with three degrees
of freedom is manipulated by a robot with only two degrees of freedom. N (GT

c ) corresponds
to a rotational motion of the block about the contact point. The second case can occur
in the presence of sliding contacts. In Fig.4.2(b), the ellipse with three degrees of freedom
is manipulated by two arms, each with two degrees of freedom. Both contacts are sliding.
Here, although the arms are fully actuated, they cannot control the tangential velocity of
the object at the contact point, due to the sliding constraint. As a result, the rotation
of the ellipse about the instantaneous velocity center is kinematically indeterminate. The
instantaneous velocity center is the point of intersection of the contact normals and, as the
name suggests, the instantaneous point of zero velocity of the object and hence, the point
about which the ellipse instantaneously rotates.

It is important to note that kinematic indeterminacy, although negative sounding, is
not necessarily a bad thing. It can be shown that while the system shown in Fig.4.2(a)
is kinematically indeterminate, it is dynamically controllable, i.e.the rotational motion of
the block can be controlled by the motion of the robot arm if the arm moves dynami-
cally. This means that three degrees of freedom of the block can be controlled by just
two actuators, which saves us an actuator. This example of a kinematically indeterminate
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but dynamically controllable system belongs to the class of nonprehensile manipulation
[Lynch and Mason, 1999].

4.3 Summary

To summarize, in the task and shape decomposition paradigm, we project the system
equations down to the subspace in which the constraints reside and write a controller to
exclusively satisfy the constraints. The orthogonal freedoms are unconstrained and can be
planned using standard techniques or given to a user to freely control.

The driving motivation for this paradigm is constraint satisfaction. Admittedly, the
paradigm relies heavily on the constraints residing in a space that is low enough for ana-
lytical or robust numerical solutions. If the constraints depend on a large number of the
state variables, or all of the state variables, then very little, or nothing is gained by the
projections. However, we have shown that a class of manipulation systems exist for which
the constraints do reside in a low dimensional space and for which the paradigm can be
used.

In §5, we will discuss the Mobipulator problem — a kinematic nonholonomic system
with an additional constraint on its state variables. We will show how this system can be
decomposed into a task and a shape subsystem and use the technique of bilateral time-
scaling to counter the drift that is produced in the shape subsystem due to the motion
of the task freedoms. This technique ensures that the constraints are not broken by an
adversarial user.

In §6, we will discuss the waiter’s problem — a kinematically indeterminate manipu-
lation system. Here, the system can be decoupled into the task and the shape subsystem,
with the task freedoms not appearing in the system equation of the shape freedoms. We
will discuss the construction of a feedback controller for the shape freedoms. We will also
discuss a special case where the constraint can be deliberately broken (akin to the controlled
slip strategy proposed by Brock [Brock, 1988]) to change a contact mode and how we can
recover the original contact mode.

Not all kinematically indeterminate manipulation systems are dynamically controllable.
In the cases where the systems are not dynamically controllable, there can be two conse-
quences. The first, more tolerable, consequence is that the uncontrolled freedoms evolve
on their own and do not affect the contact mode at the controllable freedoms. We can-
not control them, but they do not cause us harm. The second, more drastic, consequence
is that the dynamics of the uncontrolled freedoms results in the breaking of the contact
acceleration constraint and the system transitioning into a new undesired contact mode.

There has been some work on the controllability of manipulation with frictional contact.
Lynch [Lynch, 1999] studied the controllability of planar rigid bodies subjected to unilateral
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thrusters. Similarities to contact manipulation are that contact forces exerted by the robot
on the object are also unilateral. Each of Lynch’s thrusters provided a line of force fixed in
the object’s frame and had unit force magnitude. Lynch proved that thruster configurations
could be chosen such that with one thruster the body was small-time accessible, with two
thrusters the body was controllable and with three thrusters the body was small-time locally
controllable at zero velocity states. However, a solution for general manipulation systems
with actuator constraints is still an open problem.

Admittedly, the success of the task and shape decomposition paradigm depends on an
intelligent choice of the description of the system. It is possible to choose a system de-
scription where all the state variables appear in the constraint equation, thereby suggesting
that the decomposition cannot be achieved. What we have shown in this chapter is that
for kinematically indeterminate systems, the constraint does reside in a low dimensional
state space, making a decomposition possible. An automated technique for transforming a
description of the system into another which is more amenable to decomposition is an open
problem.





Chapter 5

The Mobipulator problem

In this chapter, we will use the task and shape decomposition paradigm to find analytical
solutions for a 6D kinematic system with nonholonomic constraints.

The system that we will be analyzing is called the Mobipulator, an abbreviation of the
term “mobile manipulator”. The Mobipulator is a wheeled robot whose domain is the
desktop. The robot has four independently controlled wheels, none of them steered and
uses its wheels both for locomoting itself and for manipulating common desktop items like
pencils, mugs and sheets of paper. In this chapter, we will focus on the technique that the
robot uses to manipulate a sheet of paper. Albeit a simple task, we will show how this
simple example sheds light on the issue of motion planning for systems with nonholonomic
constraints.

The mode that the Mobipulator uses to move paper is called the dual-differential drive
mode (Fig.5.1). In this mode, the robot has two of its wheels on paper and the other
two on the desktop. The robot manipulates the paper by moving the wheels on the paper
and locomotes itself and the paper by moving the wheels on the desktop. The term dual-
differential drive arises from the face that the behavior of the robot and the paper in this
mode is akin to two differential drives, one on the desktop and the other on the paper,
connected together by a rigid linkage (the robot chassis). The robot and the paper share a
unique symbiotic relationship — the paper requires the robot for its motion while the robot
requires the paper for turning since its wheels are not steerable.

In this chapter, we will focus on the generation of trajectories for the robot and the
paper from a start to a goal while maintaining the dual-differential drive mode. We will
treat the system as being purely kinematic, since the inertias of the robot and the paper are
small. We control the angular velocities of the four wheels of the robot. The implication
of the kinematic assumption is that the robot and the paper come to rest instantaneously
when the wheels stop spinning. The system resides in a 6D configuration space of the robot
and paper pose. The system has a nonholonomic constraint as well as a constraint on the
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Figure 5.1: The Mobipulator in dual-differential drive mode

pose of the robot relative to the paper in order to maintain dual-differential drive mode.

We will solve the trajectory generation problem by first identifying the lower dimensional
space of shape freedoms in which the constraints reside. We will then project the system
kinematics onto this space. We will write a controller to satisfy the constraints and allow a
user to control the orthogonal task freedoms. We will also consider the case of an adversarial
user, one who forces the shape freedoms to configurations where the robot gets jammed
on the paper, and discuss a solution to that problem which uses controls derived from Lie
brackets.

The rest of the chapter is arranged as follows. In §5.1, we describe the hardware and
the software infrastructure of the Mobipulator. In §5.2, we provide background on mobile
manipulation and on the nonholonomic control problem. In §5.3, we provide the nomen-
clature and define the problem we wish to solve. In §5.6, we decompose the system into
the task and the shape subsystems. We rewrite the shape system as a function of the task
freedoms. The user controlled task freedoms appear as a drift term in the shape system. We
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use bilateral time-scaling to control this drift, and the extra degree of freedom to move the
shape freedoms to satisfy dual-differential drive. In §5.7, we provide a control policy that
reduces the number of control switches required. §5.8 describes an implementation of the
control law on the real robot and some of the problems faced. §5.9 explores a generalization
for arbitrary nonholonomic systems.

5.1 The Mobipulator

Figure 5.2: The Mobipulator system overview

The Mobipulator is a concept car. It is designed to explore different concepts of how a
mobile robot can perform manipulation tasks, and in particular, the interconnectedness of
locomotion and manipulation.

In this section, we provide an overview of the hardware and the software architecture
of the system. As shown in Fig.5.2, the system comprises of the robot, motor amplifiers
and a CPU which control the motion of the wheels, an air hockey table (with no air) which
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functions as the desktop, a gamepad for joysticking the robot, and a camera that overlooks
the desktop. We use the camera both for logging data and for visual servoing.

Hardware

The robot chassis is made of aluminium. The wheels are outfitted with rubber O-rings.
The motors are controlled using an ISA servo control card from ServoToGo, Inc. The card
provides eight independent DAC channels, each of which is connected to a LC-3002A Linear
Servo Amplifier from Micro Mo Electronics, Inc. The amplifiers are housed in a custom-
made control box with a PCB backplane, which makes it easy to plug and unplug all the
connectors. We have also integrated a Gravis Eliminator game pad into our system to
provide manual control. A Sony DFW-VL500 digital Firewire camera is mounted vertically
above the desktop at a height of about 1.4 meters. The camera can grab color images at a
rate of up to 30Hz at a resolution of 640x480 pixels.

Software

The software system consists of the following four components, running under Windows
2000 on a Pentium II.

The Device Driver

The Kernel-mode device driver has a top half and a bottom half. The bottom half is driven
by the interrupt controller on the card (currently set at 1 kHz) to implement a PID motor
controller at regular, predictable intervals. Since the driver runs in kernel mode, extended
computations in an ISR can cause sluggish system behavior. Thus, all calculations are done
with fixed-point values instead of floats and complex functions (such as sine) are done with
lookup tables. As a result, any given ISR takes no more than 60 µs to complete on a 400
MHz Pentium II.

The Interface Library

The top half of the device driver interacts with the interface library to provide user programs
a means of communicating with the driver. These are largely based on source code supplied
by ServoToGo under the GNU Public License. Using the interface library, user programs
may enable or disable closed-loop control and set the gains for the PID controller.

We have implemented a trajectory generator that generates velocity profiles given a
demand position, velocity, and acceleration for each motor. The generator outputs various
functions in real-time such as trapeziods, quadratic curves, sinusoids, and sawtooth waves
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that may be concatenated to produce more interesting trajectories. The various parameters
of the generator can be accessed via the interface library.

The library can also be used to retrieve data from the driver’s short-term (1000 interrupt
cycles) log and write directly to the DAC to affect some form of continuous control from a
user program.

The Mobipulation Library

The third component, dubbed libmobip, combines calls to the interface library (for simplic-
ity) with calls directly to the driver (for efficiency) to provide motion commands in physical
units (meters, radians, seconds). There are four primary groups of commands.

• Program control : These commands to start up/shut down the library, start/stop
robot motion, set up robot parameters, flush motion queues, and print error strings.

• Four-wheel drive commands : These commands for translating and rotating the entire
robot treat the robot as a single differential drive at the center of the robot. These
commands, in particular benefit from visual feedback, as described in §4.

• Dual diff drive commands : This command set is similar to the four-wheel drive set,
except that each command also takes a parameter to indicate which half of the robot
will perform the action. The two halves may be controlled either one at a time or
simultaneously.

• Logging commands : These log the desired and actual trajectories of the robot into
a simple file format for display and analysis.

Gamepad Library and GUI

We have also written a small library that allows a user to control the Mobipulator using
a gamepad. The gamepad has two joysticks and eight buttons. Each joystick controls one
differential drive. The buttons can be mapped to various controls like locking of individual
wheels (for manipulation) and the path logger. The gamepad provides an essential tool for
testing new ideas rapidly without any programming.

Perception

The motivation for using the camera is the inaccuracy in locomotion and manipulation
caused by slip between the robot, the paper and the desktop. We use the camera both for
measuring these errors and for correcting them by visual servoing.

The robot uses color thresholding to to locate the fiducials in each image frame. For
ease of tracking, we have added four orange fiducials on the robot chasis and four green
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fiducials on the corners of the paper. We have implemented a simple thresholding scheme
in (R,G,B) space. At times when the robot is unable to track a feature, it uses its prior
knowledge of the fiducial’s geometry to reacquire them. Here is an outline of our algorithm
:

1. Initialization : Initialize the thresholds manually.

2. Blob Finding : Use the thresholds to find the four largest orange and green blobs
in the image. Find the centroid of each of the blobs and store them as the points
tracked.

3. Check Rectangle : Check if the points tracked form two rectangles, one each for robot
and paper, within a tolerance. Check for both orthogonality and Euclidian distance.

4. Fit Rectangle : If Check Rectangle fails, use the tracked points and the lengths and
widths of the rectangles to fit the remaining points. Note that this can be done only
if one point in a rectangle is lost.

5. Store Old Points : If Fit Rectangle fails, save the last set of tracked points as currently
tracked.

6. Return : Return the position and orientation of the tracked rectangles.

The algorithm runs at 15Hz at a resolution of 640x480 pixels. The tracker runs in a
separate thread from the motion commands and can thus be queried when desired. Note
that the camera is first calibrated and turned until its axis is orthogonal to the desktop,
prior to tracking.

The tracker has a few drawbacks. At the height at which the camera is mounted(1.4m),
each pixel in the image corresponds to 3mm on the desktop. The tracker is also sometimes
unable to locate the fiducials - robot fiducials are occluded by the tether and paper fiducials
are occluded by the robot.

5.2 Background

Locomotion and manipulation

Several preceding systems have explored the connection between manipulation and loco-
motion. One of the earliest influential robots, Shakey [Nilsson, 1984], pushed boxes and
other objects. More recently, the task domain of Sojourner in Mars included elements of
manipulation.

A more direct approach is to attach a manipulator to a mobile platform. The JPL Cart
[Thompson, 1977] provides an early example, while Romeo and Juliet [Khatib et al., 1996]
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provide a current example. These robots have demonstrated effective coordination of wheels
and arms in manipulation tasks.

The distributed manipulation work of Donald et al.[Donald et al., 1994] included a set
of mobile robots pushing objects, as if each robot were a finger in a multi-fingered grasp.
The Platonic Beast [Pai et al., 1994] had several limbs, each of which could be used for
locomotion or manipulation.

Fiat [Mason et al., 1999], the paper-lifting robot developed by Rus and her coworkers, is
also a desktop mobile manipulator. But unlike the Mobipulator, Fiat, uses an attachment
with sticky adhesive tape to immobilize the paper to the robot. Once this is achieved, the
robot moves to the goal location and uses another attachment to release the paper.

All of these works illustrate that there is an underlying connection between locomotion
and manipulation. In our case, the robot is just one of several movable objects in the
task. The function of each actuator is resolved according to the task, be it manipulation,
locomotion, or something not clearly classifiable as either.

Nonholonomic systems

The general form of a control-affine system with nonholonomic constraints is given by:

Σ : ẋ = u1f1(x) + · · ·+ umfm(x) (5.1)

where 2 ≤ m < n, x = (x1 · · ·xn)T is the state vector defined in an open subset S of Rn, ui ∈
R are the control inputs, and f1, · · · ,fm are vector fields on S. Σ is said to be completely
nonholonomic if the rank of the controllability Lie algebra generated by u1 · · ·um is n. A
completely nonholonomic system is completely controllable (Chow’s theorem [Chow, 1939]).

Motion planning for nonholonomic systems is complicated by the fact that not all mo-
tions are feasible, only those which satisfy the instantaneous nonholonomic constraints.
Nevertheless, the completely nonholonomic assumption guarantees that feasible motions do
exist which steer an arbitrary initial state to a final state. We refer the reader to Kol-
manovsky and McClamroach’s paper [Kolmanovsky and McClamroch, 1995] for a detailed
review of motion planning for nonholonomic systems.

The motion planning problem for nonholonomic systems can be defined as : for every
pair of points (p,q) ∈ S, generate an open-loop control u(t) = (u1 · · ·um)T that steers p to
q.

One approach is to consider the extended system :

Σe : ẋ = v1f1(x) + · · ·+ vmfm(x) +

vm+1fm+1(x) + · · ·+ vrfr(x) (5.2)
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where fm+1, · · · ,fr are higher-order Lie brackets of the fi chosen so that f1(x), · · · ,fr(x)

span Rn for all x ∈ S. (5.2) can be solved for the control v(t) that steers p to q. This
solution is then transformed to a control u(t) in Σ. If Σ is nilpotent, u(t) is an exact
solution.

The hard part is to generate Lie brackets from the control inputs. Fast switchings of
piecewise constant or polynomial inputs [Lafferriere and Sussmann, 1993] and high-frequency
high-amplitude periodic control inputs [Sussmann and W., 1991] are some of the techniques
used to generate motions in the directions of the Lie brackets.

Motions of the Mobipulator

One motion along a higher-order Lie bracket for the Mobipulator is akin to parallel parking
the robot relative to the paper. This is achieved by spinning the wheels repeatedly forwards
and backwards for small time intervals. We use rubber O-rings on the wheels to help better
grip the paper. This also increases friction between the feet and the desktop and thus the
wheels require a minimum torque before they start spinning. As a result, fast switchings of
wheel torques cause a nonsmooth sideways motion and result in the wheels slipping. This
produces errors in both the pose of the robot and the paper. Hence, we would like to avoid
control switches for accurate motion.

Motion planning with obstacle avoidance

Gurvits and Li [Gurvits and Li, 1993] proposed an approach for nonholonomic motion plan-
ning in the presence of obstacles. Their method first constructed a path connecting the start
and the goal that avoided obstacles but was not feasible. They then used high-frequency
high-amplitude periodic inputs to generate an approximate path.

Mirtich and Canny [Mirtich and Canny, 1992] used skeletons - collections of fixed (typ-
ically nonfeasible) paths which stay maximally clear of the obstacles - to steer a mobile
robot from an initial to a final state. Low complexity paths were generated by making
the system loosely follow the skeleton. Jacobs et al.. [Jacobs et al., 1991] developed a
different approach, also based on approximating a nonfeasible path by feasible path seg-
ments, to plan motions for a car-like robot. This method was extended by Laumond et
al.[Laumond et al., 1994] to car-like robots towing a trailer.

Barraquand and Latombe [Barraquand and Latombe, 1993] proposed a planner for non-
holonomically constrained mobile robots in an obstacle field using a similar approach. They
restricted the control space of the robot by discretizing the range of allowable steering an-
gles. At a configuration, they applied the constant controls for a given time interval to
generate child nodes. The child nodes were added to a queue if they were not ’close’ enough
to the parent (decided by a user given metric and threshold distance) and if the path from
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parent to child did not intersect an obstacle. A path from start to goal was constructed
by running a breadth first search. While the planner is resolution complete, it shares the
drawbacks of other approaches that discretize state and/or controls — the generated paths
tend to zigzag around the true optimal path.

5.3 Problem statement

The kinematics for the Mobipulator in dual-differential drive mode can be described as :

M :

(
ẋP

ẋR

)
= A


ω1

ω2

ω3

ω4

 = A ω (5.3)

where xP = (xP yP θP )T is the pose of the paper in the world frame, xR = (xR yR θR)T

is the pose of the robot relative to the paper, and the ωi are the angular velocities of the
wheels.

M requires the robot to be in dual-differential drive mode. The shaded region in Fig.5.3
describes the allowable pose of the robot relative to the paper for a given θR. Each light
rectangle represents the locus of the center of the robot with one of the wheels touching the
edge of the paper. If the center lies in the interior of a light rectangle, the corresponding
wheel lies in the interior of the paper. The shaded polygon is the locus of points with the
manipulating wheels (1 and 2) on the paper and the locomoting wheels (3 and 4) on the
desktop.

The geometry and position of the allowable region depends only on the relative pose
θR and the dimensions of the robot and the paper. Furthermore, the allowable region is a
constraint only on the position of the robot relative to the paper and not on the pose of
the paper. The constraint can thus be written as:

H : h1(θR) �

(
xR

yR

)
� h2(θR) (5.4)

where “�” denotes componentwise inequality.
The problem can be stated as:

Given a start and a desired goal location for the paper, find the wheel angular
velocities ωi that move the robot and the paper to the desired goal while sat-
isfying the dual-differential drive constraint constraint H? Furthermore, is it
possible to construct a control policy that reduces the number of control switches
required?
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Figure 5.3: Allowable (xR yR) at θR = 2π/3
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5.4 A configuration space planner

Motion planning for the robot and the paper is complicated due to the nonholonomic
velocity constraint on the system. One approach to solving this problem is to add an
additional constraint in such a way that the nonholonomic constraint becomes a holonomic
constraint. In this section we will describe one such planner that we implemented on the
Mobipulator and state its drawbacks.

We can envision the Mobipulator problem as a tractor (the robot) pulling a trailer (the
paper) with a moveable hitch. At each instant, the nonholonomic constraint provides a
range of allowable hitch placements. We change this constraint to a holonomic constraint
by forcing the robot to virtually hitch to one of the allowable hitch points. Once hitched,
the system can be treated as a two-link arm, with one link being the paper and the other
link being the robot. Without the nonholonomic velocity constraints, we are allowed the
luxury of planning in the system configuration space.

It is important to note that converting a nonholonomic constraint into a holonomic
constraint reduces the reachable configurations of the system. As a simple example, consider
a single differential drive robot. The nonholonomic constraint on the system prevents it
from moving in a direction orthogonal to the orientation of the robot. We can convert this
constraint into a holonomic constraint by locking the orientation of the differential drive.
However, by doing so, we have restricted the reachable configuration space of the system
— the robot can now only move forwards and backwards. Likewise, for the Mobipulator
problem, we are sacrificing reachability for ease of planning.

Fig.5.4 shows six snapshots from an example in which the robot drags the paper from
configuration 1 to 6. The Mobipulator path planner is an extension of Sacks’s planner for a
planar linkage with static and movable obstacles [Sacks, 2001]. The planner generates a path
in two phases. The first phase searches the critical link/obstacle configuration space for a
free-space path to the link goal configuration. The configuration space is represented by an
exact contact space partition that is computed by a sweep plane algorithm [Sacks, 1998].
The planner performs an A* search based on a heuristic distance function. The search
nodes are straight-line paths from the current configuration to the goal and contact patches
(subsets of contact space where a specific link feature touches a specific obstacle feature).
In our example, the paper is the critical link and the path consists of a line from 1 to 3, a
curved contact path to 4, and a free path to 6.

The second phase extends the critical link path to the entire linkage. It constructs a ve-
locity field that drives the critical link along its path and that enforces the joint constraints.
It integrates the velocity field until the critical link reaches its goal. If another link hits
an obstacle, the planner modifies the velocity field by subtracting the component that is
normal to the obstacle. If the path ends without reaching the goal, the planner resumes
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Figure 5.4: A configuration space planner for paper manipulation in dual-differential drive
mode
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the A* search and tries the second phase on the next best path.

The first phase plans a path for the paper to the goal configuration as before. The
second phase constructs a velocity field for the four wheels that drives the paper along
this path. The planner integrates the wheel velocity field until the paper reaches its goal.
If dual differential-drive mode is violated, the simulation is halted.The planner then uses
a series of heuristics to restore dual differential-drive mode by moving the robot without
moving the paper. The simplest heuristic is to move forward or backward with four equal
wheel velocities. In our example, the robot drags the paper with its back wheels from 1
until just before 3 when the left wheel comes off the paper. The robot moves backward to
3 and simulation proceeds.

The main drawback of this approach is that we are overriding the natural motion of the
system and forcing it to behave in a holonomically constrained fashion. Furthermore the
simple heuristic of moving across the paper when the dual-differential drive constraint is
violated is not guaranteed to work if there is an obstacle across the paper which prevents
the robot from re-hitching. In such situations, the robot is forced to move far away from
the paper, skid steer by itself into a new orientation and try to re-hitch. A completely new
plan has to be written for this motion of the robot.

In the subsequent sections, we will describe how we can use the freedom provided by
the nonholonomic constraint to place the movable hitch optimally at each instant and plan
for motions of the robot and the paper without the need for heuristics.

5.5 Task and shape freedoms

To choose the task and the shape freedoms of the system, we revisit the dual-differential
drive constraint H:

H : h1(θR) �

(
xR

yR

)
� h2(θR) (5.5)

We notice that the constraint depends only on xR and not on xP . The absolute location
of the paper is immaterial for the constraint, it is the location of the robot relative to the
paper that is important. The lower dimensional space of xR where the constraint H resides
constitute the space of shape freedoms for the system. The pose of the paper xP constitutes
the space of task freedoms for the system.

In the next section, we will project the motion of the system onto the constraint space
and write a controller to satisfy H. We will give the control of the task freedoms xP to
a user — the user has unrestricted freedom to move the paper on the desktop and the
controller will ensure that H is satisfied.



74 CHAPTER 5. THE MOBIPULATOR PROBLEM

5.6 Control of shape freedoms

In this section we will prove that we can control the Mobipulator system to follow a user-
specified xP (s) and satisfy H. We will first consider the case where the user has control of
the velocity ẋP (t) and show that the resulting system is not small time locally controllable
(STLC). This negative result will provide us with insight to modify the user’s control to a
path xP (s). We will show that the resulting system is STLC only if there are no constraints
on ṡ(t).

The shape and task subsystems

We decompose the Mobipulator system M into two subsystems - the task system Mt and
the shape system Ms. Mt comprises of the task freedoms the user controls (the xP ) and
Ms comprises of the shape freedoms (the xR). We will analyze each of these subsystems
separately.

M :

(
ẋP

ẋR

)
= A ω =

[
B

C

]
ω

Mt : ẋP = B ω

Ms : ẋR = C ω

The task subsystem

We first observe that B is of rank 3. This is beacause the motion of xP is unconstrained in
Mt, i.e. if H is satisfied, any desired ẋP can be attained by a correct selection of the wheel
velocities. We create an augmented rank 4 system by adding the nullspace vector of B, nB,
and an additional scalar α which we can control without affecting the task freedoms.

Mta :

(
ẋP

α

)
=

[
B

nB

]
ω (5.6)

We can now invert the augmented system. Intuitively, α represents the one degree of
freedom that we have in choosing ω. We will use this freedom to satisfy H.

ω =

[
B

nB

]−1 (
ẋP

α

)
(5.7)
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The shape subsystem

The shape freedoms can be rewritten in terms of the task freedoms using Eqn. 5.7.

ẋR = C

[
B

nB

]−1 (
ẋP

α

)
(5.8)

This can be arranged in a more intuitive form :

Msa : ẋR = F ẋP + g α (5.9)

From Eqn. 6.23 we can see that the motion of the task freedoms appears as a drift term
F ẋP in the shape system and the degree of freedom α appears as the scalar control.

We can gain further insight on Msa by studying g :

g =
c

4

 cos(θR)
sin(θR)

0

 (5.10)

where c is the radius of each wheel.

This field lets the robot move forwards and backwards relative to the paper. For ex-
ample, if there was no drift (i.e. if ẋP were 0), then the only robot motion that does not
manipulate the paper is this forwards-backwards motion.

A negative result

For H to be satisfied, we would like to be able to control the shape freedoms (described by
Msa) immaterial of the drift generated by the user-controlled task freedoms. If we allow
the user to control ẋP (t), this requires Msa to be STLC for all ẋP and xR. We use the
following theorem to prove that this is not true.

Theorem 3 ([Sussman, 1978]). The system Msa is small-time locally controllable at xR if
and only if there exists some α0 such that for all ẋP

0 = F ẋP + g α0 (5.11)

This theorem defines a condition for a nonlinear system with drift to be STLC with
a single control. The intuition for the condition is that the control must be capable of
maintaining the equilibrium state for all possible drifts.

Corollary 1. The system Msa is not STLC
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Proof. (5.11) is an overconstrained system with three equations and one variable. Any
non-zero choice of ẋP will yield no solution for α0.

Intuitively this means that the drift field will always dominate and can force the system
towards a constraint boundary, and then violate it. Thus, if the user has control of ẋP (t),
it is not always possible to satisfy H.

Time scaling

We overcome this problem by allowing the user to control the path xP (s). Note that there
is no notion of time in the path specification. We control the trajectory of the task freedoms
by specifying a time-scaling s(t) which assigns a point on the path for each t ∈ [0, T ], where
T is the time to completion of the path. The velocity at any time t is given by :

ẋP (s(t)) = x′
P (s(t)) ṡ(t) (5.12)

We control the the time-scaling rate ṡ(t). This in turn provides us with control of the the
velocity of the task freedoms along the path.

The concept of time scaling was used by Bobrow et al.[Bobrow et al., 1985] to find
time-optimal trajectories of a fully-actuated manipulator along a specified path, subject to
limitations in actuator torque. They used a time-scaling s(t) with a unilateral constraint
ṡ > 0, i.e. the end-effector was not allowed to move backwards along the specified path.

We first restrict ṡ(t) > 0, i.e. we cannot reverse the motion of the paper along the path.
Denoting ṡ(t) by β, we write the time-scaled shape system as :

Msu :

(
ẋR

ṡ

)
=

(
Fx′

P

1

)
β +

(
g

0

)
α (5.13)

Msu is a control-affine system with one unilateral control β > 0. We can test STLC for this
system :

Theorem 4 ([Goodwine and Burdick, 1996]). The system Msu is small-time locally con-
trollable at xR if and only if there exists some α0 and some β0 6= 0 such that for all xP

0 =

(
Fx′

P

1

)
β0 +

(
g

0

)
α0 (5.14)

Corollary 2. The system Msu is not STLC

Proof. The last row of (5.14) can be 0 for any arbitrary xP only if β0 = 0. Hence the
system Msu is not STLC.
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We now remove the restriction on ṡ. This results in a bilateral control β. What this
means is that the paper is allowed to move forwards and backwards along the path. For
example, in Fig.5.5, the user specifies the path (ac − cb − bd), we specify the bilateral
time-scaling s(t) and the resulting trajectory is (ac− cb− bc− cb− bd).

t

s(t)

0 T

0

1
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b
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d
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b

c

d

path : x (s) = ac-cb-bd
trajectory : x (s(t)) = ac-cb-bc-cb-bd

P

P

b

Figure 5.5: Time-scaling of user’s path

The untestricted system Msb looks like (5.13) but with β unrestricted. We rewrite it as
:

Msb :

(
ẋR

ṡ

)
= fβ β + fα α (5.15)

We prove this system is STLC with the following theorem:

Theorem 5 ([Chow, 1939]). The system Msb is small-time locally controllable at xR if
the controllability Lie algebra generated iterated Lie brackets of fβ and fα spans the state
space.

Corollary 3. The system Msb is STLC

Proof. We compute the brackets [fβ], [fα], [fβ,fα] and [fβ, [fβ,fα]]. The expressions
for the brackets are long and have been omitted here. They were computed automatically
using MATLAB. To check if the brackets span the 4-dimensional tangent space, we compute
the determinant of the matrix comprising of the four brackets. The expression for the
determinant is, again, extremely large. However, by examining the terms, we can show that
the determinant goes to zero only if x′

P = 0. Hence the brackets span the 4-dimensional
tangent space at all states where x′

P 6= 0.
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Discussion

We have proved that we can follow any task freedom path and satisfy the constraints. To
show STLC, we have had to use higher order brackets of fβ and fα. An application of
these brackets will cause control switchings and the resulting motion will not be smooth.
Hence we must choose our control policy in such a way that we minimize the use of the
brackets. We will describe one such policy in §5.7. Another point of concern is that since
ṡ is unrestricted, we can move forwards and backwards along our path. We will prove in
§5.7 that any arbitrary path can be completed in a finite amount of time.

5.7 Control of the Mobipulator

Here we will propose control policies α and β, for the Mobipulator. We will show that
control switchings can be restricted to a finite number of switching points.

Control policy

Recall that the control vector field g (Eqn. 5.10) allows the motion of the robot forwards
and backwards relative to the paper. This is shown as the line LL′ in Fig.5.6. We can
use α to servo to any point on this line. LL′ intersects the constraint boundaries at Lmax

where the robot is farthest from paper, and Lmin where the robot is closest to the paper.
Our policy servos the robot to the midpoint Lmid. This maximizes the minimum distance
between the wheels and the edges of the paper and is a safe policy that is less severe to
motion errors.

For β, we use the simple policy of β = 1 as long as H is satisfied. The next sub-section
describes the policies chosen when H is violated.

Switching points

Note that with β = 1 we are deliberately allowing the paper to drift. We do this to
avoid motions that require control switchings until imperative. H is violated when Lmin →
Lmax and no further motion is possible along the control g. This occurs either when a
manipulating wheel and a locomoting wheel touch edges of the paper (Q and R in Fig.5.7)
or when a manipulating wheel touches a corner of the paper (P in Fig.5.7). We term these
points switching points as they mandate a switch in the control policy.

Control policy at switching points

At switching points, we move the paper backwards along the path for a small time interval
δt by setting β = −1. Choice of α depends on whether we want net motion forwards or
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backwards. To escape from P , we need to move along xR, while to escape from Q, we need
to move along −yR. Consider P . The motion of the robot along xR is given by :

ẋR = F (1)x′
P β + g(1)α (5.16)

F (1) and g(1) are the first row of F and g respectively.

For small δt, we can approximate F (1)x′
P and g(1) as constants kF and kg respectively.

At switching points we first set β = −1 and α to α1. After δt, we set β = 1 and α to α2.
The net motion along xR is given by the sum :

δxR ≈ ẋRδt = kF βδt + kgαδt (5.17)

δxR1 ≈ −kF δt + kgα1δt

δxR2 ≈ kF δt + kgα2δt

δxR1 + δxR2 ≈ kg(α1 + α1)δt (5.18)

By servoing to Lmax, we can obtain the largest positive α and get the largest motion along
xR. Conversely, by servoing to Lmin, we can obtain the largest negative α and get the
largest motion along −xR. Note that the net motion obtained is independent of the motion
of the paper as kF is cancelled during motion.

We continue the motions until the wheel is sufficiently clear of the constraining edge
or vertex (defined by a threshold w shown in Fig.5.7). Since each of the abovementioned
motions produces the same net motion along the desired direction, w will be attained in
finite time.

5.8 Implementation

The Mobipulator system has a camera that tracks colored fiducials marked on the robot
and the paper, and provides pose information at 10 Hz. Our test path is a hexagon whose
width is 8 times the width of the robot. The paper is rotated by 60o about its center at each
vertex. Note that, with the chosen path and the starting pose of the robot, no switching
points are encountered. We will describe the effect of switching points separately.

The movable hitch

Fig.5.8 illustrates the effect of the controller. During the turn, the robot moves in and out
of the paper optimally placing the virtual hitch at each instant such that it remains safely in
dual-differential drive mode. At each instant, the robot maximized the minimum distance
between the wheels and the paper.
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Figure 5.7: Switching points

Open loop execution

We have written a simulator that inputs a user-specified path, executes our control policies
and outputs wheel angular velocities. We fed the output to the robot. The intended path
(the solid hexagon in Fig.5.9(a)) and two runs of the open-loop execution are shown. The
path has large error because slip between the robot and the paper causes a loss of dual-
differental drive. The error builds up as there is no feedback. The maximum error between
the start and the goal was 16cm. and the angular error was 27o. The robot took about 3
minutes to complete the path.

Error correction

Since the task system Mt is holonomic, errors in the motion of the paper can be corrected
by proportional control. We used the pose information from the camera to servo the paper
to its intended path. At every camera update, we computed the paper velocity required
to servo to the path. This velocity was fed to the simulator which provided the necessary
wheel angular velocities. We applied these velocities until the camera updated the pose
again. Fig.5.9(b) shows four runs of the robot. The maximum deviation from the path was
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t=5 t=6

t=1 t=2 t=3

Figure 5.8: Implementation of the control policy to move the paper in a hexagon whos
width is 8 times the width of the robot. The paper is rotated by 60o at each vertex. Shown
here is the motion of the robot during one such rotation of the paper.
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Figure 5.9: (a) Motion of the paper pose for open-loop execution. (b) Motion of the paper
with visual feedback.
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4.6cm. and the maximum angular error was 4o. The time to completion was comparable
to the open-loop implementation.

Switching points

We ran separate trials to test the accuracy of motion at switching points. We ran 15 tests
open-loop for the robot in switching point R. None of the tests were successful. This was
because this motion required the wheels to be placed vey close to the edge of the paper.
The accumilated slip caused a loss of dual-differential drive mode and the motion failed.
When implemented with visual-servoing, 10 out of 15 tests were successful. However, the
robot required 18 repetitions of the motion described in §5.7 which took about 1 minute to
complete. The resulting error in the location of the paper was 1.4cm.

5.9 Summary

Our method decomposes the system state into task freedoms and shape freedoms and
analyzes each subsystem separately. By doing so, we reduce a nonholonomic control problem
to two subproblems — one of following a holonomic path in task space and another of
controlling the nonholonomic shape freedoms to satisfy constraints. We thus isolate the
nonholonomy to a smaller set of state variables. By designing a suitable control policy in
shape space we can also ensure that the task space path is followed smoothly with reduced
control switchings. Furthermore, since the task system is holonomic, error correction is
easy.

The method outlined in §5.6 can be applied to any nonholonomic system. The key lies
in the fact that the matrix B is full rank. Given a nonholonomic system that looks like M ,
we can perform row operations on the A and generate a full rank B. The corresponding
state variables can be treated as the task freedoms and the remaining state variables can
be treated as the shape freedoms. We can then apply the same theorems outlined in §5.6
to prove STLC and generate control laws.

The selection of policies and paths that minimize control switchings is an exciting future
direction of research. Currently, we use the safe policy of using α to servo to Lmid. One can
imagine a mixed policy that servoes the robot to Lmax when the robot is close to a corner
to increase the clearance between the robot and the paper. It is unclear as to whether there
exists a single optimal policy for all possible paths. Another interesting problem arises
when the controller has the freedom to choose the path — given a fixed policy, what is the
path that minimizes the number of switching points?



Chapter 6

The waiter’s problem

In Ch.3, we introduced the technique of decomposing the trajectory generation problem into
path planning followed by time-scaling the generated path. As discussed, a drawback of
this technique is that, for some problems, finding a candidate path that can be time-scaled
is very hard. In this chapter, we explore the trajectory generation of one such problem. We
show how we can use the paradigm of task and shape decomposition introduced in Ch.4
to project the system dynamics down to a 2D shape space which allows us to compute
analytical trajectories.

Our focus will be on the problem shown in Fig.6.1(i-ii). We will first explain the physical
intuition behind the problem and subsequently state the mathematical description of the
problem.

Imagine a waiter carrying a wineglass on a tray (Fig.6.1(i)). The wineglass begins to
tip. How does the waiter move the tray so that the wineglass is brought back to its vertical
configuration? It is intuitively clear that any solution to the problem will be dynamic —
the waiter will have to move the tray fast, before the wineglass falls down on its side on the
tray. Consequently, limits on how fast the waiter can move his hands will decide whether
he can or cannot rescue the wineglass. Furthermore, friction between the wineglass and the
tray is another crucial factor which will decide whether or not the waiter’s motion causes
the wineglass to slide off the tray.

Fig.6.1(ii) shows the mathematical description of the problem. We restrict all motion to
be in a vertical plane with gravity pointing down. We approximate the kinematic skeleton
of the waiter by a robot arm with two prismatic joints, one each for horizontal and vertical
motion. We specify limits on how fast the waiter can move his hands by specifying limits on
the accelerations of each joint. The end-effector of the robot is a flat palm. We approximate
the wineglass by its bounding rectangle and will henceforth refer to it as a block. We assume
that the block’s mass is uniformly distributed and that the mass and mass distribution are
time invariant (there is no wine sloshing in or out of the the glass). We denote the angle
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Figure 6.1: (i): The waiter’s problem — a wineglass rests on its side on a flat tray. The
goal is to tip the wineglass while keeping the tray horizontal (else the cheesecake will fall)
and maintaining rolling contact between the wineglass and the tray, (ii): A robotic version
of the problem — the waiter’s hands are represented by an arm with two prismatic joints
and the wineglass is represented by a block with uniform mass distribution. The angle θ
denotes the orientation of the block relative to the palm. The goal is to go from θ = 0 to
θ = π

2 while maintaining the contact force f within the friction cone F .

made by the block with the palm by θ. The goal is to manipulate the block from θ = 0 to
θ =

π

2
. The palm cannot rotate. We control the horizontal and vertical acceleration of the

palm (q̈1, q̈2). Furthermore, we need to maintain a rolling contact between the block and
the palm. As per the laws of Coulomb friction this means that the contact friction force f

must lie within the friction cone at the contact F .

This problem was first proposed by Erdmann [Erdmann, 1998]. There is a solution to
the problem in Erdmann’s paper, but one that was derived by hand-tuning the controller
and the system parameters. One of our goals in this paper is to automate the trajectory
planning. The term waiter’s problem was coined by Kevin Lynch (http://lims.mech.
northwestern.edu/∼lynch/projects/index.html). The problem solved in this paper is
also closely related to the work of Lynch and Mason [Lynch and Mason, 1999]. Using a
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robot arm with a single revolute degree of freedom, they demonstrated dynamic tasks such
as snatching, rolling, throwing and catching an object.

We would also like to answer questions like:

What is the set of all feasible palm motions that move the block from θ = 0 to
θ = π

2 in, say, 2.5 seconds, and have the exact same angular motion θ(t) of the
block?

The answer to the question is illustrated in Fig.6.9.
We propose a new technique for solving the trajectory generation problem. We first

derive the contact acceleration constraint for the tipping problem using a result from
[Srinivasa et al., 2005a]. We identify the subset of the state variables that the constraint
depends on. We call these state variables the shape freedoms of the system. For the block
tipping, the shape freedom is the rotation of the block relative to the palm, the angle θ. We
then project the dynamics and the constraints onto the space of shape freedoms. For the
block tipping, the state space comprises of the configuration of the block and its velocity, a
6 dimensional space. We project the dynamics and the constraints onto the 2 dimensional
space of (θ, θ̇). We plan a feasible trajectory in the lower dimensional shape freedom space
and control the nullspace of the projection to control the reminder of the state variables. By
varying the control in the nullspace, we are able to produce various palm motions that do
not affect the task freedom trajectory [Srinivasa et al., 2005b]. The family of trajectories
generated is shown in Fig.6.9.

A main theme in the task and shape decomposition paradigm is the construction of
feedback controllers in the space of shape freedoms which work exclusively to satisfy the
constraints on the system. For the waiter’s problem, the constraints are the limits on the
accelerations of the joints and the Coulomb friction constraint to maintain rolling contact
between the block and the palm. In this paper, we develop a feedback controller for the
shape freedoms using the numerical technique of backward dynamic programming. We
discuss the implementation of the controller in §6.7.

The rest of the chapter is arranged as follows. In §6.1, we introduce the terminology
used in the rest of the chapter and give a clear definition of the waiter’s problem. §6.5
describes the solution of the planning problem. §6.7 describes the feedback controller. In
§6.8, we discuss our contributions and future work.

6.1 Problem statement

We describe the configuration of the block by its pose qo = (x, y, θ), where (x, y) is the
location of the center of mass and θ is the angle between the block and the palm, and the
configuration of the robot by its joint variables qr = (q1, q2). We choose our joint variables
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in such a way that the location of the contact point on the palm is also (q1, q2). We denote
the configuration of the system by q = (qo, qr).

Since the contact between the block and the palm is a rolling contact, the velocity of the
block at the contact point must be equal to the velocity of the palm at the contact point:

G(qo)Tq̇o = J(qr)q̇r (6.1)

where G(qo) ∈ R3×2 is the grasp map which relates contact forces to wrenches on the object
and J(qr) ∈ R2×2 is the Jacobian of the robot.

For our problem, G is given by:

G =

 1 0
0 1

d sin(θ + β) −d cos(θ + β)

 (6.2)

where β = arctan(w/l), w and l are the width and length of the block respectively and d is
the distance from the center of mass of the block to the contact point.

Since our robot is comprised of two prismatic joints, J is merely the identity matrix
given by:

J =

[
1 0
0 1

]
(6.3)

Coulomb friction imposes a constraint on the contact force f :

f ∈ F(µ) (6.4)

where F(µ), the friction cone, is a convex cone and µ is the coefficient of friction between
the palm and the object, a material property. The span representation of the friction cone
is given by:

F(µ) =

[
µ −µ

1 1

]
λ λ ≥ 0 (6.5)

The motion of the object is governed by its dynamics:

Mq̈o = Gf + no (6.6)

where M is the inertia matrix of the object and no is the wrench on the object due to
gravity:

M =


m 0 0
0 m 0

0 0
m

3
d2

 (6.7)
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no =

 0
−mg

0

 (6.8)

The problem can be stated as:

Given a start qs and a goal qg configuration for the system, find the robot
joint acceleration q̈r(t) that will move the system from the start to the goal
without violating the contact velocity constraint (Eqn.6.1) or the contact force
constraint (Eqn.6.4).

An industrial robot typically accepts desired joint torque as an input. The mapping
from robot joint acceleration to joint torque involves the dynamics of the robot and is a
well studied problem [Craig, 1989].t =     0.2790 dt =    -0.6170

A

F

Allowable joint acceleration

ax

ay

Figure 6.2: Constraints in contact acceleration space: the dark polygon denotes the set of
feasible contact accelerations. The friction cone F is mapped to the acceleration cone A.

6.2 The contact acceleration constraint

In §2, we derived a constraint that the robot joint acceleration has to satisfy in order to
obtain both a desired motion of the object and a desired contact condition. We restate the
theorem in the following paragraph for convenience.
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Theorem 6. For a given configuration q = [qo, qr]T and velocity q̇ = [q̇o, q̇r]T , the allow-
able joint acceleration of the robot q̈r that satisfies both the velocity and the force constraint
is constrained to lie within the cone:

Jq̈r + V(q̇o, q̇r,no) ∈ A (6.9)

V(q̇o, q̇r,no) = J̇q̇r − ĠTq̇o − GTM−1no

and
A = GTM−1G(F)

is the contact acceleration cone.

The theorem gives us a series of mappings that can be used to combine the contact force
constraint and the contact velocity constraint in a common space. The contact friction
cone F is mapped to a contact acceleration cone A and the contact velocity constraint is
mapped to a contact acceleration constraint. Limits on the accelerations of the joints can
be incorporated into this mapping.

When we apply Thm.6 to the tipping problem, we obtain the following constraints on
the allowable joint acceleration:(

q̈1

q̈2

)
− d

(
cos(θ + β)
sin(θ + β)

)
θ̇2 +

(
0
g

)
∈ A(θ) (6.10)

For a given state of the system, an illustration of Eqn.6.10 in the contact acceleration
space is shown in Fig.6.2. The rays with solid arrows represent the friction cone at the
contact and the rays with outlined arrows represent the acceleration cone at the contact.
The bounds that we have imposed on the joint accelerations of the robot appear as a
rectangle in the contact acceleration space. The dynamics of the block, as manifested
by the terms with velocity produts, shift the rectangle from the origin. Feasible contact
accelerations lie in the intersection of the contact acceleration cone and the rectangle of
joint acceleration limits. It is important to note that the combined constraint polygon has
contributing edges from both the friction constraint and the joint acceleration limits. We
will discuss the influence of the acceleration limits on the space of feasible solutions for the
problem in §6.4.

The origin of the contact acceleration space is the mapping of the origin of the contact
force space via the contact map. It corresponds to the situation where there is no contact
force, i.e.where the block is falling freely under the influence of gravity and the robot is
tracking the motion of the contact point. In the absence of rotational velocity for the block,
this corresponds to the robot moving vertically downwards with an acceleration of g.
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6.3 Task and shape decomposition

Recall that in the task and shape decomposition paradigm, the important observation is
the fact that constraints reside in a space which has a lower dimension compared to the
system state space.

For our problem, the state space of the object is (qo,q̇o), a 6D space. We note that
the constraint (Eqn.6.10) depends only on (θ, θ̇), and not on (x, y) or (ẋ, ẏ). This suggests
a natural decomposition of the state variables into the shape freedoms (θ, θ̇) on whom the
constraint on the system depends on, and the task freedoms (x, y, ẋ, ẏ) which do not play
a part in constraint satisfaction.

In the subsequent paragraphs, we will find the maps that project the system dynamics
onto the space of shape and task freedoms.

They dynamics of the block are given by:

Mq̈o = Gf + no (6.11)

The contact map takes us from the space of contact forces to the space of contact
accelerations: (

ax

ay

)
= (GTM−1G)f (6.12)

where (ax, ay) is the contact acceleration.

In the absence of internal forces the contact map is invertible. This makes intuitive
sense since an internal force is a contact force that produces no contact acceleration and by
definition lies in the nullspace of the map from contact forces to contact accelerations. If
no internal forces exist, the map has no nullspace and is invertible. The proof is as follows:

Theorem 7. In the absence of internal forces, the contact map is invertible, i.e.

N (G) = {0} =⇒ N (GTM−1G) = {0} (6.13)

Proof. We will prove the theorem by contradiction. We claim that there exists an x 6= 0

such that
GTM−1Gx = 0
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Then

xT GTM−1Gx = 0

=⇒ |M− 1
2 Gx| = 0

=⇒ M− 1
2 Gx = 0

=⇒ Gx = 0

=⇒ x = 0

since N (G) = {0}. This is a contradiction of our earlier claim.

For the waiter’s problem N (G) = {0} i.e.the system has no internal forces. We can,
hence, invert the map to obtain:

f = (GTM−1G)−1

(
ax

ay

)
(6.14)

We rewrite the dynamics of the block as:

q̈o = M−1(Gfc + no) (6.15)

We combine Eqn.6.14 and Eqn.6.15 as:

q̈o = A

(
ax

ay

)
+ b (6.16)

where
A = M−1G(GTM−1G)−1 (6.17)

and
b = M−1no (6.18)

Hence the evolution of the system is given by Eqn.6.16 subject to the constraint given by
Eqn.6.10.

Let us take a moment to parse Eqn.6.17. If we blindly transmit the inverse into the
bracketed terms using the product rule, we will end up with:

A = G−T (6.19)

However, there is no guarantee that G−T exists. In fact, for the waiter’s problem, GT

is not invertible. The physical intuition behind this statement is as follows: GT is the
map from object twist (generalized velocity) to contact velocity. The fact that GT is non
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invertible means that it has a nullspace. In a physical sense, this means that there exists a
motion of the block that does not produce any velocity at the contact point. Sure enough,
a rotation of the block about the contact point does not produce any contact velocity but
still produces a motion in the block.

Since we cannot invert GT, we do the next best thing, which is generate a pseudoinverse
— an inverse with an extra constraint placed on the nullspace to generate a unique answer.
What we have in Eqn.6.17 is a weighted pseudoinverse of GT with the inertia matrix M used
as the weight matrix. t =     0.2790 dt =    -0.6170

max

min A

F

Task freedom

Shape freedom

aθ aθ

Figure 6.3: Projecting the contact acceleration constraint onto and orthogonal to the space
of task freedoms

Our goal is to project the system dynamics given by Eqn.6.16 along and perpendicular
to the constraint given by Eqn.6.10. We do this in two stages. In the first stage, we rotate
the contact acceleration frame to a new frame (aθ,a⊥

θ ) such that any control applied along
a⊥

θ does not affect the motion of the shape freedoms (θ, θ̇).

To obtain aθ, we rewrite Eqn.6.16 as:ẍ

ÿ

θ̈

 =

[
Axy

Aθ

](
ax

ay

)
+

[
bxy

bθ

]
(6.20)
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Figure 6.4: The volume of feasible angular accelerations for an actuator acceleration limit
of 10m/s2. The constraint surfaces are generated by sampling (θ, θ̇) space uniformly. The
dots indicate samples where the actuator constraint is active.
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We then perform a transformation of the input by rotating it along and orthogonal to aθ:(
ax

ay

)
= aθα + a⊥

θ β (6.21)

We compute the orthogonal unit vectors aθ and a⊥
θ using the additional relation that a⊥

θ

does not affect the evolution of θ̈, i.e.Aθa
⊥
θ = 0.

We can now decouple the evolution of the task freedoms and the rest of the state
variables as:

θ̈ = Aθa
T
θ α + bθ (6.22)

(
ẍ

ÿ

)
= A1α + A2β + bxy (6.23)

We can now project the contact acceleration constraint onto the space of task freedoms.
The projection is illustrated in Fig.6.3. As mentioned in the previous subsection, the dark
polygon in Fig.6.3 corresponds to set the feasible contact accelerations. Each point in this
set can be mapped to a feasible θ̈ using Eqn.6.16. In Fig.6.3, this mapping is illustrated by
a projection onto the unit vector aθ. Limits on the feasible θ̈ can be easily computed by
projecting the vertices of the feasible polygon onto aθ, as shown in the figure.

We compute limits on α by projecting the vertices of the feasible polygon onto aθ. We
use the limits on α to compute limits on θ̈ using Eqn.6.22.

6.4 Dependence on acceleration limits

Our motivation for deriving the contact acceleration constraint was the claim that actuator
constraints and Coulomb friction constraints were both important for dynamic manipu-
lation. Fig.6.3 justifies our claim for the waiter’s problem. In the figure, the maximum
and the minimum allowable α are illustrated. Notice that the minimum depends on the
Coulomb friction constraint while the maximum depends on the actuator limit.

The importance of both constraints is further illustrated in Fig.6.4. The figure plots
the feasible phase volume for the shape freedoms for a uniform sampling of the (θ, θ̇) space.
The mesh is constructed by first computing the maximum and the minimum α for a given
sample and then computing the maximum and minimum θ̈ using Eqn.6.22. Black dots on
the grid points indicate samples where the actuator constraint is active. It is clear that the
constraint surfaces generated depend both on the actuator limit and the friction limit.

In reality, the constraint surfaces intersect at the sides forming a tube. The gaps in the
sides of the surface in Fig.6.4 and in all of the following phase volume plots are an artifact
of the sampling.
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Figure 6.5: The volume of feasible angular accelerations. The grid denotes the sampling
of (θ, θ̇) used to construct the plots. For each sample, the maximum and minimum θ̈ are
computed. The light and dark surfaces are tessellations of the maxima and the minima,
respectively. (i) Plot for an acceleration limit of 5m/s2. (ii) Plot for an acceleration limit
of 7m/s2.
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Figure 6.6: The volume of feasible angular accelerations for varying acceleration limits.

To further explore the role the acceleration limits play in the waiter’s problem, we
computed the feasible phase volumes for various acceleration limits. Fig.6.5 shows the
phase volumes for an acceleration limit of 5m/s2 and 7m/s2 in Fig.6.5(i) and Fig.6.5(ii),
respectively. It can be shown that in both cases the block cannot be manipulated from
θ = 0 to θ =

π

2
— the robot is too slow to achieve the required motion. As the actuator

limit is increased, the feasible volume swells proportionally, as shown in Fig.6.6(i-iv).

6.5 Motion planning

In this section, we describe an analytical solution to the problem of generating trajectories
for the waiter’s problem. We exploit the fact that the constraints of the system reside in
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the lower dimensional shape space by first planning a feasible trajectory in this space. At
each point of this feasible trajectory, we have independent control over the orthogonal task
freedoms. We use this freedom to control the motion of the palm.

Planning in shape space

We now focus our attention on the evolution of the task freedoms given by Eqn.6.22.
Limits on θ̈ constrain the tangent space of the task freedom (θ, θ̇), as shown in Fig.6.7.
At every point of a feasible trajectory in the task freedom space, the tangent must lie
within the cone of allowable tangents at that point. Note that Fig.6.4 and Fig.6.7 convey
the same information. The maximal and minimal constraint surfaces of Fig.6.4 appear as
the extremals of the feasible tangents in Fig.6.7.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-6

-4

-2

0

2

4

6

Forbidden Region

θ

θ
.

Figure 6.7: A phase plot of the shape freedoms — limits on θ̈ appear as constraints on
the tangent space. A time-optimal feasible trajectory in phase space is also shown. Circles
indicate the start location, the switching point and the goal.

We choose a simple technique for finding feasible trajectories. We pick a feasible vector
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field and follow it from the start (here, θ = 0). We pick another feasible vector field and back
project it from the goal (here, θ = π

2 ). At the point where the two trajectories intersect, we
switch vector fields. If the vector fields used are the extremals, then we obtain the time-
optimal trajectory. The time-optimal trajectory for the shape freedoms is shown in Fig.6.7.
It must be noted that planning, even in 2D, need not always be so easy. For example, the
forward and backward trajectories might intersect the limits of the feasible space instead of
intersecting each other. In such cases, more complicated planning is required. We refer the
reader to [Bobrow et al., 1985, Shin and McKay, 1985] for two solutions to the problem.

One drawback of the above trajectory generation strategy is that there is a discontinuity
in the control at the instant the vector fields switch. If the robot has a limit on the rate of
change of its acceleration (its jerk), then this is not possible. To mitigate this, we truncate
the forward and the backward trajectories a user defined time-step before they intersect
and merge the two trajectories using a cubic spline. This changes the acceleration profile
close to the switch from a step to a ramp, smoothing the trajectory.

The task freedoms

Once a feasible trajectory for the shape freedoms is computed using the technique described
in the previous subsection, we can compute the controls α(t) that are required to move the
shape freedoms along the desired trajectory using Eqn.6.22. At each point in this trajectory,
there is an orthogonal task freedom that can be varied without affecting the trajectory. The
control for this freedom lies along the unit vector a⊥

θ . Fig.6.8 illustrates the computation
of the allowable range for the orthogonal control.

The plot in Fig.6.8 shows the range of the allowable orthogonal control as a function
of time. The figure on the top right marked I is a snapshot of the contact acceleration
constraint at time t = 0.5s.. It shows the polygon of feasible accelerations as well as the aθ

and the a⊥
θ directions. Since we have already computed the shape freedom trajectory, we

know the magnitude of the required control along aθ, namely α(0.5). This magnitude is
shown as the line segment OA. To find the range of the task freedom control, we erect the
perpendicular a⊥

θ at A. The intersection of this perpendicular with the polygon of feasible
accelerations, shown as BF , gives us the range of the allowable task freedom control —
β(0.5) ranges from AB to AF . We repeat this procedure for all t to obtain the β − t plot
in Fig.6.8.

Notice that there are discontinuities in the slopes of the β(t) limits. Two such dis-
continuities are shown in the figures on the top left marked II and III. Evidently, these
discontinuities occur when a⊥

θ passes through a vertex of the feasible polygon, as shown.
Another slope discontinuity, shown as IV , occurs due to the patching of the two extremal
trajectories using the cubic spline. In this case, the acceleration in-between the dark circles
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is approximated to be piecewise linear, due to the spline.

System trajectories

To construct trajectories for the entire system, we need to select β(t) from the allowable
range of β computed as mentioned in the previous subsection. Any feasible selection of
β(t), together with the α(t), constitutes a feasible control for the entire system which will,
by construction, have the same angular motion of the block as any other feasible selection
of β(t).

We use a blend of the extremal βs to construct the feasible β(t). We define a fraction
p such that:

βp(t) = (1− p)βmin + (p)βmax (6.24)

A sample of the βp(t) are shown in both the β− t plot in Fig.6.8 and the t = 0.5s. snapshot.
The system trajectories with the various p are shown in Fig.6.9. For the waiter’s prob-

lem, choosing p = 1 corresponds to choosing the largest feasible acceleration of the palm in
the vertical direction for the given α(t). Likewise, choosing p = 0 corresponds to choosing
the smallest feasible acceleration of the palm in the vertical direction for the given α(t).
Hence the two system trajectories for p = 0 and p = 1 act as bounds for the allowable
motion of the palm for the given α(t) — any feasible palm configuration must lie within
palm configurations of these two trajectories.

Fig.6.10 is a a finer resolution version of Fig.6.9. Instead of plotting the actual motion
of the palm and the block, we have shown the path of the block in configuration space. This
allows us to reduce clutter and show the configuration space surface of feasible trajectories
for a given α(t).

The decomposition provides us a controllable simulation. For example, in the waiter’s
problem, if a user were handed two joysticks, one for each degree of freedom of the palm
and told to tip the block, he would invariably fail — the block would very easily slide, or
lose contact with the palm. Instead, we can give the user control of β(t) with the assurance
that any value of β(t) will satisfy the contact constraints. We have solved the hard problem
(tipping the block) and given the control of the freedoms of secondary importance (the
motion of the palm) to the user.

6.6 Sliding

Until now we have looked at plans that only involve rolling at the contact between the
block and the palm. For the tipping problem, it is relatively easy to incorporate the sliding
of the palm as well. This is predominantly because the contact between the block and
the palm is of Type A (a contact between a vertex of the block and a side of the palm
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Figure 6.9: A sampling of the set of all feasible palm motions that move the block from
θ = 0 to θ = π

2 in 2.5 seconds and have the exact same angular motion θ(t) of the block
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Figure 6.11: A trajectory that involves both sliding and rolling at the contact. The block
slides in the sliding region and reverts back to rolling out of the region.

[Lozano-Pérez, 1983]). As a result, the moment applied by any contact force on the block
by the palm remains the same regardless of the position of the block relative to the palm.
This is illustrated in Fig.6.12. Hence sliding the palm relative to the block does not affect
the motion of the task freedoms.

An instance of a plan involving sliding and rolling is shown in Fig.6.11. The dotted line
denotes the extremal trajectory — one where sliding of the palm must occur. The extremal
is computed by following the limits of the allowable tangents at each point of of the state
space. The solid line denotes a trajectory where both rolling and sliding occur. When the
solid line coincides with the extremal, we are allowed to slide the palm relative to the block
(the allowable region is colored in the plot). However we need to ensure that by the time
the trajectory reaches the end of the allowable region, the sliding must cease — the relative
velocity of the palm with respect to the block must be brought to zero. At the end of the
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Figure 6.12: An illustration of a Type A contact and a palm motion that results in both
sliding (shown by the dark palms) and rolling at the contact
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allowable region, the solid line leaves the extremal and rolling contact is initiated. The
block then maintains rolling contact until it reaches the goal.

The motion of the palm for the trajectory given in Fig.6.11 is shown in Fig.6.12. The
times where the palm is dark denote sliding. For this problem, we used a simple constant
acceleration followed by a constant deceleration for the motion of the palm relative to the
block during the sliding phase.

6.7 Feedback control for shape freedoms

The main theme of the task and shape decomposition paradigm is the importance of con-
straint satisfaction. The basic idea is that, given a choice, it is less undesirable for the
system to have an error in the task freedoms rather than have it fail completely due to
an error in the shape freedoms. Carrying over the idea to the waiter’s problem, we will
be more tolerant to positioning error for the palm than to error that causes the block to
slip on the palm or lose contact. This is because once the constraint is broken, the system
transitions to a completely new dynamic regime (sliding instead of rolling for the block)
where accomplishing the task might be impossible.

A second advantage of writing a controller for just the shape freedoms is that the
task freedoms are still unconstrained and can be controlled at will without affecting the
controller, due to the orthogonal projection.

A third advantage is the reduction of the dimensionality of the space in which the con-
troller resides. For the waiter’s problem, we will use the numerical technique of backwards
dynamic programming to construct a feedback controller. Albeit a powerful technique, one
drawback of dynamic programming is that the running time grows exponentially with the
number of dimensions. By choosing the low dimensional shape space to write our controller
in, we can obtain greater speed and higher resolution for dynamic programming.

We will follow this theme and write a feedback controller for the shape freedoms of the
waiter’s problem. The controller will ensure that the contact acceleration constraints are
not broken in case there is control noise.

Background

The optimal control problem deals with the generation of trajectories and controls for a
system that minimize a given cost function. The work of Bellman [Bellman, 1957] pioneered
the use of dynamic programming to solve optimal control problems. Bellman proposed a
numerical technique for finding the optimal cost from any point in a state space to a goal.
The gradient of the optimal cost function can be used to generate the corresponding optimal
feedback controller.
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A related area of research, kinodynamic planning, focusses on the motion planning
problem of a robot subject to both kinematic and dynamic constraints. Most of the early
research on kinodynamic planning focussed on planning a time-optimal motion for a point
mass in a 2D or 3D obstacle field undergoing Newtonian dynamics subject to velocity and
acceleration bounds.

Donald et al.[Donald et al., 1993] provided an approximation algorithm that ran in poly-
nomial time. The fundamental idea of their approach was to convert the continuous trajec-
tory generation problem into a discrete graph search. They achieved this by constructing a
uniform grid in state space with the spacing equal to applying a constant acceleration for
a given time interval. The acceleration and the time interval were chosen to touch, but not
break, the velocity and acceleration bounds. They then posed the trajectory generation
problem as a graph search in the discrete state space from the grid point nearest to the
start to the grid point nearest to the goal.

While the philosophy of the approach is identical to dynamic programming, the key
contribution of Donald et al.was their insight into the selection of the discretization param-
eters. For the point mass problem, they were able to relate the granularity of the state space
discretization and the choice of the time interval to a speed-dependent obstacle avoidance
margin. However, it is unclear how this relation can be extended to problems with more
complicated dynamics.

Most of the problems for which dynamic programming has been used to obtain numerical
solutions can be formulated as deterministic discrete-time variational control problems.
Continuous-time variational control problems can be treated by assuming that the control
is piecewise constant and making appropriate transformations to the discrete-time case.

In the subsequent paragraphs, we provide a brief description of the dynamic program-
ming technique. We refer the reader to Bellman’s book [Bellman, 1957] for a more thorough
treatment.

The general case of the discrete-time problem is formulated as follows.

Given:

1. A system described by a nonlinear difference equation

x(k + 1) = Φ[x(k),u(k), k] (6.25)

where x is an n-dimensional state vector, u is an m-dimensional control, k is an index
for the stage variable, and Φ is an n-dimensional vector functional.
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2. A variational performance criterion

J =
K∑

k=0

L[x(k),u(k), k] (6.26)

where J is the total cost and L is the cost for a single stage.

3. Constraints

x ∈ X(k) (6.27)

u ∈ U(x, k) (6.28)

where X(k) is a set of admissible states at stage k, and U(x, k) is a set of admissible
controls at state x, stage k.

4. An initial state
x(0) = s (6.29)

Find:

The control sequence u(0), · · · ,u(k) such that J is minimized subject to the system
equation, the constraints and the initial condition.

If we denote by I(x, k) the minimum cost for state x at stage k, Bellman’s principle of
optimality can be written as:

I(x, k) = min
u
{L(x,u, k) + I[Φ(x,u, k), k + 1]} (6.30)

It states that the minimum cost for state x at stage k is found by choosing the control
that minimizes the sum of the cost to be paid at the present stage and the minimum cost
in going to the end from the stage K + 1 which results from applying this control. The
optimal control at state x and stage k, denoted by û(x, k) is directly obtained as the value
of u for which the minimum in Eqn.6.30 is attained.

Since Eqn.6.30 determines I(x, k) and û(x, k) in terms of I(x, k + 1), it must be solved
backwards in k. The optimization over a sequence of controls is thus reduced to a sequence
of optimizations over a single control. Note that the minimum cost at the next state,
I[Φ(x,u, k − 1), k] is found by linearly interpolating the values of I(x, k) at the quantized
states.

The same procedure can be used to compute the optimal control sequence for any
initial state starting at any stage. If the initial state is not a quantized state, an additional
interpolation might be necessary. Thus, the solution to many optimization problems is
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obtained in the same calculation as for the original problem. Bellman called this invariant
embedding.

Feedback controller

A feedback controller provides the optimal control to be applied at any state of the system
that will result in a trajectory that minimizes a given cost function. We used backward
dynamic programming to construct a feedback controller for the waiter’s problem. The cost
function we optimized was time-optimality, i.e.the feedback controller gave us paths that
took the least amount of time to get to the goal.

We discretize the (θ, θ̇) space with a uniform grid. A sampling of the grid is shown in
Fig.6.13. The grid points are much closer in reality (there are 99 grid points in between
consecutive horizontal grid points and 49 grid points in between consecutive vertical grid
points) but we do not show all of them, to reduce clutter. At each grid point, we compute
the contact acceleration constraint and compute the allowable α. We divide the range of
allowable α into 10 equally spaced controls and apply these constant controls for a time-
step of 1ms. The orbits of the shape freedoms on the application of the controls is shown
in Fig.6.13. The goal region is shown as the dark rectangle.

The output of the dynamic program is an optimal cost function that gives the optimal
cost (here, minimum time) to get from any point in the state space to the goal. The optimal
control is one that moves the trajectory in a direction that is closest to the gradient of the
optimal cost function. The level sets of the optimal cost function and a time-optimal
trajectory from θ = 0 to θ = π

2 are shown in Fig.6.14.

6.8 Summary

In this chapter, we have demonstrated a new technique for solving the trajectory generation
problem for dynamic contact manipulation. We have shown how the projected dynamics
can be used to generate analytical solutions and controllable simulations — where the user
can control a set of the freedoms of the system without violating the dynamic constraints.
We have also presented the construction of feedback controllers for the shape freedoms using
the numerical technique of dynamic programming.
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Figure 6.13: Discretization for dynamic programming: the circles denote discrete states. At
each discrete state we choose 10 feasible controls. Each curve at a state is an orbit of the
system over one time-step with a piecewise constant discrete control. There are 10 curves
at each discrete state. The goal region is denoted by the dark rectangle.
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Chapter 7

Conclusion

7.1 Contributions

This thesis explores the planning and control of dynamic contact manipulation. Our main
contributions are:

• The contact acceleration constraint : We have shown that both actuator limits and
Coulomb friction constraints are important for dynamic manipulation. In §2, we have
derived the contact acceleration constraint, a mapping of both sets of constraints into
a unified space and have shown, for the first time, how both these constraints interact
to decide feasible system trajectories.

• The task and shape decomposition paradigm: While the contact acceleration constraint
provides an instantaneous solution to the set of feasible controls, computing feasible
trajectories using this information is still a hard problem. To solve this problem, we
have introduced the task and shape decomposition paradigm in §4. While the contact
acceleration constraint is a specific contribution to dynamic manipulation, the task
and shape decomposition paradigm is a broader contribution to constrained dynam-
ical systems. We use this paradigm to derived analytical solutions for a constrained
nonholonomic control problem (§5) and a dynamic manipulation problem (§6).

7.2 Future directions

In this section, we explore how our techniques can be used in areas like humanoid robots
and computer graphics to generate robust dynamic trajectories. Since this is future work,
we shall provide the germ of the ideas and some preliminary results.



114 CHAPTER 7. CONCLUSION

Walking

Walking is dual to manipulation. Just like a hand manipulates an object to move it, a walker
manipulates the ground to move itself. Human beings are extremely versatile walkers — we
can walk on rough terrain, slippery terrain and even unknown terrain (when we are walking
in the dark). An important requirement of walking is the maintenance of a fixed contact
between the foot and the ground. Hence, an important question to answer is:

What are the controls that can be applied to a walking robot that generate a
stable gait while maintaining a fixed contact mode between the walker and the
ground?

To illustrate the use of our techniques, we will derive the contact acceleration constraint
for a simple walking robot, in fact, the Simplest Walking Model proposed by Garcia et
al.[Garcia et al., 1998]. The model, shown in Fig.7.1, comprises of two planar legs joined
at the hip by a revolute joint. There are point masses at the tips of the legs and at the hip.
The leg that is in contact with the ground is called the stance leg while the leg that is distal
from the ground is called the swing leg. During a walk cycle, the swing leg swings from
behind the stance leg to in front of it and impacts the ground with an inelastic collision.
Instantaneous with the impact, the stance leg lifts off the ground and the two legs switch
roles.

φ

g M

m
m

θ

γ

l stance

leg

swing

leg

Figure 7.1: The Simplest Walking Model, reproduced from [Garcia et al., 1998]
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Garcia et al.analyzed this model as a passive dynamic walker, one with no actuation
or control. Research on passive dynamic walking was pioneered by McGeer [McGeer, 1990]
who built numerous unactuated machines that, when set into motion on top of a gentle
slope, would walk down the slope using just their natural dynamics. Any kinetic energy
lost during the inelastic impact with the ground is recovered from gravity.

To draw a parallel with manipulation, we place this model in a slightly different setting.
The walker is placed on an articulated palm. The palm is allowed to move horizontally and
vertically, but is not allowed to rotate. The goal is to compute palm motions that make
the walker walk on the palm.
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Figure 7.2: Walking by manipulation — the simplest walking model rests on an articulated
palm. The plots show the constraint in contact acceleration space and the allowable angular
accelerations of the joints that maintain a fixed contact between the palm and the walker.

We define the configuration of the walker qo by (x, y, θ1, θ2), where (x, y) are the coor-
dinates of its contact with the palm and (θ1, θ2) are the joint angles of the links, as shown
in Fig.7.2. We define the configuration of the palm qr by (q1, q2). We control the motion
of the palm (q̈1, q̈2).

A rolling contact between the walker and the palm imposes the constraint:

Jq̇r = GT q̇o (7.1)
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where

J =

[
1 0
0 1

]

G =


1 0
0 1
0 0
0 0


Coulomb friction at the contact imposes the contact force constraint:

f ∈ F (7.2)

We can write the dynamics of the walker as:

Mq̈o + B(qo, q̇o) + no = Gf (7.3)

For a given configuration q = (qo, qr) and velocity q̇ = (q̇o, q̇r), the allowable joint
acceleration of the robot q̈r that satisfies both the velocity and the force constraints are
given by the contact acceleration constraint.

Applying the contact acceleration constraint, we get:(
q̈1

q̈2

)
+ V (θ1, θ2, θ̇1, θ̇2) ∈ GTM−1G(θ1, θ2)(F) (7.4)

What is important here is that the constraints depend only on the angles (θ1, θ2) and
their rates (θ̇1, θ̇2) and not on the spatial location of the palm (x, y) or the velocity of the
palm (ẋ, ẏ). The constraint in contact acceleration space, and the corresponding constraints
on the angular rotations of the walker, for a given state, are shown in Fig.7.2.

Computing an optimal gait using this information is still an open problem. There
is no clear notion of optimality for walking robots, even for the simplest walking model.
A minimum energy gait results in the walker tip-toeing, taking tiny steps, while a gait
that maximizes the stride length is not stable to control error and gets dangerously close
to breaking the friction constraints. Of course, one could fix a trajectory for the walker
and write a controller that servos the system to that trajectory [Morimoto et al., 2003].
However, by doing so, we are forcing the walker to follow a trajectory that might not be
natural to it. We refer the reader to Wisse’s thesis [Wisse, 2004] for a detailed discussion
on optimality criteria for walking robots.
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Motion retargeting

The term motion retargeting refers to the technique of editing an existing motion sequence
to achieve a desired effect. The motion sequence is usually obtained from human motion
capture data. The desired effect is usually to use this data to animate creatures that are
kinematically dissimilar to humans, like ogres, Hobbits and green swamp creatures.

For the case of animating manipulation tasks, it may not be very difficult to come
up with a reasonable guess for a path for the character and the object, for example by
extracting just a few keyframes from motion capture data and editing them to fit a new
situation or by having an animator set up some key poses for a totally new scenario.

However, getting the timing right for dynamic manipulation can be much more difficult
for an animator to do than coming up with the key poses. Human beings are extremely
good at observing manipulation tasks performed by others and estimating the inertial and
frictional parameters of objects. Likewise, we are also very good at spotting errors in such
animations. Motion retargeting of manipulation thus requires an accurate and dynamically
feasible selection of the time-scaling of the animator’s path. Hence, an important question
is:

Given an animation path, either from motion capture data or from interpolating
an artist’s keyframes, what is the space of dynamically feasible time-scalings of
this path for a new set of inertial and frictional parameters?

Figure 7.3: Motion capture of a manipulation task, reproduced from
[Pollard and Hodgins, 2002]

We used the motion capture data from [Pollard and Hodgins, 2002] to extract a feasible
path. As shown in Fig.7.3, the character tumbles a box while maintaining a fixed contact
between the box and the ground. During the course of manipulation, the character demon-
strates various contact modes — her right and left hands slide and remain fixed on the box.
We can parametrize the pose of the box and the motion of the character’s hands by the
angle θ that the box makes with the horizontal. A trace of the entire motion from θ = 0 at
the top left to θ =

π

2
is shown in Fig.7.4. The path is divided into stages (I-VI) depending
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on the contact mode of the system. For example, in stage I, both hands maintain a fixed
contact with the box.
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Figure 7.4: Motion of the block and the fingers. During all the sliding stages, motion of
the finger along the side of the box is chosen to be linear in θ. Motion is divided into six
stages (I-VI) based on the contact mode.

We took the parametrized path and applied the contact acceleration constraint to it.
The procedure is identical to the one used to compute the feasible accelerations for the
block standing problem in §3.

Fig.7.5 shows the phase plot for stage I. A limit of 10m/s2 is set on the acceleration
θ̈. The inertial properties and the coefficients of friction are chosen to be different from
the properties measured during motion capture. A feasible retargeting time-scaling is a
trajectory in this phase space that satisfies the tangency constraints at each point.

An interesting area of future work is the selection of an optimal time-scaling — one
that is not only feasible but also physically realistic. The contact acceleration constraint
provides a principled technique for computing feasible time-scalings of animations. One can
imagine parametrizing this space of feasible trajectories and applying them to find the one
that is most visually appealing.
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Figure 7.5: Phase plot for Stage I

7.3 Closing thoughts

The problem of generating robust dynamic trajectories for manipulation is still open. This
is rather surprising, since even a child can perform complex manipulation tasks involving
3D contacts and controlled contact mode changes. Clearly, the child is not constructing
friction cones in its head and computing their intersections, but posses some instinct, some
innate ability to simplify the problem and solve the task. We hope we have convinced the
reader that all the theorems and equations we have introduced in this thesis have helped
us simplify the problem, and not obfuscate it. Manipulation is the art of moving things,
and like any art form, it must be simple and elegant.
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