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Abstract— We present an approach for determining optimal
meet points for a team of agents performing coordinated tasks
in an environment. Such points represent the best locations at
which the team should meet in order to complete their current
task. We develop analytic solutions for finding these meet points
and describe how these techniques can be applied to several
different multi-agent coordination scenarios.

I. INTRODUCTION

A wide range of tasks exist that are better solved using
a team of agents rather than a single agent. Indeed, some of
these tasks require a team for completion. In robotics, example
applications that have benefited from multirobot solutions
include exploration [1], [2], [3], tracking [4], [5], security
sweeping [6], formation control [7], [8], and box pushing [9],
[10].

In all of these applications, individual robots must work
together and coordinate their actions in order to accomplish a
team objective. Often, this coordination may take the form of
two or more agents combining to accomplish some part of the
task. For instance, consider two robots at different positions
that wish to team up to push a box from some initial location
to a desired goal location. Perhaps each robot can push the
box on its own, but together they can push it much more
effectively, at a faster speed. In order for the robots to get
the box to its goal as quickly as possible, they need to decide
where they are going to meet to push the box, whether one is
going to start pushing first and have the other join it at a later
point, and so on. Solving for the rendezvous points, or meet
points, is an important part of coordinating the team.

In this paper, we develop an approach for constructing
such meet points. Depending on the application, these points
may correspond to places where two or more robots get
together to exchange map information, to form a convoy for
venturing into hazardous terrain, or to combine to move a box
or cumbersome object. In each of these example cases, the
best rendezvous points may differ significantly. We therefore
introduce a general approach that can be used to generate the
set of all possible optimal meet points, and show how we can
optimize over this set to determine the true optimal point for
a particular application.

This paper is structured as follows. In Section II we formally
introduce the meet point planning problem for two agents
and provide an approach for computing time-optimal meet
points for two agents traveling at different speeds. We extend

this result in Section III to provide the set of time-optimal
meet points for two agents starting out at different times,
and describe how this result can be used to compute optimal
meet points for a range of different coordination scenarios.
In particular, we apply this to our box-pushing example and
provide an approach that computes an optimal meet point
for two robots coordinating to move a box from some initial
location to a desired location. We conclude in Section IV with
discussion and future work.

II. TWO AGENT TIME-OPTIMAL MEET POINTS

Consider two agents located at positions p1 and p2 in some
environment and capable of moving with speeds k1 and k2,
respectively. We wish to have the two robots meet each other in
minimum possible time in order to exchange some information
or combine to solve some task. We call the resulting point in
the environment at which they rendezvous a meet point. If, by
having each agent travel to this meet point at full speed, the
agents are able to rendezvous in minimum possible time, the
meet point is time-optimal.

When planning time-optimal paths, it is common in mobile
robotics to use some discrete graph representation of the
environment. One popular representation is a visibility graph
[11]. A visibility graph encodes all of the possible time-
optimal paths in a two-dimensional uniform-cost environment.
The graph consists of a set of nodes, chosen to be the set
of all obstacle corners combined with the initial and goal
locations of any agents in the environment, and a set of edges
connecting all nodes that are visible from one another. An
example visibility graph for an environment containing two
agents and five obstacles is shown in Figure 1(left).

Each edge in a visibility graph also has a weight or cost
associated with it, corresponding to its length. Computing a
time-optimal path between two nodes on a visibility graph
consists of finding a sequence of edges that can be used to
transition between the nodes and whose combined cost is
the least out of all such sequences. Several efficient graph-
based search algorithms exist for finding such paths, such as
Dijkstra’s search [12] or A* [13], [14].

It turns out that, in order to solve for a time-optimal meet
point for two agents, we need only to solve for a time-optimal
path from one agent to the other, then find the point along
this path at which the agents would meet if they both moved
towards each other at full speed.



Fig. 1. Computing time-optimal meet points for two agents. (left) The visibility graph constructed for an environment containing five obstacles (shown in
black) and two agents (the two red circles on the far left and right of the environment). This graph encodes all possible time-optimal paths from each agent
to any of the obstacle vertices in the environment, as well as from one agent to the other. (right) The time-optimal path between the agent locations and the
time-optimal meet point (shown as a blue circle) at which the agents should rendezvous if the left agent travels at twice the speed of the right agent.

Theorem 1: Given two agents located at positions p1 and
p2 in an undirected, distance-weighted graph, and capable of
moving with speeds k1 and k2, respectively, a time-optimal
meet point for the agents will reside on any time-optimal path
from p1 to p2. Further, this meet point will reside a distance
of d1 from p1 along such a path, where

d1 = dP
k1

k1 + k2
(1)

with dP is the length of a time-optimal path P from p1 to p2.
Proof: We first show the latter holds, namely that if

the meet point is fixed to reside on a particular path P , then
its position along this path is fixed by the above equation.
Trivially, the time-optimal meet point along a fixed path results
from each agent moving towards each other along the path
at top speed. The position at which they will meet is thus
determined by their relative speeds:

d1

k1
=

(dP − d1)
k2

(2)

resulting in

d1 = dP
k1

k1 + k2
(3)

Now, since the lengths of all time-optimal paths are equal,
if a time-optimal meet point resides on one time-optimal path,
time-optimal meet points must exist on all the time-optimal
paths. So assume no time-optimal meet point resides on a
time-optimal path P from p1 to p2. Then the meet point must
reside on some non-optimal path, which we denote by Q1. We
know from above that the position of the meet point along this
path Q is

d1 = dQ
k1

k1 + k2
(4)

1The meet point must reside on some path connecting p1 and p2 since each
agent travels from its respective location to the meet point and so the union
of the two agent’s paths to the meet point is a path from p1 to p2.

If we were to fix the meet point to reside along path P ,
then its position would be

d1∗ = dP
k1

k1 + k2
(5)

Since P is a time-optimal path and Q is not, dP < dQ. But
this means that d1 > d1∗, so the time taken to reach our time-
optimal meet point is greater than the time taken to reach the
meet point on path P . Contradiction. Hence, a time-optimal
meet point resides on any time-optimal path from p1 to p2.

This result is encouraging, because it means that we can
compute time-optimal meet points very efficiently. It is also
very general: the result applies to any undirected graph, not
just visibility graphs, and in fact also holds in any space in
which a time-optimal path from p1 to p2 for the first agent
is also a time-optimal path (in reverse) from p2 to p1 for the
second agent. Further, if there is more than one time-optimal
path for agent 1 and some of these paths do not correspond
to time-optimal paths for agent 2, then as long as one of the
paths that does correspond to a time-optimal path for agent 2
is chosen, the same result holds.

Figure 1(right) shows a time-optimal meet point for the
example scenario in Figure 1(left), along with the time-optimal
path taken by each agent to this point. In this example, the left
agent travels at twice the speed of the right agent, and so the
distance of the meet point along the path from the left agent
is twice its distance along the path from the right agent.

III. COMPUTING SETS OF MEET POINTS

The approach developed above allows us to compute a time-
optimal meet point for two agents starting at different locations
in an environment and traveling at different speeds. However,
it may be the case that the two agents are not just trying
to minimize the time required to rendezvous, but the time
required to perform some coordinated task, such as pushing
a box to a goal location. In such a case, the time-optimal
meet point for the two agents may not be the best place for
them to congregate to get the box to the goal most efficiently.



For instance, consider two agents, R1 and R2, where R1 is
pushing a box to some goal location G and wishes to solicit
the help of R2. Rather than having R1 and R2 move directly
towards each other to rendezvous, it may be faster to have R1
start pushing the box towards G and have R2 meet up with it
along the way to help.

Because we are now trying to minimize over the time to
complete a task, rather than just the time for the agents to
meet, the time-optimal meet point calculation in the previous
section may not be enough. Instead, we would like to generate
the set of all possible meet points for the two agents so that
we can optimize over this set to find the best meet point for
the current task at hand. It turns out that, for a given meeting
time t, there are at most two locations at which the agents can
meet (assuming the agents take the fastest paths possible to
their destinations) and we can construct the full set of possible
meet points by varying this meeting time.

It may also be the case that our agents start moving towards
their meet point at different times. In our current box-pushing
example, each agent’s path to the meet point will begin with
moving along some edges on the visibility graph, then at some
point will depart from a node on the visibility graph to move
directly towards the meet point. We can analytically compute
the final meet point if we know the final visibility nodes
passed through by the agents. But because the agents travel
at different speeds and these nodes may be different distances
from the initial positions of the agents, the agents may reach,
and thus leave, these nodes at different times. As a result, our
set of possible meet points depends on the difference in time,
δt, between when agents R1 and R2 reach their final visibility
nodes.

Claim 1: There are no pauses in the time-optimal trajectory
— all robots are either moving at the maximum possible speed,
or have reached the goal.

Proof: It is clear that if there were just one robot moving
to a goal, the time-optimal trajectory will have no pauses. The
robot moves as quickly as it can along the shortest path. In
the presence of other robots, the only time the robot might
consider to pause is if it needs to wait to meet another robot.
However, it could as well have spent that wait time moving
towards the other robot and achieved a quicker meeting. Hence
there are no pauses in moving to a meet point. Since the multi-
robot trajectory comprises of either moving to a meet point or
to a goal, there are no pauses in the entire trajectory.

Theorem 2: Given two robots, R1 and R2 located at (0, 0)
and (d, 0), respectively, and capable of moving with speeds k1

and k2, respectively, and given that R2 reaches its location a
time δt after R1, the meet point (x, y) at time t is given by:

x(t) =
1
2d

(
d2 − k2

2(t− δt)2 + k2
1t

2
)

(6)

y(t) = ±
√

k2
1t

2 − x2 (7)

subject to:
t ∈ [tl, tu] (8)

tu = 0.8 s.tl = 0.4 s. (d,0)(0,0)

t = 0.68 s.

Meet point curve

Fig. 2. The dark circle shows the meet point curve for k1 = 2, k2 = 1,
d = 1, and δt = 0.2s.. Also shown are the two candidate meet points at
t = 0.68s. and the meet time interval [0.4s., 0.6s.]. The lighter solid and
dashed circles represent the locus of points reachable in a given time, for the
individual robots.

where:
t ∈ ∅

if k1 ≥ k2 and (d− k1δt) < 0

otherwise:

tu =


(d− k2δt)
(k1 − k2)

if k1 ≥ k2

(d + k2δt)
(k2 − k1)

if k1 < k2

tl =
(d + k2δt)
(k1 + k2)

Proof: The proof is in two parts. In the first part, we
compute the optimal meet point (Eqn.6 and Eqn.7) assuming
that the two robots can meet at time t. In the second part, we
compute the constraints on t (Eqn.8).

Since the two robots reach the meet point at the same time,√
x2 + y2

k1
= δt +

√
(x− d)2 + y2

k2
= t (9)

Squaring Eqn.9, we get

x2 + y2

k2
1

= t2 (10)

(x− d)2 + y2

k2
2

= (t− δt)2 (11)

Substituting the value for y2 from Eqn.10 into Eqn.11, we
obtain

x(t) =
1
2d

(
d2 − (t− δt)2

k2
2

+
t2

k2
1

)
y(t) = ±

√
k2
1t

2 − x2



A sample meet point curve is illustrated in Fig.2. Note that
there are two solutions for the meet point for a given time t,
due to symmetry.

To compute Eqn.8, the following visualization is useful. For
each robot, the locus of points that the robot can reach in a
given time is a circle centered around the start point. As time
increases, the circles get bigger. These are shown as the lighter
solid and dashed circles in Fig.2. The intersection of the circles
for the two robots defines a meet point at that time t.

The circles of R2 start to grow δt after those of R1. If by
the time R2 starts, R1 has already passed it, the only way R2
can catch up is if it is faster than R1. If it is slower, the two
robots can never meet. This can be written as

t ∈ ∅
if k1 ≥ k2 and d

k1
< δt

Once we have ensured that the two robots can indeed meet,
the earliest time they can meet is if they head straight towards
each other. This corresponds to the time when the two circles
first touch each other. This can be easily computed as

tl =
(d + k2δt)
(k1 + k2)

The upper bound on t occurs due to the fact that the
two circles expand at different rates. Eventually, the faster
expanding circle will engulf the slower one. At the critical
point, the two circles will touch at exactly one point and the
point will lie on the line joining the two start points. There are
two cases for tu because if the faster robot starts with the time
delay δt, it will take more time to engulf the slower robot than
if it did not start with the time delay. Note that if k1 = k2,
then tu = ∞.

Corollary 1: If the two robots R1 and R2 are at (x1, y1)
and (x2, y2) respectively, the meet point (x̄(t), ȳ(t)) at time t
is given by(

x̄(t)
ȳ(t)

)
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

](
x(t)
y(t)

)
+

(
x1

y1

)
(12)

where
θ = arctan(

y2 − y1

x2 − x1
)

and (x, y) are computed from Eqn.6 and Eqn.7 with

d =
√

(x2 − x1)2 + (y2 − y1)2
Proof: This follows from the invariance of the Euclidean

metric under rigid transformation.

The above result provides the set of all meet points for two
agents starting at two different positions at two different times.
Figure 3 illustrates the set of meet points for the scenario
shown in Figure 1. Note that it is possible that some of
the potential meet points may reside within obstacles in the
environment. Such points can easily be detected and should
be discarded.

We can use the above result to find all meet points for a
collection of N agents by calculating the loci as above for each

Fig. 3. Computing the set of all time-optimal meet points for two agents.
Here, we have used the result from Theorem 2 to construct the set of possible
meet points for the two agents initially traveling along the path shown in
Figure 1. This set of meet points is computed from the last visibility nodes
passed through by each agent; in this case, these points are the bottom corner
of the six-sided obstacle for robot R1 and the initial location for R2.

pair of agents, then intersecting these loci. This ensures that the
agents all reach the same place. For sufficiency, the agents also
need to reach the points at the same time. These points will
be rare, even for the simple case of three agents — potential
meet points not only need to lie on the intersection of three
circles but also need to have the same time parametrization.

Once equipped with this set of meet points, we can then
optimize over the set to compute optimal solutions for partic-
ular applications. For example, take our box-pushing task and
assume that one of the agents starts out pushing the box (so
that the speed of that agent reflects how fast it can push the
box on its own) and that the two agents together can push the
box at speed k3. The total time taken to reach the goal, τ , and
the time taken to reach the meet point, t, are related by:

τ = t +
dg(t)
k3

where
dg(t) =

√
(xg − x(t))2 + (yg − y(t))2

and x(t) and y(t) are obtained from Eqn.6 and Eqn.7, respec-
tively.

At the extrema of τ

dτ

dt
= 1 +

1
k3

d

dt
(dg(t)) = 0 (13)

It can be shown that Eqn.13 will have only two roots,
facilitating a fast numerical solution. A sample solution is
shown in Fig.4.

Note that the solution obtained above might not be time
optimal since it might be faster for the two agents to just head
to the goal independently and not meet at all. These times are,
however, easy to compute and compare.
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Fig. 4. The optimal meet point and the path to the goal for the example
problem mentioned in the text, with k3 = 3 and the goal at (0.6, 1.2).

The set of all meet points can also be used for several other
applications. For example, it can be used to compute time-
optimal paths for agents wishing to meet in a particular region
by simply intersecting the curve with the region, leaving us
with a set of meet points that reside within the desired region.
From this set, a single meet point can then be selected that
enables the team to meet in minimum possible time. The set of
meet points can also be used for convoy tasks, where we would
like groups of agents to form before venturing into certain
areas of the environment. In this scenario, it makes sense to
select a meet point from our set that is located outside the area
of interest and that minimizes the overall time to accomplish
the convoy operation.

IV. DISCUSSION

We have presented an analytical solution to the problem of
computing the meet point locus for multi-robot coordination
tasks. We have also shown how this result can be used to
compute the time-optimal trajectory to reach a goal point
by means of a one-dimensional gradient descent algorithm.
Finally, we have discussed how our algorithm can be inte-
grated with a visibility graph planner in the case where the
departing visibility nodes for the agents are known, giving us
time-optimal trajectories parametrized by meet time t, in the
presence of obstacles.

In the future, we would like to extend our algorithm by
relaxing the requirement of knowing the departing visibility
nodes. A simple, albeit naı̈ve, method for doing this would
be to calculate time-optimal paths from each agent to every
node in the visibility graph and store the corresponding times
associated with these paths. Then, the set of all pairs of
visibility nodes (ni, nj) can be constructed and we can use
the stored time values to calculate the difference in arrival
time, δt, between the first agent arriving at node ni and the
second agent arriving at node nj . We can then use these node
pairs and differences in arrival times as inputs to our time-
optimal meet point calculation. The meet point with smallest
overall time t is our global time-optimal meet point.

However, in large environments with several obstacles this

na ive approach could be rather computationally expensive.
Significant improvements in efficiency could be gained if we
were able to remove from contention some of the pairs of vis-
ibility nodes. To do this, we could employ a heuristic search,
where we compute efficient lower and upper bounds on the
time taken to complete the task using various pairs of visibility
nodes, and we use these bounds to focus our computation on
the most promising pairs of nodes. For instance, if the two
agents start out close to each other and the goal location
in a large environment, then it makes sense to investigate
meet points that are close to the agents to begin with, and it
may be possible to quickly rule out any solutions that involve
distant nodes as being grossly suboptimal. Such an approach
follows the same general ideas as A* search, and appears very
promising.

Also, for each pair of visibility nodes, given the speeds
ki, we can precompute the range of δt for which the robots
will meet before reaching the goal as opposed to just moving
to the goal without bothering to meet. From Theorem 2,
we can compute a lower bound δt = d

k1
if k1 ≥ k2. The

upper bound on dt can be computed from the fastest or the
slowest (depending on the definition of completion as one
robot reaching the goal or both robots reaching the goal)
of the time taken for either robot to reach the goal. For n
robots, choosing the slowest and the fastest ki gives us a fast
conservative estimate of the bounds on δt. These bounds can
then also be used as a heuristic during the search.

We are also interested in applying these results to multirobot
coordination involving large teams. Some of the most effective
coordination frameworks for dealing with complex multirobot
tasks involve market techniques, where individual agents act
in self-interested fashions, but occasionally form sub-teams to
maximize their effectiveness as a group [15]. Such frameworks
have the nice property of being able to employ various plan-
ning algorithms to compute individual or sub-team solutions.
We are currently investigating how the techniques presented
in this paper can be incorporated into an impressive recent
extension of market frameworks [16] to provide efficient, high-
quality solutions to complex tasks involving large teams.
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