
INV ITED
P A P E R

HERB 2.0: Lessons Learned
From Developing a Mobile
Manipulator for the Home
Hardware design, software architecture, and core algorithms of a bimanual mobile

manipulatorVdeveloped for performing useful tasks for and with peopleVare

described in this paper.

By Siddhartha S. Srinivasa, Dmitry Berenson, Maya Cakmak, Alvaro Collet,

Mehmet R. Dogar, Anca D. Dragan, Ross A. Knepper, Tim Niemueller,

Kyle Strabala, Mike Vande Weghe, and Julius Ziegler

ABSTRACT | We present the hardware design, software ar-

chitecture, and core algorithms of HERB 2.0, a bimanual mobile

manipulator developed at the Personal Robotics Lab at

Carnegie Mellon University, Pittsburgh, PA. We have developed

HERB 2.0 to perform useful tasks for and with people in human

environments. We exploit two key paradigms in human envi-

ronments: that they have structure that a robot can learn, adapt

and exploit, and that they demand general-purpose capability

in robotic systems. In this paper, we reveal some of the struc-

ture present in everyday environments that we have been able

to harness for manipulation and interaction, comment on the

particular challenges on working in human spaces, and de-

scribe some of the lessons we learned from extensively testing

our integrated platform in kitchen and office environments.

KEYWORDS | Human-robot interaction; mobile manipulation;

motion planning; perception; personal robotics; trajectory

optimization

I . INTRODUCTION

Robots perform remarkable, dexterous tasks routinely in

factories. They assemble a wide range of products, from

cars to microprocessors, often with superhuman precision

and speed. As a consequence, factories are filled with ro-

bots. The lack of abundance of robots in our homes might

seem puzzling at first: surely, something capable of assem-

bling a car, a task that few of us can claim to be capable of

performing, should find clearing a dining table after a meal
trivial.

In trying to explain this paradox, researchers often

claim that factories are structured whereas our homes, with

their clutter and messiness, are unstructured. But that is

perhaps oversimplifying: a bin of nuts and bolts in a car

assembly plant or the inside of a chassis are perhaps as

cluttered (if not more) than the average kitchen in our

homes. Perhaps a deeper difference is that factories are
structured for robots whereas our homes are structured for
humans. One might argue that we might be as confused in a

car factory, as a factory robot is in our kitchen. But, given

Manuscript received July 20, 2011; revised September 30, 2011; accepted February 2,

2012. Date of publication June 21, 2012; date of current version July 13, 2012. This work

was supported by DARPA-BAA-10-28, NSF-IIS-0916557, and NSF-EEC-0540865. The

work of D. Berenson was supported in part by the Intel Ph.D. Fellowship. The work of

A. Collet was supported by the Caja Madrid Fellowship. The work of M. Cakmak and

T. Niemueller was supported by the Intel Summer Fellowship. The work of J. Ziegler

was supported by the Karlsruhe House of Young Scientists. The work of M. Dogar

was supported by the Fulbright Fellowship.

S. S. Srinivasa, A. Collet, M. R. Dogar, A. D. Dragan, R. A. Knepper, K. Strabala,
and M. Vande Weghe are with The Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213 USA (e-mail: siddh@cs.cmu.edu; acollet@cs.cmu.edu;

mdogar@cs.cmu.edu; adragan@cs.cmu.edu; rak@cs.cmu.edu; kstrabal@cs.cmu.edu;

vandeweg@cs.cmu.edu).

D. Berenson is with the Electrical Engineering and Computer Science

Department, University of California Berkeley, Berkeley 94703 USA (e-mail:

berenson@eecs.berkeley.edu).

M. Cakmak is with the School of Interactive Computing, Georgia Institute of

Technology, Atlanta, GA 30332 USA (e-mail: maya@cc.gatech.edu).

T. Niemueller is with the Knowledge-based Systems Group, RWTH Aachen University,

Aachen 52062, Germany (e-mail: niemueller@kbsg.rwth-aachen.de).

J. Ziegler is with the Department of Measurement and Control Systems, Karlsruhe

Institute of Technology, Karlsruhe D-76128, Germany (e-mail: ziegler@kit.edu).

Digital Object Identifier: 10.1109/JPROC.2012.2200561

2410 Proceedings of the IEEE | Vol. 100, No. 8, August 2012 0018-9219/$31.00 �2012 IEEE

time, we adapt to the structure that is presented to us.

Likewise, we would like robots to understand, adapt to,

and eventually utilize the structure that is present in our

homes.
Another key difference is generality. A car factory is

massive, with hundreds of robots spread over hundreds of

square feet, each performing a few specific tasks. In con-

trast, a car mechanic’s workshop is small, with a few

skilled mechanics spread over a few square feet, each

performing a multitude of tasks. The confines of a human

environment, built for a general-purpose manipulator like

the human, compel robots in such environments to also
strive to be general purpose: there just isn’t enough space

for hundreds of specific-purpose robots.

At the Personal Robotics Lab at Carnegie Mellon Univ-

ersity, Pittsburgh, PA, we are developing algorithms to

enable robots to perform useful tasks for and with people,

in human environments. To this end, we have designed

and built a series of increasingly capable mobile manipula-

tors starting from the Busboy [1]: a mobile base coor-
dinating with a fixed arm, Herb [2]: an integrated mobile

base and arm, to the current version Herb 2.0: a bimanual

mobile manipulator (Fig. 1).

The two paradigms, of structure and generality, re-

sonate through all of our decisions, from the design of

the hardware (Section III) and software architecture

(Section IV) to the algorithms for cognition (Section V),

planning (Sections VI, VII, VIII), perception (Section X),
navigation (Section XI), and interaction (Section IX).

In the sections that follow, we will reveal the structure

present in everyday environments that we have been able

to harness for manipulation and interaction, comment on

the particular challenges on working in human spaces, and

describe some of the lessons we learned from extensive

testing in kitchens and offices with our integrated

platform.

II . A BRIEF HISTORY OF
MOBILE MANIPULATION

We build upon a long history of integrated mobile manipu-
lation systems that combine navigation, perception, mo-
tion planning, and learning. In this section, we will briefly
trace out some of that history. The sections that follow will
each have their own background work specific to their
subtopic.

Shakey [3] was possibly the first (well-documented)
mobile manipulator. Developed by SRI from 1966–72,
Shakey was equipped with an onboard SDS-940 computer,
a TV camera, and other sensors atop a wheeled base.
Meant primarily as a testbed for AI planning, Shakey na-
vigated autonomously through corridors and pushed large
boxes that were in its way using its base as a manipulator.

Freddy II [4] was being developed at the University of
Edinburgh at about the same time. It was made up of a
large robot arm fixed to an overhead gantry, with a bino-
cular vision system for perception. While Shakey manip-
ulated without an arm, Freddy II navigated without a
wheeled base. Its world consisted of a table that could be
moved in two directions, giving Freddy II the impression
of motion. This was a truly remarkable robot, able to as-
semble wooden models using vision to identify and locate
the partsVgiven a jumbled heap of toy wooden car and
boat pieces it could assemble both in about 16 hours using
a parallel gripper and single camera. Freddy II asked and
often answered some of the fundamental questions that
still plague modern mobile manipulators: of perception
and manipulation in clutter, and of force-controlled
assembly.

Handey [5], [6] was developed in the 1980s at MIT
with the goal of performing general pick-and-place tasks
over a very broad range of objects. Unlike previous robots,
that posed manipulation as a blocks-world style AI prob-
lem, Handey posed manipulation as geometric search,
striving to find collision-free paths in the robot’s config-
uration space. Handey produced numerous advances, in-
cluding geometry-based object detection, grasp tables,
regrasping, and the concept of configuration spaces as a
means to abstract and generalize algorithms across robot
morphology and kinematics. This concept is the basis of
our motion planning algorithms.

Several other platforms, like the JPL cart [7], Romeo

and Juliet [8], and Hilare 2bis [9], populate the history

of mobile manipulation.

Humanoid robots, with manipulators atop legged

bases, provide a drastic design departure from the classic

wheeled-base mobile manipulators. While they provide

greater rough-terrain locomotion dexterity, humanoids

often have to deal with several additional constraints, like
balance, walking, and power density. Honda’s ASIMO ro-

bots [10], starting with E0 in 1986, and continuing with

the H6 [11], H7 [12], and the HRP series of robots [13]–[15]

developed in Japan, have demonstrated remarkable one-

and two-armed mobile manipulation.

Fig. 1. HERB 2.0: a bimanual mobile manipulator developed at the

Personal Robotics Lab at Carnegie Mellon University.

Srinivasa et al. : HERB 2.0: Lessons Learned

Vol. 100, No. 8, August 2012 | Proceedings of the IEEE 2411

Herb 2.0 joins a modern list of mobile manipulators,
including the PR2 [16], Justin [17], TUMRosie [18],

El-E [19], the STAIR project [20], among many others. The

design of these robots still echoes their illustrious predeces-

sors: wheeled bases with capable manipulators atop them.

The advances in sensor and hardware designs, computing

capability, and algorithms, some of which we shall describe

in the following sections, have often enabled these robots to

produce superhuman capability in mobile manipulation.
Like most histories, this one is both personal and in-

complete. Mobile manipulators have a rich history, begin-

ning in the 1960s, and have demonstrated great capability

and promise.

III . HARDWARE DESIGN

At the Personal Robotics Lab, we require a platform that

can operate synergistically with humans to perform tasks

in the home. The design of our robot Herb 2.0, therefore,

reflects our research interest in human-aware two-arm

manipulation of unstructured environments. Herb 2.0’s

hardware allows it to navigate indoors for hours at a time,

sense its surroundings, and manipulate objects of interest
for or with human partners, with minimal reliance on

supporting infrastructure (Fig. 2).

A. Actuation
Herb 2.0’s base comprises a Segway RMP that operates

in Btractor[mode, with a rear caster installed for passive

balancing. The placement of components on Herb 2.0 was

carefully chosen to shift the center of gravity rearward so
that weight is maintained on the caster even when sud-

denly stopping at the software-limited maximum deceler-

ation. The Segway was chosen because of its high payload

capacity, smooth velocity control, reliable operation, low

noise, convenient USB interface, and open-source host

interface software.

Herb 2.0 manipulates its environment with a pair of

Barrett 7-DOF WAM arms with Barrett hands. The WAM

arms have proven themselves to be great choices for
working alongside humans, due to their comparatively low

mass, backdriveability, and hardware-implemented safety

system. We have further enhanced their safety by sensing

and reacting to position disturbances that indicate physical

collisions, and by keeping the operating speeds to a rea-

sonable level so that humans are not surprised by sudden

motions. Because the arms are commanded with an open

protocol that requires no proprietary drivers, we have been
able to write our own host-based closed-loop control soft-

ware that can switch control laws according to application

and sensory input.

We chose the configuration of the two arms with re-

spect to the base after careful consideration of a number of

alternatives. With the two arm bases mounted side-by-side

facing forward, Herb 2.0 maximizes the workspace in

which both hands can reach the same point while still
remaining narrow enough to fit through a 2800 wide door-

way. The mounting height allows Herb 2.0 to grasp objects

from both the floor and from high shelves in overhead

cabinets. Finally, by making a simple modification to the

first joint on each arm, we were able to locate the largest

dead zone of the configuration space to an area which

would least affect Herb 2.0’s most common task, the

manipulation of tabletop objects.

B. Sensors
An array of three miniature laser rangefinders mounted

just above ground level gives Herb 2.0 360� perception of

obstacles that pose a hazard to navigation, and provides

readings for a planned self-docking capability to be devel-
oped in the future. A fourth higher-power laser is mounted

on a custom-built spinning base to produce full 3-D point

clouds of the surrounding environment. By directing the

spin axis towards the primary workspace, the laser gene-

rates a point cloud with a higher density of points right in

front of Herb 2.0, thereby maximizing the utility of the

data for our most common tasks. The spinning mechanism

allows for variable spin rates in order to control the overall

Fig. 2. Rear, side, and frontal renderings of the HERB 2.0 design, and the completed robot.

Srinivasa et al. : HERB 2.0: Lessons Learned

2412 Proceedings of the IEEE | Vol. 100, No. 8, August 2012

cloud resolution, and features dedicated hardware to cap-
ture the precise rotation angle for each laser scan so that

the 3-D points can be accurately assembled. The resulting

point clouds are used primarly by the arm-motion planning

software (see Section VI) to avoid collisions with

unexpected obstacles in the work area, such as nearby

people and moveable furniture.

Herb 2.0 features three camera-based sensors for ob-

ject recognition and localization. One of them is a mono-
chrome gigabit-ethernet camera for recognizing household

objects in the workspace (see Section X). We chose this

particular camera model for its high sensitivity, so that we

can take short exposures and minimize motion blur even

when restricted to the lighting conditions present in ty-

pical indoor environments. The initial design of Herb 2.0

fixed the camera to a stationary mast so that it was pointed

forward and down, but such a configuration requires the
robot to move its base in order to pan to areas outside of its

field of view. The next version will include a pan/tilt head

so that Herb 2.0 can attain a larger perception range while

the base remains stationary. Herb 2.0 also has an upward-

facing infrared camera for localizing the base with respect

to ceiling-mounted retro-reflective markers. The self-

contained unit includes infrared LEDS for lighting the

markers, and features an overall resolution of 2 cm position
and 10 degree rotation. Finally, Herb 2.0 uses a popular

RGB-D gaming camera to track humans in the envi-

ronment, located offboard for a better view of the scene.

Additionally, Herb 2.0 makes extensive use of the

sensors built into the Segway base and the WAM arms and

hands. The Segway odometry is synthesized with the lo-

calization system’s output in order to provide a pose

estimate that outperforms either sensor working alone.
The WAM is equipped with both joint position sensors and

an end-effector force/torque sensor that detect distur-

bances applied by the environment. The fingers on the

Barrett hands feature position, strain, and tactile sensors

that produce critical feedback while manipulating objects.

C. Computing and Networking
Herb 2.0’s computing configuration allows it to per-

form all essential processing onboard, reducing its depen-

dence on the wireless network or offboard computers for

the bulk of its tasks. Three high-performance mobile

workstations (Blaptop[form factor) with hyperthreaded

quad-core processors make up the primary compute capa-

city. Each machine includes a high-performance GPU that

is capable of running our vision-processing system (see

Section X), and a large solid-state drive for fast throughput
with low power consumption.

Although the laptop configuration brings with it unne-

cessary peripherals (we make no use of the LCD screens,

keyboards, or media drives), a comparison against both

desktop system boards and industrial embedded-system

processor boards yielded laptops as the clear winner.

Laptop systems typically have a much higher ratio of com-

puting performance to consumed power, feature heatpipe
cooling systems that cool both the CPU and GPU in a single

compact unit, and often have a wider range of peripheral

interfaces (such as IEEE-1394) integrated into the mother-

board. We have adapted our laptops to Herb 2.0’s needs by

adding remote power buttons to the rear panel, so that the

laptop lids need never be opened, and by removing the

internal lithium-ion batteries so that we have more direct

control over the power drawn from Herb 2.0’s dc supply.
Herb 2.0 also uses an ARM-based embedded computer

to interface with low-level hardware onboard. The unit

features a Xilinx FPGA along with a generous assortment

of analog and digital I/O lines and a few H-bridge motor

controllers. We currently use it to control the spinning

laser unit, and have plans to extends its use to on/off con-

trol of the onboard power loads, and to drive indicator

lights to communicate high-level intent to the user.
The three laptops, the embedded computer, and the

ethernet camera are linked together with a gigabit-ether-

net switch for a fast onboard network, with a connection to

a wireless bridge for communication with offboard hosts.

The use of a wireless bridge (as opposed to a wireless

router) makes all hosts, both onboard and offboard, visible

on the same network without any network address trans-

lation, which greatly simplifies development and testing.

D. Power
Herb 2.0’s onboard power system allows it to operate

untethered for hours at a time, even when fully active. The

system produces 48, 24, 19.5, 12, 7.4, and 5V using Vicor

dc/dc converters supplied by a pair of rechargeable

ModEnergy lithium-ion battery packs. The converters are

mounted to a heatsink whose size was chosen so that
convective airflow produces enough passive cooling during

normal operation, while temperature-triggered variable-

speed fans augment the cooling as required during peak

consumption periods. Recharging occurs at twice the dis-

charge rate, so that the robot can operate indefinitely at a

67% duty cycle. The battery packs offer a serial interface for

monitoring charge level and current flow, and 7-segment

LED displays mounted on the rear panel give the user a
quick indication of battery voltage and current draw. A

bank of software-controlled relays provide several contacts

for each voltage level, so that individual loads can be turned

on or off through software control. The power system was

designed for hot-plug recharging, which is currently pro-

vided by a manually connected tether and plug, but which

will be replaced by a docking system for autonomous

recharging.

E. Lessons Learned
After designing and using three instantiations of Herb,

we can offer some guidelines for building a reliable plat-

form for productive robotics research. First, the hardware

interface should be easy for nonexperts to understand, so

that everyone from regular users to visiting researchers feel

Srinivasa et al. : HERB 2.0: Lessons Learned

Vol. 100, No. 8, August 2012 | Proceedings of the IEEE 2413

comfortable using the robot and are not likely to dmage it
through ignorance. This implies extending power switches

and peripheral connections so that components do not

need to be physically removed to make connections, and

documenting how to start and stop the various on-board

systems. Second, the need for future upgrades should be

minimized. Each components should be carefully selected

and proven off-board before committing to it, so that its

utility won’t be outgrown quickly. Because of the nature of
robotics research, however, one should expect that better

hardware (sensors in particular) will become available, and

make provisions for mounting and powering accessories

beyond the initial set. Finally, all decisions should consider

keeping power consumption low. Lower consumption

results in reduced conversion losses, reduced cooling re-

quirements, and reduced battery requirements, thereby

eliminating excess bulk and shortening recharge times.

IV. SYSTEM ARCHITECTURE

A key challenge for robot systems in the home is to pro-

duce safe goal-driven behavior in a changing, uncertain and

dynamic environment. A complex system like Herb 2.0,

that has a host of sensors, algorithms, and actuators, must

address issues ranging from software robustness (sensors

or communication failing, processes dying) to problems

that emerge from inaccurate or unknown models of the

physical world (collisions, phantom objects, sensor uncer-
tainty). To address this challenge, Herb 2.0 uses a soft-

ware architecture loosely based on the sense-plan-act

model for providing safe and rich interactions with hu-

mans and the world.

A. Abstract Components
Fig. 3 shows the interaction between the different

components of our architecture: perception, decision and

execution components.

We gather information about the world in the form of
fixed and dynamic objects, agents (humans and other ro-

bots), and semantics (e.g., Herb 2.0’s location in the

home). We do so through a wide range of sensors, includ-

ing high-definition cameras, the Microsoft Kinect, lasers

scanners, a localization system (StarGazer), Segway encod-

ers, as well as the WAM joint encoders and force sensors.

The analysis of this sensor data over time enables the robot

to perceive and model objects and actions in the world.
Herb 2.0 has three classes of components that can

make decisions: safety, agent, and teleoperation compo-

nents. Safety components ensure that the robot does not

harm humans, the environment, or itself. Some examples

of safety components include the limitation of forces that

the arm is allowed to exert, or the limitation of joint velo-

cities. Safety limits cannot be overridden by other compo-

nents. Agent components try to accomplish goals based on
the perception of the world, including manipulating ob-

jects, expressing intent via gestures, and physically inter-

acting with humans. Much of the agent programming deals

with edge cases where the robot tries to correct for per-

ception errors or system failures (see Section V). The

teleoperation components enable users to explicitly com-

mand the robot, both at a low level (e.g., moving single

joints) or at a high level (e.g., grasping a particular object).
These components can override agents, but cannot over-

ride safety components.

Finally, the execution components perform actions to

accomplish the tasks commanded by the decision compo-

nents. This includes planning and executing arm and base

trajectories, making sounds, and interacting with other

computer systems. In addition, each execution component

advertises the subset of actions it is capable of performing
at that given time. For example, if Herb 2.0 is holding an

object and moves close to a recycling bin, the action

planner advertises the recycle action.

This system’s architecture has three important conse-

quences. First, because all actions must go through the

Fig. 3. (Left) HERB 2.0 system architecture. (Right) Excerpt from the Intel Open House 2010 state machine.

Srinivasa et al. : HERB 2.0: Lessons Learned

2414 Proceedings of the IEEE | Vol. 100, No. 8, August 2012

safety components before and during execution, it is
impossible for higher level components to execute unsafe

actions. Second, because of the modularity, the designers

can decide at which level the decisions are made. For

example, suppose the agent commands the action planner

to pick up a full coffee mug. Should the agent also tell the

action planner not to tip the mug, should the planner know

to not tip the mug, or should the modeled mug object have

a property of not being tippable as identified by the
perception system? In our case, the action planner is the

one keeping the mug upright, based on its own knowledge

that the mug may have liquid in it. However, this decision

could easily be made by the agent or the perception system

without loss of functionality. Third, due to the parallel and

modular properties of this system architecture, the de-

signer has control over what kind and how much informa-

tion each component shares with the other components.

B. Implementation
Herb 2.0’s software consists of several nodes that

operate in parallel and communicate to one another using

the robot operating system (ROS) [21]. ROS provides a

framework for inter-node communication along with an

online database of open source nodes. Our nodes are writ-

ten in C++, Python, Lua, and Lisp, and are launched over
ssh and VNC from an off-board computer. ROS has be-

come more stable over the years and some of our nodes, in

particular the sensor drivers and visualization tools, are

from community-created open-source ROS repositories.

The core of Herb 2.0’s intelligenceVperception, plan-

ning, control, behavior engine, and navigationVwas devel-

oped in our lab. The following sections discuss each of

these nodes in greater detail.

C. Lessons Learned
Robot systems, and software systems in particular, are

in a state of constant flux. We have added and moved

sensors, added an arm, reconfigured lasers, and are con-

stantly updating the software. Core software engineering

concepts, of modularity and extensibility, become all the

more important when dealing with a system that physically
interacts with the world. We have also found the ability to

quickly prototype nodes and introduce them at runtime to

be of great use.

V. BEHAVIOR ENGINE

One of the challenges of performing complex tasks in the

home is to implement a system that allows for an easy and
extensible description of the behavior the robot should

perform. Although languages like Colbert [22] and XABSL

[23] have been proposed specifically to allow a concise

description of robot behavior, they often impose restric-

tions in terms of expressiveness. To allow flexibility in

expressing behavior, while keeping behaviors clear and

concise, we proposed the Behavior Engine (BE). The BE

uses the formalism of hybrid state machines (HSM) to
model robot behavior and separates the overall behavior in

three layers, and is implemented in the interpreted prog-

ramming language Lua [24]. In what follows, we will

briefly introduce how behavior is modeled and separated

into layers, and how we overcome typical problems of state

machines. We describe its implementation on Herb 2.0,

the particular challenges encountered, and how it fits into

the ROS ecosystem. We conclude with the description of
an all-day demonstration of the robot, showing the relia-

bility of the system and the lessons we learned in this

process.

A. Modeling Robot Behavior
HSMs are directed graphs where the nodes represent

states, one of them being the currently active state, and

edges are transitions among these states. A state represents,
for example, executing an action, perception monitoring,

waiting for an event, or a combination of these. The transi-

tions are defined as three-tuples of an originating state, a

target state, and a jump condition, which is a boolean

function or predicate. The jump conditions of outgoing

transitions of the active state are evaluated at about 30 Hz.

If and when a jump condition evaluates to true, i.e. it fires,

the transition is followed. Transitions are used, for exam-
ple, to react to outcomes of actions, possibly specific to the

kind of an error that occurred, or to react to certain per-

ceptions or events. Although in our case only the first

transition in the order of definition is followed whenever

multiple jump conditions fire, more elaborate conflict re-

solution methods are also possible. Another valuable pro-

perty of HSMs is that they define a set of variables that can

be used to store not only information intrinsic to a state, but
also global information for the state machine.

The overall behavior of the robot is separated into three

layers. At the lowest level are real-time, hardware driving,

actuator instructing, and perception processing compo-

nents. At the top is the agent program that makes strategic

decisions and composes smaller behavior entities to

achieve a set of goals. In between these layers is the Be-

havior Engine, a system for developing, executing, and
monitoring reactive behavior entities called skills. It serves

as a plumbing layer to connect the agent with the low-level

system and to prune peculiarities to keep the action inter-

face simple for the agent.

Each skill is encapsulated in an evaluation function

whose parameters are assigned to the internal variables

when the HSM is started. For example, goto{place=
Bkitchen[} could invoke a skill which composes a pro-
per series of commands for the low-level components to

move the robot to the kitchen. To support nonblocking

operation, execution functions are defined for interleaved

invocation. Initially, the execution function will return

RUNNING as its status. After some time, the return value

will switch to either FINAL or FAILED, depending on

whether the skill execution succeeded or failed. The agent

Srinivasa et al. : HERB 2.0: Lessons Learned

Vol. 100, No. 8, August 2012 | Proceedings of the IEEE 2415

and the reactive layer interface through a set of invocation
channels. For each channel, a skill string composed of

execution functions is evaluated and the result value re-

turned in each cycle.

Two key aspects allow for overcoming the typical

problem of a vastly increasing number of states for a state

machine based approach. First, the separation of the behav-
ior into layers guides a separation of the overall behavior

into smaller entities. The complexity of the HSMs of the
individual skills is hidden from the top-level agent, because

the execution functions are the only interface. Therefore,

these state machines need not be a part of the overall

behavior state machine. Additionally, this fosters reuse of

skills and composition into more elaborate behaviors.

Second, the set of variables allows for keeping arbitrary data

and additional state information outside of the classical

notion of state machines which keeps this intrinsic to a
state. This pragmatic approach therefore leads to a drastic

reduction of the required state space.

B. Implementation on HERB 2.0
The Behavior Engine was originally used for humanoid

and wheeled soccer robots and based on the Fawkes robot

software framework [25]. For Herb 2.0, we ported the BE

to the ROS robot software system [21], which required

providing a Lua client library for ROS and coping with a

different middleware. We have developed roslua, a client

library written in Lua for ROS,1 which allows communi-
cating and interacting with other ROS nodes and is specific

to a programming language.

Several advantages of Lua made it the programming

language of choice for the BE. In particular, its powerful

central table data structure allows to emphasize the de-

scription of behavior over programming it. The table con-

structor syntax was inspired by BibTeX [26], and allows

providing a syntax for the definition of behavior without a
large number of explicit function calls (as opposed to, for

example, in SMACH [27]). This almost reaches the clarity

of domain-specific languages, without sacrificing the abili-

ties a complete programming environment provides.

We use ROS’ actionlib to invoke basic actions.

Actionlib uses topic communication to invoke, monitor,

and possibly preempt actions. In the BE, this is used for

communication between the midlevel reactive system and
the high-level agent as well as to invoke lower-level ac-

tions. We implemented actionlib_lua to interact with

other nodes from Lua.2

We adapted the BE to the specific challenges for do-

mestic service robots in general and to Herb 2.0 in parti-

cular (e.g., dealing with two-armed manipulation and

action concurrency). We have also started working on

improving the behavior robustness by providing fail-over

mechanisms whenever possible, and determining situa-
tions when human assistance is necessary.

C. Lessons Learned
In September 2010, we demonstrated Herb 2.0 at the

Intel Labs Pittsburgh Open House. The robot’s task was to

grasp a full bottle from a counter, take it to the audience,

and hand it over to a person. If nobody would take the

bottle, the robot placed it on a nearby table after a short
waiting time. The robot then requested empty bottles to

take back, and drove back to the counter. If it got handed a

bottle, it weighed it to determine if the bottle was actually

empty or if it was full. Empty bottles were dropped into a

recycling bin, while full bottles were put back on the

counter. The robot continuously performed this task for

about six hours. Human assistance was surprisingly infre-

quent (about 2–3 times an hour) and almost always re-
quested for by the robot because it realized that it was in an

unexpected or dangerous situation. During the operation,

visitors would frequently pass in the robot’s way, or the

arm would be held back to demonstrate its compliant mo-

tion. Some software components were under active devel-

opment, and therefore recovery from certain conditions

required some effort. For example, there could be a dis-

crepancy between the robot’s belief and the actual arm
pose, which sometimes led to the assumption that the

robot was in collision with an object. Time constraints

during the development of the task made it infeasible to

come up with a recovery strategy for such a case.

These uncertainties, problems, and current limitations

needed to be reflected in the robot’s behavior. In the worst

case, for example if posture belief indicated a collision, the

robot would go into a dialog mode, in which it would
request help from a human operator. The arm was set into

a gravity compensation mode in which the operator could

move it freely. Once the collision was resolved, a button on

the robot was pressed and it would start again. In the mean

time, much more fine grained recovery strategies have

been implemented. For example, if the pose estimation of

objects is slightly off, the robot can now resolve many

collision situations by itself.
An excerpt from the state machine is shown in

Fig. 3 (Right). It covers placing the bottle on the table if

it was not taken, and turning back to the audience and

taking an empty bottle. In case moving the arm to its initial

position fails, it relaxes both arms and requests help. The

upper right transition shows how specific errors can be

determined by analyzing an error string.

We started off implementing the behavior by creating
the state machines for the individual skills, the basic abili-

ties of the robot. For certain classes of actions like mani-

pulation, which required interaction with a specific

submodule in a unified way, we created an auto-generator

which would create the state machines on the fly. Others

were created manually. The skills were then individually

tested and debugged. Eventually, the agent state machine

1Source code and documentation at http://www.ros.org/wiki/roslua
2BE, actionlib_lua and demo at http://www.ros.org/wiki/behavior_-

engine.

Srinivasa et al. : HERB 2.0: Lessons Learned

2416 Proceedings of the IEEE | Vol. 100, No. 8, August 2012

was created, composing the skills to accomplish the overall
task. Some time was required to define proper fail-over

behaviors in the case other behaviors failed, and to get the

proper interaction of skills.

D. Outlook
We have demonstrated that the system is capable of

producing robust and stable robot behavior for an extended

period of time. By analyzing the system state, the robot can
request operator assistance if required. Although the

system recover from an increasing number of failures with

the existing tools, we strive for a more general description

of error conditions, recovery, and resuming of the original

task. We have yet to see how far we can scale the system in

terms of comprehensibility of the state graph. We assume

that we can create more complex skills and have a stronger

emphasis on hierarchically structured state machine
(which is already supported but not yet used) to slow

down the growth of the behavior description complexity.

VI. MANIPULATION PLANNING

Motion planning for a mobile manipulator like Herb 2.0 is

difficult because of the large configuration space of the

arms and the constraints imposed on the robot’s motion.

Some of these constraints arise from the torque limits of

the robot or the necessity of avoiding collision with the
environment. However, some of the most common con-

straints in manipulation planning involve the pose of a

robot’s end-effector. These constraints arise in tasks such

as reaching to grasp an object, carrying a cup of coffee, or

opening a door. As a result, researchers have developed

several algorithms capable of planning with end-effector

pose constraints [30]–[35]. Though often able to solve the

problem at hand, these algorithms can be either inefficient
[30], probabilistically incomplete [31]–[33], or rely on

pose constraint representations that are difficult to gene-

ralize [34], [35].

We have developed a manipulation planning frame-

work [28] that allows robots to plan in the presence of

constraints on end-effector pose, as well as others. Our

framework has three main components: constraint re-

presentation, constraint-satisfaction strategies, and a

sampling-based approach to planning. These three compo-
nents come together to create an efficient and probabilis-

tically complete manipulation planning algorithm called

the constrained bidirectional RRT (CBiRRT2). The under-

pinning of our framework for pose-related constraints is

our task space regions (TSRs) representation.

TSRs describe volumes of permissible end-effector

pose for a given task. For instance, for a reaching-to-grasp

task TSRs can be used to define the set of end-effector
poses that result in stable grasps. For picking up a cup of

water, TSRs can define the set of poses in which the water

does not spill. TSRs are intuitive to specify, can be effi-

ciently sampled, and the distance to a TSR can be eval-

uated very quickly, making them ideal for sampling-based

planning. Most importantly, TSRs are a general represen-

tation of pose constraints that can fully describe many

practical tasks. For more complex tasks, such as manipu-
lating articulated linkages like doors, TSRs can be chained

together to create more complex end-effector pose con-

straints [36]. TSRs can also be used to construct plans that

are guaranteed to succeed despite uncertainty in the pose

of an object [37].

Our constrained manipulation planning framework

also allows planning with multiple simultaneous con-

straints. For instance, collision and torque constraints can
be included along with multiple constraints on end-

effector pose [38]. Closed-chain kinematics constraints

can also be included as a relation between end-effector

pose constraints without requiring specialized projection

operators [39] or sampling algorithms [40].

We have applied our framework to a wide range of

problems, both in simulation and in the real world (see

Fig. 4). These problems include grasping in cluttered en-
vironments, lifting heavy objects, two-armed manipula-

tion, and opening doors, to name a few.

These examples demonstrate our framework’s prac-

ticality, but it is also important to understand the theo-

retical properties of manipulation planning. Specifically,

we would like to understand whether various sampling

methods are able to fully explore the set of feasible config-

urations. To this end, we provided a proof for the probabi-
listic completeness of our planning method when planning

with constraints on end-effector pose [41]. The proof

Fig. 4. HERB and HERB 2.0 executing paths planned by our constrained manipulation planning framework. Images taken from [28] and [29].

Srinivasa et al. : HERB 2.0: Lessons Learned

Vol. 100, No. 8, August 2012 | Proceedings of the IEEE 2417

shows that, given enough time, no part of the constraint
manifold corresponding to a pose constraint will be left

unexplored, regardless of the dimensionality of the pose

constraint. This proof applies to CBiRRT2 as well as other

approaches [30], [42], whose probabilistic completeness

was previously undetermined.

A. Lessons Learned
One criticism of TSRs is that the constraint represen-

tation may not be sufficiently rich. For instance, some

modifications to TSR Chains are necessary to accommo-
date constraints where degrees of freedom are coupled (as

with screw constraints). Indeed, TSRs and TSR Chains

cannot capture every conceivable constraint, nor are they

intended to. Instead, these representations attempt to

straddle the trade-off between practicality and expressive-

ness. TSRs have proven sufficient for solving a wide range

of real-world manipulation problems while still remaining

relatively simple and efficient to use in a sampling-based
planner. While a more expressive representation is surely

possible, we have yet to find one that is as straightforward

to specify and as convenient for sampling-based planning.

We also found that, while it was fairly straightforward

to generate TSRs for many tasks, the process became quite

tedious. Thus it would be interesting to develop a system

that could automatically generate the constraints

corresponding to a given task. We have investigated
automatically forming TSRs for grasping tasks by sampling

over the space of stable grasps, clustering the grasps, and

fitting TSRs to these clusters [43]. To generalize to object

placement tasks, we would need to develop a different

method. For instance, could a robot look at a scene and

determine all the areas where a given object can be placed?

Such a task would require understanding where the object

could be placed (through grounding the idea of placing
geometrically) and also taking into account user prefer-

ences for where objects should be placed.

VII. PLANNING UNDER CLUTTER
AND UNCERTAINTY

Robotic manipulation systems suffer from two main prob-
lems in unstructured human environments: uncertainty
and clutter. Consider the task of cleaning a dining table. In

such a task the robot needs to detect the objects on the

table, figure out where they are, move its arm to reach the

goal object, and grasp it to move it away. If there is sig-

nificant sensor uncertainty, the hand could miss the goal

object, or worse, collide with it in an uncontrolled way.

Clutter multiplies this problem. Even with perfect sensing,
it might be impossible for the hand to wrap around the

object for a good grasp. With both clutter and uncertainty,

the options for a direct grasp are even more restricted, and

often impossible.

We address the problems for manipulation in such a

context. Two approaches we have taken are as follows:

• using the mechanics of pushing to provably funnel

an object into a stable grasp, despite high uncer-
tainty and clutter; we call this push-grasping;

• rearranging clutter around the primary task with

the use of motion primitives such as pushing, slid-

ing, sweeping, and picking up.

A. Push-Grasping
A push-grasp aims to grasp an object by executing a

pushing action and then closing the fingers [44]. We pre-
sent an example push-grasp in Fig. 5 (Top). Here, the robot

sweeps a region over the table during which the bottle rolls

into its hand, before closing the fingers. The large swept

area ensures that the bottle is grasped even if its position is

estimated with some error. The push also moves the bottle

away from the nearby box, making it possible to wrap the

hand around it, which would not have been possible in its

original location.
The robot must predict the consequences of the

physical interaction to find the right parameters of a

Fig. 5. (Top) An example push-grasp of an object in contact with the surrounding clutter. Image taken from [44]. (Bottom) An example

rearrangement plan. The robot pushes the large ungraspable box out of the way before retrieving the goal object. Image taken from [45].

Srinivasa et al. : HERB 2.0: Lessons Learned

2418 Proceedings of the IEEE | Vol. 100, No. 8, August 2012

push-grasp in a given scene. For this purpose, we introduce
the concept of a capture region, the set of object poses such

that a push-grasp successfully grasps it. The concept of

capture region is similar to the preimages in the preimage

backchaining approach [46]. We compute capture regions

for push-grasps using a quasi-static analysis of the mecha-

nics of pushing [47] and a simulation based on this analysis.

We show how such a precomputed capture region can be

used to efficiently and accurately find the minimum push-
ing distance needed to grasp an object at a certain pose.

Then, given a scene, we use this formalization to search

over different parametrizations of a push-grasp, to find

collision-free plans.

Our key contribution is the integration of a planning

system based on task mechanics with the geometric plan-

ners traditionally used in grasping. We enhance the geom-

etric planners by enabling the robot to interact with the
world according to physical laws, when needed. Our plan-

ner is able to adapt to different levels of uncertainty and

clutter, producing direct grasps when the uncertainty and

clutter are below a certain level.

B. Rearranging Clutter
Tasks is human environments may require rearrange-

ment. Imagine reaching into the fridge to pull out the milk
jug. It is buried at the back of the fridge. You immediately

start rearranging contentVyou push the large heavy casse-

role out of the way, you carefully pick up the fragile crate of

eggs and move it to a different rack, but along the way you

push the box of leftovers to the corner with your elbow.

We developed an open-loop planner that rearranges the

clutter around a goal object [45]. This requires manipulat-

ing multiple objects in the scene. The planner decides
which objects to move and the order to move them, decides

where to move them, chooses the manipulation actions to

use on these objects, and accounts for the uncertainty in the

environment all through this process. One example scene is

presented in Fig. 5 (Bottom). In this scene the robot’s

primary task is to grasp the can buried inside the shelf. The

planner pushes the large ungraspable box to the side. This

creates the space it then uses to grasp the primary goal object.
Our planner uses different nonprehensile manipula-

tion primitives such as pushing, sliding, sweeping. The

consequences of actions are derived from the mechanics of

pushing and are provably conservative. Since our planner

uses nonprehensile actions, it generates plans where an

ordinary pick-and-place planner cannot. This enables

Herb 2.0 to perform manipulation tasks even if there

are large, heavy ungraspable objects in the environment, or
when there is a large uncertainty about object poses.

Nonprehensile actions can decrease or increase object

pose uncertainty in an environment. To account for that,

our planner represents the object pose uncertainty expli-

citly and conservatively.

The planner plans backwards starting from the primary

goal object and identifying the volume of space required to

manipulate it. This space is given by the volume swept by
the robot links and by the manipulated object, with the

object pose uncertainty taken into account. Then, if any

other object is blocking this space, the planner plans an

action to move the blocking object out of the way. This

recursive process continues until all the planned actions are

feasible.

C. Lessons Learned
The planners we have for push-grasping and for rear-

ranging clutter are open-loop planners. On the one hand

this is good because the robot does not depend on a specific

sensor input that may be noisy or unavailable at times. But

on the other hand the open-loop planners need to be very

conservative to guarantee success. For push-grasping this

can sometimes result in unnecessarily long pushes. For the

rearrangement planner this can result in a quick consump-
tion of planning space the robot can use. The lesson is:

build a system that can work open-loop, but that can also

integrate sensor feedback when it is available. With this

line of thinking we are currently working on integrating

visual and tactile sensory feedback into our system.

Clutter is not only a problem for robot actions, but it is

also a problem for robot perception. If an object is hidden

behind another object on a cluttered fridge shelf there is
little chance that the camera on the robot’s head will be

able to see it. This problem motivates us to use the rear-

rangement planning framework also to move objects with

the goal of making the spaces behind them visible to the

robot sensors.

VIII . TRAJECTORY OPTIMIZATION
AND LEARNING

A vital requirement for a personal robot like Herb 2.0 is the

ability to work with and around people, moving in their

workspaces. While the Rapidly-Exploring Random Tree

algorithm from Section VI is very good at producing feasi-

ble, albeit random motion, we need to start thinking to-

wards predictability and optimality of the paths the robot

executes. With these criteria in mind, motion planning
becomes a trajectory optimization problem. However,

since manipulation tasks induce a very high-dimensional

space, optimizers often struggle with high-cost local mini-

ma corresponding to dangerous and sometimes even in-

feasible paths. In this section, we present two ways of

alleviating this issue: one is to improve the optimizer itself

(see Section VIII-A), which widens the basin of attraction

of low-cost solutions; the other is to learn to initialize the
optimizer in the basin of attraction of these low-cost solu-

tions (see Section VIII-B), thus ensuring convergence to a

good trajectory.

A. Improving the Optimizer: Extending to Goal Sets
Most manipulation tasks, such as reaching for an ob-

ject, placing it on a table or handing it off to a person, are

Srinivasa et al. : HERB 2.0: Lessons Learned

Vol. 100, No. 8, August 2012 | Proceedings of the IEEE 2419

described by an entire region of goals rather than one
particular goal configuration that the robot must be in at

the end of the trajectory. This section extends a recent

trajectory optimizer, CHOMP [48], to take advantage of

this goal region by changing the end point of the trajectory

during optimization [49]. Doing so enables more initial

guesses converge to low-cost trajectories.

Our algorithm, Goal Set CHOMP, optimizes a cri-

terion that trades off between a smoothness and an
obstacle cost:

U½�� ¼ �fprior½�� þ fobs½�� s.t. hð�Þ ¼ 0 (1)

with the prior measuring a notion of smoothness such as
sum squared velocities or accelerations along the trajec-

tory �, the obstacle cost pushing all parts of the robot away

from collision, and h capturing constraints on the

trajectory.

While CHOMP has an implicit fixed goal constraint,

�½n� ¼ qgoal, our extension relaxes this assumption and

replaces the constraint by hnð�½n�Þ ¼ 0: the goal is

restricted to an entire region rather than a single
configuration.

In [49], we have shown that this extension improves

upon CHOMP for a wide range of day-to-day tasks that

Herb 2.0 encounters. Fig. 6 (left) shows a prime example

of this: when using the single-goal version of CHOMP,

we obtain a trajectory that does not fully avoid collisions,

whereas with Goal Set CHOMP the optimizer converges

to a better goal and obtains a collision-free solution.

B. Improving the Initialization: Learning to
Choose Goals

With Goal Set CHOMP, we widened the basins of

attraction of low-cost solutions, making initialization in

such a basin more likely. In this section, we will focus

on improving the initialization based on prior experiences

by learning to predict the goal at which the trajectory
should end.

Because of local minima, the goal choice still has a

great influence on result of Goal Set CHOMP. Fig. 7 shows

the final cost of the trajectory as a function of what goal in

the goal set the initial trajectory chooses: the difference

between the best and worst performances is drastic. How-

ever, by collecting training data from such scenes, we can

learn to predict an initial goal that will place the final cost
within only 8% of the minimum [50]. Fig. 6 (right) com-

pares the loss over this minimum cost for five different

learners against the baseline of selecting a goal at random.

Here, SVM is a Bsupport vector machine[classifier that

attempts to predict whether a goal will be the best. IOC is a

Maximum Margin Planning [51] algorithm that attempts to

find a cost under which the best cost will be minimum.

The linear regression (LR), Gaussian process (GP), and
neural network (NN) learn to map initial goals to final

trajectory costs.

For each of these algorithms, we found it important to

make efficient use of the available data: the classifier and

the inverse optimal control method, which traditionally

focus solely on the best option, should take into account

the true cost of the other candidates; at the same time, the

regressors, which traditionally focus on all the data, should
not waste resources on the poor options. In Fig. 6(right),

the light colors represent the performances of the vanilla

versions of these algorithms, which are not able to predict

the best option as well. The data-savvy version of IOC

obtains the best results by combining the focus on pre-

dicting the best goal with the awareness of costs from other

goals.

Fig. 7. (Left) The robot in one of the goal configurations for grasping

the bottle. (Right) For the same scene, the black contour is a polar

coordinate plot of the final cost of the trajectory Goal Set CHOMP

converges to as a function of the goal it starts at; goals that make it

hard to reach the object are associated with higher cost; the bar graph

shows the difference in cost between the best goal (shown in green and

marked with �) and the worst goal (shown in red) [50].

Fig. 6. (Left) A comparison between a single goal optimizer that

cannot find a collision-free path and the goal-set aware optimizer

that shifts the trajectory end-point to avoid collisions [49].

(Right) A comparison of five learning algorithms trained to predict

the best goal from a goal set, against the baseline of selecting a goal

randomly; we initialize the optimizer with a trajectory ending at the

predicted goal, and compute the percent loss (Y-axis) over the cost

obtained by the best goal for 108 different reaching tasks [50].

Srinivasa et al. : HERB 2.0: Lessons Learned

2420 Proceedings of the IEEE | Vol. 100, No. 8, August 2012

C. Lessons Learned
In moving away from the random sampling approaches

from Section VI, we are giving up the fast exploration that

makes RRTs successful for optimal, predictable motion.
Even though CHOMP is armed with an exploration

technique derived from the dynamics of physical systems,

namely Hamiltonian Monte Carlo, exploring while opti-

mizing is more costly than pure exploration. An idea for

merging optimization and randomized sampling is using

CHOMP as the extension operator for the tree. However,

such an algorithm will spend too many resources opti-

mizing paths that do not contribute to the final solution.
At the core of this work lies the idea that while tra-

jectory optimization in high-dimensional spaces is hard,

we can make it easier in the case of manipulation by

taking advantage of the structure inherent in the prob-

lem: tasks are described by sets of goals that can be

exploited, and the repeatability of tasks allows for self-

improvement over time. We found that even naive learn-

ing methods improve the optimization process, and that
the benefit is even greater when using the data in a way

tailored to the problem. For future work, we are excited

about using other attributes of trajectories, beyond goal

choices, to guide this learning process. Due to its predic-

table nature, trajectory optimization can benefit in a lot of

cases from machine learning in overcoming the need for

exploration.

IX. INTERACTING WITH PEOPLE

Personal robots that are intended for assisting humans in
daily tasks will need to interact with them in a number of

ways. The design of human interaction behaviors on these

robots is particularly challenging since the average user

will have little knowledge about how they work. It is

essential to tune these behaviors for the users’ expectations

and preferences. To this end, we have performed a number

of systematic user-studies with Herb 2.0 [52], [53] and we

have put its human-interaction behaviors to test at a

number of public events [see Fig. 8 (Left)].

In designing Herb 2.0, we are particularly interested in

collaborative manipulation with humans, focusing on
robot-human hand-overs. Many of the potential tasks for

personal robots, such as fetching objects for the elderly or

individuals with motor-impairment, involve hand-over in-

teractions. Different aspects of robot-human hand-overs

have been studied within robotics, including motion con-

trol and planning [54]–[57], grasp planning [58], social

interaction [59]–[61] and grip forces during hand-over

[62], [63]. A few of these report results from user-studies
involving handovers between a physical robot and a human

[55], [59]–[61].

A. Robot-Human Hand-Overs
The problem of planning a hand-over is highly under-

constrained. There are infinite ways to transfer an object to

a human. As a result, it is easy to find a viable solution,

however it is hard to define what a good solution is from

the human’s perspective. Our approach involves parame-

trizing hand-over behaviors and identifying heuristics for

searching desirable hand-overs in these parameter spaces.
Hand-overs involve several phases starting from

approaching the human with an object, to retracting the

arm after releasing the object. The object and robot con-

figuration at the moment of transfer and the trajectory that

leads to this configuration are critical. The hand-over con-

figuration influences how the object will be taken by the

human and the trajectory leading to this configuration lets

the human predict the timing of the hand-over and syn-
chronize their movements.

1) Hand-Over Configurations: A hand-over configuration

is fully specified by a grasp on the object and a 7-DOF arm

configuration. We conducted three user-studies to identify

heuristics for choosing good hand-over configurations. The

first study (10 participants) asked users to configure

Fig. 8. Robot-human hand-overs with HERB 2.0. (Left) Handing objects to a human during Research at Intel Day and systematic user studies.

(Middle) Hand-over configurations learned from human examples (top) and planned using the kinematic model of the human (bottom).

(Right) Poses that best convey the intent of handing over (top) and two sample trajectories with high and low contrast between carrying and

hand-over configurations. Left and Right images are taken from [52], Middle image is taken from [53].

Srinivasa et al. : HERB 2.0: Lessons Learned

Vol. 100, No. 8, August 2012 | Proceedings of the IEEE 2421

several good and bad handing configurations for five ob-

jects through a graphical user interface. Afterwards, users

were asked to choose between two hand-over configura-

tions that differed by one parameter. We found that the set

of good configurations provided by participants are con-

centrated around a small region in the space of all config-

urations and has little variance across participants. These
good configurations expose a large portion of the object

surface, and tend to present the object in its default orien-

tation. While confirming these results, the forced-choice

questions revealed that participants prefer extended arm

configurations that look natural (are mappable to a human

arm configuration) [53].

In the second study (10 participants) we compared the

configurations learned from good examples collected in
the first study, with configurations planned using a kine-

matic model of the human [see Fig. 8(Middle)]. The robot

delivered each object twice, with the learned and planned
configurations, and the participant was asked to compare

them. Participants preferred the learned configurations

and thought they were more natural and appropriate, how-

ever they had greater reachability over the objects pre-

sented with the planned configurations [53].
Besides allowing humans to easily take the object, a

hand-over configuration needs to convey its intention. Our

third study (50 participants) involved a survey that asks the

participant to categorize the intention of a robot config-

uration holding an object. We find that the intention of

handing an object is best conveyed by configurations with

an extended arm, grasping the object from the side oppo-

site to the human and tilting the object towards the human
[see Fig. 8 (Right)] [52].

2) Hand-Over Trajectories: We parametrize hand-over

trajectories by the configuration in which the object is

carried while approaching the human. When the robot is

ready to deliver the object, it transitions to the hand-over

configuration through a smooth trajectory. We conducted

a fourth user-study (24 participants) to analyze the effects
of the carrying configuration. We found that carrying con-

figurations that have high contrast with the handing con-

figuration results in the most fluent hand-overs [52]. These

are configurations in which the robot holds the object close

to itself, obstructing the human from taking the object [see

Fig. 8 (Right)]. They improve the fluency by avoiding the

human’s early attempts to take the object and by distinctly

signaling the timing of the hand-over.

B. Lessons Learned
We have made a lot of progress on manipulating objects

in real-world environments through novel and improved

techniques (see Sections VI, VII, and VIII). However, adding

humans into the equation imposes unique constraints, such

as usability of interaction interfaces or legibility of the robot’s

movements, that can only be addressed through user-studies.

We have seen, in the context of robot-human interactions,
that such user-studies can reveal interesting heuristics that

can be used in manipulation and motion planning to produce

desirable and human-friendly behaviors.

X. PERCEPTION

The complexity of the tasks Herb 2.0 can perform is

strongly tied to its perceptual capabilities. In the field of

service/personal robotics, most tasks require interaction

with objects, which we need to identify and localize prior

to interacting with them. In order to operate in realistic
household environments, we require robust object recog-

nition performance in complex scenes (see Fig. 9, for

examples), low latency for real-time operation, and scala-

bility to a large number of objects. To address these chal-

lenges, we have developed MOPED [65], a framework for

multiple object pose estimation and detection that integ-

rates single-image and multi-image object recognition and

pose estimation. Using sparse 3-D models built from SIFT
features [66], MOPED recovers the identity and 6-DOF pose

of objects for Herb 2.0 to interact with them (see Fig. 9).

A. Iterative Clustering Estimation (ICE)
The task of recognizing objects from local features in

images requires solving two subproblems: the correspon-
dence problem and the pose estimation problem. The

Fig. 9. Recognition of real-world scenes. (Left) High-complexity scene. MOPED finds 27 objects, including partially occluded, repeated and

non-planar objects. Using a database of 91 models and an image resolution of 1600� 1200, MOPED processes this image in 2.1 seconds.

(Middle) Medium complexity scene. MOPED processes this 640�360 image in 87 ms and finds all known objects (The undetected green soup

can is not in the database). (Right) HERB 2.0 grasping object recognized and registered by MOPED. Images taken from [64].

Srinivasa et al. : HERB 2.0: Lessons Learned

2422 Proceedings of the IEEE | Vol. 100, No. 8, August 2012

correspondence problem refers to the accurate matching
of image features to features that belong to a particular

object. The pose estimation problem refers to the gener-

ation of object poses that are geometrically consistent with

the found correspondences.

With MOPED, we developed a scalable framework for

object recognition specifically designed to address in-

creased scene complexity, limit false positives, and utilize

all computing resources to provide low latency processing
for one or multiple simultaneous high-resolution images.

The Iterative Clustering-Estimation (ICE) algorithm is our

most important contribution to handle scenes with high

complexity and keep latency low. In essence, ICE jointly

solves the correspondence and pose estimation problems

through an iterative procedure. ICE estimates groups of

features that are likely to belong to the same object

through clustering, and then searches for object hypoth-
eses within each of the groups. Each hypothesis found is

used to refine the feature groups that are likely to belong to

the same object, which in turn helps finding more accurate

hypotheses. The iteration of this procedure focuses the

object search only in the regions with potential objects,

avoiding the waste of processing power in unlikely regions.

In addition, ICE allows for an easy parallelization and the

integration of multiple cameras in the same joint
optimization.

B. Scoring and Filtering Object Hypotheses
Another important contribution of MOPED is a robust

metric to rank object hypotheses based on M-estimator

theory. A common metric used in model-based 3-D object

recognition is the sum of reprojection errors. However,

this metric prioritizes objects that have been detected with
the least amount of information, since each additional

recognized object feature is bound to increase the overall

error. Instead, we propose a quality metric that encourages

objects to have as most correspondences as possible, thus

achieving more stable estimated poses. This metric is re-

lied upon in the clustering iterations within ICE, and is

specially useful when coupled with our novel pose clus-

tering algorithm. The key insight behind our pose cluster-
ing algorithmVcalled Projection ClusteringVis that our

object hypotheses have been detected from camera data,

which might be noisy, ambiguous and/or contain matching

outliers. Therefore, instead of using a regular clustering

technique in pose space (using e.g. Mean Shift [67] or

Hough Transforms [68]), we evaluate each type of outlier

and propose a solution that handles incorrect object hypo-

theses and effectively merges their information with those
that are most likely to be correct.

C. Scalability and Latency
In MOPED, we also address the issues of scalability,

throughput and latency, which are vital for real-time ro-

botics applications. ICE enables easy parallelism in the

object recognition process. We also introduce an improved

feature matching algorithm for large databases that ba-
lances strong per-object matching accuracy with logarith-

mic complexity in the number of objects. We thus improve

on common per-object matching approaches (which have

linear complexity in the number of objects), and per-data-

base matching approaches (which suffer from reduced

matching ability). Our GPU/CPU hybrid architecture ex-

ploits parallelism at all levels. MOPED is optimized for

bandwidth and cache management and SIMD instructions.
Components like feature extraction and matching have

been implemented on a GPU. Furthermore, a novel sched-

uling scheme enables the efficient use of symmetric multi-

processing (SMP) architectures, utilizing all available

cores on modern multicore CPUs.

D. Lessons Learned
MOPED is a framework designed to recognize objects as

fast as possible and minimize end-to-end latency. In order

to achieve these goals, we completely redesigned MOPED

to maximize parallelism both at the algorithmic and ar-

chitectural level: all algorithms within MOPED are paral-

lelizable, different tasks can be executed simultaneously in

the CPU and GPU units, and an optimized resource sched-

uler enables the utilization of all available computing for

object recognition. The multiple architectural improve-
ments in MOPED provide over 30� improvement in

latency and throughput, allowing MOPED to perform in

real-time robotic applications. Unfortunately, the integra-

tion of MOPED within Herb 2.0 originally resulted in

MOPED consuming most of the available computing power

for all other tasks, because on-board computing is not

unlimited. We leveraged this problem by linking MOPED

with the Behavior Engine, so as to dynamically enable or
disable MOPED processing depending on the task at hand.

An additional issue that often arises in MOPED is the

model building stage to add new objects to the database.

The model building stage we use in MOPED, despite being

mostly automatic, still requires a certain amount of human

supervision. An important path to follow in the future is

the use of object discovery techniques and multimodal data

to generate fully automated models for MOPED. In parti-
cular, we are working on joint camera-laser discovery of

objects [64] with automated modeling, which is a neces-

sary task for Herb 2.0 to truly achieve long-term autono-

mous operation.

XI. NAVIGATION

In navigating through diverse personal spaces, Herb 2.0

employs several motion planning and control strategies

that decouple levels of functionality into hierarchical la-

yers. Two different approaches to navigation mirror two

types of cognitive processes involved in human navigation.

People execute many habitual motions daily, such

as walking from the cupboard to the dinner table.

Through repetition, they refine actions for smoothness and

Srinivasa et al. : HERB 2.0: Lessons Learned

Vol. 100, No. 8, August 2012 | Proceedings of the IEEE 2423

efficiency, while retaining the ability to handle transient

obstructions like other people passing through. This type

of navigation imposes minimal cognitive load because it

merely replays a stored trajectory. This scenario inspires a

navigator called virtual rails.

Another class of navigation action comprises nonhabi-
tual motions. This category includes routes too long, com-

plex, or unfamiliar to have imprinted strongly in the brain.

In following such routes, humans continually adapt to

nearby obstacles, incurring greater cognitive load than

with habitual actions. A more adaptable navigation plan-

ner, called the model-based hierarchical planner (MBHP),

fulfills this role.

A. Virtual Rails
A first approach to navigating Herb 2.0 has been

derived from an autonomous driving project [69]–[72],

where it was used to navigate a car within a road network.

Note that driving on-road clearly falls into the aforemen-

tioned structured or habitual class of scenarios.

For Herb 2.0, a path network which connects points of

interest within the robot’s workspace was layed out man-

ually (see Fig. 10). This reduces motion planning to a small
scale graph search problem. Path execution is accom-

plished by an orbital tracking controller, which feeds back

the robot pose at a rate of 100 Hz. The method calls for a

global localization system (cf. Section III-B).

Effectively, this approach turns the robot into a vir-

tually rail-borne system. This carries advantages and

disadvantages: On the pro side, the robot becomes very

predictable. It follows the prescribed paths accurately (at

cm precision), and, due to the quick positional feedback,

quite fast and smoothly (the robot can maneuver safely at

up to 1.5 m/s). The method facilitated easy incorporation

of some basic reactive abilities into the system: In case its

virtual railtrack is occupied, the robot stops in front of the
obstacle, or it slowly follows if the obstacle is moving.

The obvious drawback of this method is its limited

capability to cope with changes in the environment. If a

railtrack gets blocked permanently, the robot will not find

an alternative route around the blockage. This is where

genuine motion planning concepts come to bear, as will be

outlined in the next section.

B. Model-Based Hierarchical Planner
The model-based hierarchical planner, or MBHP, sim-

ultaneously performs motion planning and path following

to continually adapt to unstructured, partially known, or

changing environments (see Fig. 10). Hierarchical plan-

ners of this design trace back to motion planners deployed

outdoors in rough terrain [73], [74]. MBHP splits the

navigation task into three layers differentiated by scale,

fidelity, and planning rate.
At the largest scale, a global planner generates an ap-

proximate navigation plan with the expectation that the

plan will likely change as Herb 2.0 discovers new obstacles.

As such, extensive preplanning would constitute wasted

effort. Using a simple approximation of robot motions, the

global planner is capable of rapidly rerouting around newly

discovered obstacles, replanning only as necessary.

Fig. 10. (Left) Part of the virtual rail network with points of interest, superimposed on an Lidar based obstacle map. (Right-Top) Model-Based

Hierarchical Planner (MBHP). The robot at left must navigate into place at right to assist in a home care task. It considers many possible initial

motions in detail, (some sample curves shown in black). The remainder of each path (in red) is approximated. The robot begins to follow the

chosen path (green) while replanning. Thus, a series of smooth path segments make up a complete route while reacting to changes in the

environment. (Right-Bottom) HERB 2.0 navigating with Rails at the Intel Open House.

Srinivasa et al. : HERB 2.0: Lessons Learned

2424 Proceedings of the IEEE | Vol. 100, No. 8, August 2012

At the middle level, a local planner models robot
motions at high fidelity, thus exclusively generating paths

that are inherently followable by the robot. Like a car,

Herb 2.0’s Segway base cannot move sideways. The local

planner samples a variety of command trajectories; for

each, the model simulates its execution on the robot to

predict the resulting path trajectory. Finding the optimal

set of command trajectories to test remains an active area

of research [75]–[77]. In recognition of the computational
expense of the robot model, the local planner subjects

itself to a limited planning horizon. Each local path con-

sidered by the robot looks ahead 5 m or less and is conca-

tenated with a global path to form a complete path to the

goal. In order to incorporate changes in the environment,

the local planner replans at a rate of 5 Hz.

Finally, a low-level controller accepts path commands

from the local planner and executes them on Herb 2.0. The
controller’s purpose is to ensure safety. Running at 10 Hz,

the scan rate of the ground-level Hokuyo laser scanner, the

controller commands Herb 2.0’s Segway base to follow the

chosen command trajectoryVunless the laser scanner de-

tects an impending collision. This situation arises rarely since

the local planner selects only collision-free paths, but the

controller can respond more rapidly to fast-moving people.

C. Lessons Learned
Although MBHP is the more general navigator, the

contrast between the two approaches in public spaces

crowded with people is startling. In following a virtual rail,

a blocked robot must wait for people to move out of the

way. Coupled with some audio feedback towards its envi-

ronment (the robot honks if something blocks its path),

the virtual rails system proves surprisingly capable. When
honked at, most people adjust themselves quickly and

naturally to the robot. Thus, virtual rails exploits a kind of

human social structure in which people clear a path to

allow another person to pass through.

MBHP surpasses virtual rails at the task of navigating

among static clutter, but the current implementation per-

forms poorly in environments crowded with people since

the planner does not reason about people as intelligent
obstacles who can get out of the way. It instead searches

for a completely free path; if one is not found, Herb 2.0

will sit and wait (or worse, waffle between various mo-

tions). Lacking the predictability of singular intent pos-

sessed by virtual rails, MBHP does not communicate

clearly to people where Herb 2.0 is trying to go. The con-

trast of these two navigators in a crowd highlights the

importance of continued work to enhance robotic capabi-
lities in the detection, recognition, and prediction of hu-

man behavior in response to robot actions.

XII. CONCLUSION

We have presented a snapshot of two years of effort on

Herb 2.0. The platform is evolving, and will forever be

evolving. Key to our progress has been a commitment to
working in a home environment and understanding the

nuances of how humans structure their environments. Un-

derstanding this structure has enabled more robust,

efficient, and predictable behavior. Some of our observa-

tions have surprised us and they point towards much

deeper research questions, on understanding human in-

tent, on collaborative manipulation, and on addressing ex-

treme clutter with physics-based manipulation planners.
We are now well positioned to move towards new unsolved

problem domains.

a) Reconciling geometric planning with physics-based
manipulation: Humans have instinct. Robots have search.

We are able to pick up knives and forks, stack plates, move

objects with our arms, balance dishes, kick open kitchen

doors, and load dishwashers. Herb 2.0 has barely scratched

the surface of what he can do with his arms and base. Our
work on push-grasping clutter is a start towards merging

physics-based manipulation with geometric search but we

are excited to go beyond that. There are two immediate

questions to answer: 1) how can we incorporate sensor

feedback into our strategies, and 2) how can we automat-

ically learn strategies from observation or demonstration?

Answering the first question will enable robust execution of

existing strategies. The second question is much harder to
answer but is critical. There are countless strategies to learn

but robots can use their prior knowledge and also learn

from their own and other robots’ experience.

b) Collaborative manipulation: We envision Herb 2.0

performing complex manipulation tasks with humans:

Herb 2.0 should be able to prepare a meal and clear a table

with a person, or to build an IKEA shelf with them.

Human-robot interaction must go beyond dialog manage-
ment, to physical collaboration. Currently, Herb 2.0 is on

its way to performing each of these tasks autonomously.

But, strangely enough, doing these tasks with a human will

be much harder: Herb 2.0 might need to sense human

kinematics, human intent, understand turn-taking, and

react to the environment and humans in real-time. So, do

we really need collaboration? There are definitely scenar-

ios in which collaboration is critical: in the battlefield for
assembling a mortar or carrying an injured soldier, or in

the home assisting a patient with disabilities with their

activities of daily living. But even in these cases, the role of

a robot and the balance of autonomy and collaboration will

change dynamically. We are excited to explore this ba-

lance, and the challenge of humans and robots performing

tightly coupled manipulation tasks collaboratively.

c) Sensing and actuation for robotics: Do we really
need a $500 000 robot like Herb 2.0 to enable lifelong

mobile manipulation? We have been exploring the capabi-

lities of simple hands. Surely, simple hands can do a lot less

than more expensive complex hands, but the details of

their limits are important. Our results to date have been

surprising: we have demonstrated that by shifting the

complexity from the mechanisms to the computational

Srinivasa et al. : HERB 2.0: Lessons Learned

Vol. 100, No. 8, August 2012 | Proceedings of the IEEE 2425

algorithms, complex tasks like bin-picking and singulation
can be achieved with simple hands [78]–[80].

With robots like Herb 2.0, we now have the ability to

excavate these questions and are perfectly positioned to

identify, prove, develop, and demonstrate the principles of
mobile manipulation that will enable our robots to interact

with us in our environment and impact our lives in mean-

ingful ways. h

REF ERENCE S

[1] S. Srinivasa, D. Ferguson, J. Vande Weghe,
D. Berenson, R. Diankov, C. Helfrich, and
H. Strasdat, BThe robotic busboy: Steps
towards developing a mobile robotic home
assistant,[in Proc. IEEE Int. Conf. Intell.
Autonom. Syst., Jul. 2008.

[2] S. Srinivasa, D. Ferguson, C. Helfrich,
D. Berenson, A. Collet, R. Diankov,
G. Gallagher, G. Hollinger, J. Kuffner, and
J. Vande Weghe, BHERB: A home exploring
robotic butler,[Autonom. Robots, vol. 28,
no. 1, pp. 5–20, 2009.

[3] N. Nilsson, BA mobile automation:
An application of artificial intelligence
techniques,[in Proc. 1st Int. Joint Conf.
Artif. Intell., 1969, pp. 509–520.

[4] A. P. Ambler, H. G. Barrow, C. M. Brown,
R. M. Burstall, and R. J. Popplestone,
BA versatile computer-controlled assembly
system,[in Proc. 3rd Int. Joint Conf. Artif.
Intell., 1973, pp. 298–307.

[5] T. Lozano-Perez, J. Jones, E. Mazer,
P. O’Donnell, W. Grimson, P. Tournassoud,
and A. Lanusse, BHandey: A robot system
that recognizes, plans, and manipulates,[in
Proc. IEEE Int. Conf. Robot. Autom., 1987,
vol. 4, pp. 843–849.

[6] T. Lozano-Perez, J. Jones, E. Mazer, and
P. O’Donnell, Handey: A robot task planner,
1992.

[7] A. M. Thompson, BThe navigation system
of the JPL robot,[in Proc. 5th Int. Joint
Conf. Artif. Intell., 1977, pp. 749–757.

[8] O. Khatib, K. Yokoi, K. Chang, D. Ruspini,
R. Holmberg, and A. Casal, BCoordination and
decentralized cooperation of multiple mobile
manipulators,[J. Robot. Syst., vol. 13, no. 11,
pp. 755–764, 1996.

[9] R. Alami, L. Aguilar, H. Bullata, S. Fleury,
M. Herrb, F. Ingrand, M. Khatib, and
F. Robert, BA general framework
for multi-robot cooperation and its
implementation on a set of three hilare
robots,[Exper. Robot. IV, pp. 26–39, 1997.

[10] Y. Sakagami, R. Watanabe, C. Aoyama,
S. Matsunaga, N. Higaki, and K. Fujimura,
BThe intelligent asimo: System overview
and integration,[in Proc. IEEE Int.
Conf. Intell. Robots Syst., 2002, vol. 3,
pp. 2478–2483.

[11] K. Nishiwaki, T. Sugihara, S. Kagami,
F. Kanehiro, M. Inaba, and H. Inoue, BDesign
and development of research platform for
perception-action integration in humanoid
robot: H6,[in Proc. Int. Conf. Intell. Robots
Syst., 2000, vol. 3, pp. 1559–1564.

[12] S. Kagami, K. Nishiwaki, J. Kuffner, Jr.,
Y. Kuniyoshi, M. Inaba, and H. Inoue,
BOnline 3D vision, motion planning and
bipedal locomotion control coupling system
of humanoid robot: H7,[in Proc. IEEE
Int. Conf. Intell. Robots Syst., 2002, vol. 3,
pp. 2557–2562.

[13] K. Kaneko, F. Kanehiro, S. Kajita,
H. Hirukawa, T. Kawasaki, M. Hirata,
K. Akachi, and T. Isozumi, BHumanoid
robot hrp-2,[in Proc. IEEE Int. Conf. Robot.
Automat., 2004, vol. 2, pp. 1083–1090.

[14] K. Akachi, K. Kaneko, N. Kanehira, S. Ota,
G. Miyamori, M. Hirata, S. Kajita, and
F. Kanehiro, BDevelopment of humanoid
robot hrp-3p,[in Proc. 5th IEEE-RAS Int. Conf.
Humanoid Robots, 2005, pp. 50–55, IEEE.

[15] K. Kaneko, F. Kanehiro, M. Morisawa,
K. Miura, S. Nakaoka, and S. Kajita,
BCybernetic human hrp-4c,[in Proc. IEEE
9th IEEE-RAS Int. Conf. Humanoid Robots,
2009, pp. 7–14.

[16] M. Ciocarlie, K. Hsiao, E. Jones, S. Chitta,
R. Rusu, and I. Sucan, BTowards reliable
grasping and manipulation in household
environments,[in Proc. RSS Workshop
Strategies Eval. Mobile Manipulation in
Household Environ., 2010.

[17] A. Albu-Schäffer, S. Haddadin, C. Ott,
A. Stemmer, T. Wimböck, and G. Hirzinger,
BThe DLR lightweight robot: Design and
control concepts for robots in human
environments,[Ind. Robot: An Int. J.,
vol. 34, no. 5, pp. 376–385, 2007.

[18] M. Beetz, L. Mosenlechner, and M. Tenorth,
BCrama cognitive robot abstract machine
for everyday manipulation in human
environments,[in Proc. IEEE/RSJ Int. Conf.
Intell. Robots. Syst., 2010, pp. 1012–1017.

[19] A. Jain and C. Kemp, BEl-e: An assistive
mobile manipulator that autonomously
fetches objects from flat surfaces,[Autonom.
Robots, vol. 28, no. 1, pp. 45–64, 2010.

[20] M. Quigley, E. Berger, and A. Ng, BStair:
Hardware and software architecture,[in
Proc. AAAI Robot. Workshop, Vancouver, BC,
Canada, 2007.

[21] M. Quigley, K. Conley, B. P. Gerkey, J. Faust,
T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
BROS: An open-source robot operating
system,[in Proc. ICRA Workshop Open
Source Softw., 2009.

[22] K. Konolige, BCOLBERT: A language for
reactive control in sapphira,[in Proc. 21st
Annu. German Conf. Artif. Intell., KI-97:
Adv. Artif. Intell., Freiburg, Germany, 1997,
pp. 31–52.

[23] M. Loetzsch, M. Risler, and M. Jungel,
BXABSLVA pragmatic approach to behavior
engineering,[in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2006, pp. 5124–5129.

[24] T. Niemueller, A. Ferrein, and G. Lakemeyer,
BA Lua-based behavior engine for controlling
the humanoid robot nao,[in Proc. RoboCup
XIII Symp., Graz, Austria, 2009.

[25] T. Niemueller, A. Ferrein, D. Beck, and
G. Lakemeyer, BDesign principles of the
component-based robot software framework
fawkes,[in Proc. 2nd Int. Conf. Simul., Model.,
Program. Auton. Robots, 2010.

[26] R. Ierusalimschy, Programming in Lua,
2nd ed. New York: Lua.org, 2006.

[27] J. Bohren and S. Cousins, BThe SMACH
high-level executive,[IEEE Robot. Autom.
Mag., vol. 17, no. 4, pp. 18–20, 2010.

[28] D. Berenson, S. Srinivasa, and J. Kuffner,
BTask space regions: A framework for
pose-constrained manipulation planning,[
Int. J. Robot. Res., Mar. 2011.

[29] D. Berenson, T. Simeon, and S. Srinivasa,
BAddressing cost-space chasms in

manipulation planning,[in Proc. IEEE
Int. Conf. Robot. Autom., May 2011.

[30] M. Stilman, BTask constrained motion
planning in robot joint space,[in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2007.

[31] Y. Koga, K. Kondo, J. Kuffner, and
J. claude Latombe, BPlanning motions
with intentions,[in Proc. SIGGRAPH,
1994.

[32] K. Yamane, J. Kuffner, and J. Hodgins,
BSynthesizing animations of human
manipulation tasks,[in Proc. SIGGRAPH,
2004.

[33] Z. Yao and K. Gupta, BPath planning with
general end-effector constraints: Using task
space to guide configuration space search,[in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2005.

[34] E. Drumwright and V. Ng-Thow-Hing,
BToward interactive reaching in static
environments for humanoid robots,[in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2006.

[35] D. Bertram, J. Kuffner, R. Dillmann, and
T. Asfour, BAn integrated approach to inverse
kinematics and path planning for redundant
manipulators,[in Proc. IEEE Int. Conf. Robot.
Autom., 2006.

[36] D. Berenson, J. Chestnutt, S. S. Srinivasa,
J. J. Kuffner, and S. Kagami,
BPose-constrained whole-body planning
using task space region chains,[in Proc.
IEEE-RAS Int. Conf. Humanoid Robots,
2009.

[37] D. Berenson, S. Srinivasa, and J. Kuffner,
BAddressing pose uncertainty in manipulation
planning using task space regions,[in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2009.

[38] D. Berenson, S. S. Srinivasa, D. Ferguson,
and J. Kuffner, BManipulation planning
on constraint manifolds,[in Proc. IEEE
Int. Conf. Robot. Autom., 2009.

[39] J. H. Yakey, S. M. LaValle, and L. E. Kavraki,
BRandomized path planning for linkages
with closed kinematic chains,[IEEE Trans.
Robot. Autom., vol. 17, no. 6, pp. 951–958,
2001.

[40] J. Cortes and T. Simeon, BSampling-based
motion planning under kinematic
loop-closure constraints,[in Proc.
Workshop Algorithmic Found. Robot.,
2004.

[41] D. Berenson and S. Srinivasa,
BProbabilistically complete planning with
end-effector pose constraints,[in Proc.
IEEE Int. Conf. Robot. Automat., May 2010.

[42] S. Dalibard, A. Nakhaei, F. Lamiraux, and
J.-P. Laumond, BWhole-body task planning
for a humanoid robot: A way to integrate
collision avoidance,[in Proc. Humanoids,
2009.

[43] D. Berenson, BConstrained manipulation
planning,[Ph.D. dissertation, Robotics
Inst., Carnegie Mellon Univ., Pittsburgh,
PA, May 2011.

[44] M. Dogar and S. Srinivasa, BPush-grasping
with dexterous hands,[in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Oct. 2010.

Srinivasa et al. : HERB 2.0: Lessons Learned

2426 Proceedings of the IEEE | Vol. 100, No. 8, August 2012

[45] M. Dogar and S. Srinivasa, BA framework
for push-grasping in clutter,[in Proc. Robot:
Sci. Syst. VII, 2011.

[46] T. Lozano-Perez, M. T. Mason, and
R. H. Taylor, BAutomatic synthesis of
fine-motion strategies for robots,[IJRR,
vol. 3, no. 1, 1984.

[47] S. Goyal, A. Ruina, and J. Papadopoulos,
BPlanar sliding with dry friction. Part 1.
Limit surface and moment function,[Wear,
no. 143, pp. 307–330, 1991.

[48] N. D. Ratliff, M. Zucker, J. A. Bagnell, and
S. S. Srinivasa, BChomp: Gradient
optimization techniques for efficient motion
planning,[in Proc. IEEE Int. Conf. Robot.
Autom., 2009, pp. 489–494.

[49] A. D. Dragan, N. D. Ratliff, and
S. S. Srinivasa, BManipulation planning
with goal sets using constrained trajectory
optimization,[in Proc. IEEE Int. Conf.
Robot. Autom., 2011.

[50] A. D. Dragan, G. J. Gordon, and
S. S. Srinivasa, BLearning from experience
in manipulation planning: Setting the
right goals,[in Proc. Int. Symp. Robot.
Res., 2011.

[51] N. D. Ratliff, J. A. Bagnell, and
M. A. Zinkevich, BMaximum margin
planning,[in Proc. 23rd Int. Conf. Mach.
Learn., 2006.

[52] M. Cakmak, S. Srinivasa, M. Lee, S. Kiesler,
and J. Forlizzi, BUsing spatial and temporal
contrast for fluent robot-human hand-overs,[
in Proc. 6th Int. Conf. Human-Robot Interact.,
2011, pp. 489–497.

[53] M. Cakmak, S. Srinivasa, M. Lee, J. Forlizzi,
and S. Kiesler, BHuman preferences for
robot-human hand-over configurations,[in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2011.

[54] A. Agah and K. Tanie, BHuman interaction
with a service robot: Mobile-manipulator
handing over an object to a human,[in
Proc. IEEE Int. Conf. Robot. Autom., 1997,
pp. 575–580.

[55] M. Huber, M. Rickert, A. Knoll, T. Brandt,
and S. Glasauer, BHuman-robot interaction
in handing-over tasks,[in Proc. IEEE Int.
Symp. Robot Human Interactive Commun.,
2008, pp. 107–112.

[56] E. Sisbot, L. Marin, and R. Alami, BSpatial
reasoning for human robot interaction,[in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2007.

[57] S. Kajikawa, T. Okino, K. Ohba, and
H. Inooka, BMotion planning for hand-over

between human and robot,[in Proc. IEEE/
RSJ Int. Conf. Intell. Robots Syst., 1995,
pp. 193–199.

[58] E. Lopez-Damian, D. Sidobre, S. DeLaTour,
and R. Alami, BGrasp planning for interactive
object manipulation,[in Proc. Int. Symp.
Robot. Autom., 2006.

[59] A. Edsinger and C. Kemp, BHuman-robot
interaction for cooperative manipulation:
Handing objects to one another,[in Proc.
IEEE Int. Symp. Robot Human Interactive
Commun., 2007.

[60] K. Koay, E. Sisbot, D. Syrdal, M. Walters,
K. Dautenhahn, and R. Alami, BExploratory
study of a robot approaching a person in
the context of handing over an object,[in
Proc. AAAI Spring Symp. Multidiscipl. Collab.
Socially Assistive Robot., 2007, pp. 18–24.

[61] Y. Choi, T. Chen, A. Jain, C. Anderson,
J. Glass, and C. Kemp, BHand it over or
set it down: A user study of object delivery
with an assistive mobile manipulator,[in
Proc. IEEE Int. Symp. Robot Human Interactive
Commun., 2009.

[62] K. Nagata, Y. Oosaki, M. Kakikura, and
H. Tsukune, BDelivery by hand between
human and robot based on fingertip
force-torque information,[in Proc. IEEE/
RSJ Int. Conf. Intell. Robots Syst., 1998,
pp. 750–757.

[63] I. Kim and H. Inooka, BHand-over of an
object between human and robot,[in Proc.
IEEE Int. Symp. Robot Human Interactive
Commun., 1992.

[64] A. Collet, S. S. Srinivasa, and M. Hebert,
BStructure discovery in multi-modal data:
A region-based approach,[in Proc. IEEE
Int. Conf. Robot. Autom., May 2011.

[65] A. Collet, M. Martinez, and S. S. Srinivasa,
BThe moped framework: Object recognition
and pose estimation for manipulation,[Int. J.
Robot. Res., vol. 30, no. 10, pp. 1284–1306,
2011.

[66] D. Lowe. (2004). Distinctive image features
from scale-invariant keypoints. Int. J. Comput.
Vis. [Online]. 60(2), pp. 91–110. Available:
http://portal.acm.org/citation.cfm?id=
996342

[67] Y. Cheng, BMean shift, mode seeking,
and clustering,[IEEE Trans. Pattern Anal.
Mach. Intell., vol. 17, no. 8, p. 790, 1995.

[68] C. F. Olson, BEfficient pose clustering using a
randomized algorithm,[Int. J. Comput. Vis.,
vol. 23, no. 2, p. 131, 1997.

[69] S. Kammel, J. Ziegler, B. Pitzer, M. Werling,
T. Gindele, D. Jagzent, J. Schröder, M. Thuy,

M. Goebl, F. v. Hundelshausen, O. Pink,
C. Frese, and C. Stiller, BTeam AnnieWAY’s
autonomous system for the 2007 DARPA
urban challenge,[Int. J. Field Robot. Res.,
vol. 25, pp. 615–639, 2008.

[70] J. Ziegler, M. Werling, and J. Schröder,
BNavigating car-like vehicles in unstructured
environment,[in Proc. IEEE Intell. Veh. Symp.,
2008, pp. 787–791.

[71] M. Werling, J. Ziegler, S. Kammel, and
S. Thrun, BOptimal trajectory generation for
dynamic street scenarios in a frenet frame,[in
Proc. IEEE Int. Conf. Robot. Autom., 2010,
pp. 987–993.

[72] T. Gindele, D. Jagzent, B. Pitzer, and
R. Dillmann, BDesign of the planner of
Team AnnieWAY’s autonomous vehicle used
in the DARPA urban challenge 2007,[in
Proc. IEEE Intell. Veh. Symp., Eindhoven,
The Netherlands, 2008.

[73] A. Kelly, A. Stentz, O. Amidi, M. W. Bode,
D. Bradley, A. Diaz-Calderon, M. Happold,
H. Herman, R. Mandelbaum, T. Pilarski,
P. Rander, S. Thayer, N. M. Vallidis, and
R. Warner, BToward reliable off road
autonomous vehicles operating in challenging
environments,[Int. J. Robot. Res., vol. 25,
no. 1, pp. 449–483, May 2006.

[74] T. Allen, J. Underwood, and S. Scheding,
BA path planning system for autonomous
ground vehicles operating in unstructured
dynamic environments,[in Proc. Australasian
Conf. Robot. Autom., 2007.

[75] C. Green and A. Kelly, BToward optimal
sampling in the space of paths,[in Proc.
Int. Symp. Robot. Res., Hiroshima, Japan,
Nov. 2007.

[76] L. Erickson and S. LaValle, BSurvivability:
Measuring and ensuring path diversity,[in
Proc. IEEE Int. Conf. Robot. Autom., Kobe,
Japan, May 2009.

[77] R. A. Knepper and M. T. Mason, BPath
diversity is only part of the problem,[in Proc.
IEEE Int. Conf. Robot. Autom., May 2009.

[78] M. Mason, S. S. Srinivasa, and A. Vazquez,
BGenerality and simple hands,[in Proc.
Int. Symp. Robot. Res., Jul. 2009.

[79] A. R. Garcia, M. Mason, and S. S. Srinivasa,
BManipulation capabilities with simple
hands,[in Proc. Int. Symp. Exper. Robot.,
Dec. 2010.

[80] M. Mason, A. R. Garcia, S. S. Srinivasa, and
A. Vazquez, BAutonomous manipulation
with a general-purpose simple hand,[Int. J.
Robot. Res., 2011.

ABOUT T HE AUTHO RS

Siddhartha S. Srinivasa received the Ph.D.

degree in robotics from Carnegie Mellon Univer-

sity, Pittsburgh, PA, in 2005 and the B.Tech.

degree in mechanical engineering from the Indian

Institute of Technology, Madras, India, in 1999.

He is an Associate Professor at the Robotics

Institute, Carnegie Mellon University, where he

founded and directs the Personal Robotics Labo-

ratory. His research interests include manipula-

tion, motion planning, perception, control, and

learning for personal robots.

Dmitry Berenson received the Ph.D. degree in

robotics from Carnegie Mellon University,

Pittsburgh, PA, in 2011 and the B.S. degree in

electrical engineering from Cornell University,

Ithaca, NY, in 2005.

He is a Postdoctoral Research Associate at

University of California, Berkeley. His research

interests include motion planning, manipulation,

and grasping for personal and medical robots.

Srinivasa et al. : HERB 2.0: Lessons Learned

Vol. 100, No. 8, August 2012 | Proceedings of the IEEE 2427

Maya Cakmak is working toward the Ph.D. degree

in robotics at the Georgia Institute of Technology,

Atlanta, GA. She received the B.Sc. degree in

electrical and electronics engineering and the M.

Sc. degree in computer engineering from the

Middle East Technical University, Turkey.

Her research interests include learning from

demonstration, human–robot interaction and in-

teractive machine learning.

Alvaro Collet received the B.S. and M.S. degrees

in electrical and computer engineering from the

Universitat Ramon Llull, and the M.S. degree in

robotics from Carnegie Mellon University,

Pittsburgh, PA, in 2009. He is working towards

the Ph.D. degree at The Robotics Institute at

Carnegie Mellon University.

He is the primary computer vision researcher

at the Personal Robotics Laboratory. His research

interests include vision for manipulation, object

recognition, image segmentation, object discovery, and sensor fusion.

Mehmet R. Dogar received the B.S. and M.S.

degrees in computer engineering from the Middle

East Technical University, Ankara, Turkey, in 2005

and 2007, respectively. He is working towards the

Ph.D. degree at the Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA.

His research interests include grasping, manip-

ulation, and motion planning.

Anca D. Dragan was born in Romania and

received the B.Sc. degree in computer science

from Jacobs University Bremen, Germany, in

2009. She is working towards the Ph.D. degree

at the Robotics Institute, Carnegie Mellon Univer-

sity, Pittsburgh, PA.

Her research interests include learning from

experience and demonstration, manipulation

planning, and human-robot interaction.

Ross A. Knepper received the B.S. degree in

computer science and the M.S. degree in robotics

both from Carnegie Mellon University, Pittsburgh,

PA. He received the Ph.D. degree from the Ro-

botics Institute, Carnegie Mellon University, where

he created motion planners for Mars rovers, un-

manned military vehicles, and a personal home-

assistant robot.

He is a Postdoctoral Associate at the Massa-

chusetts Institute of Technology, Cambridge. His

thesis explores the efficiency of exploration in motion planning and

delves into the fundamental structure of path alternatives. His research

investigates motion planning and mobile manipulation for robots

operating in human environments.

Tim Niemueller received the M.Sc. degree in

computer science from the Knowledge-based

Systems Group of the RWTH Aachen University,

Germany, in 2010, and is currently working

towards the Ph.D. degree at the same university.

He received an Intel Summer Fellowship in

2010 and worked at the Personal Robotics Labo-

ratory at Carnegie Mellon University, Pittsburgh,

PA. He also participated in the DARPA Autono-

mous Robot Manipulation Software Track at SRI

International. His research interests include behavior control, robust

action execution, and fault diagnosis and recovery for personal robots.

Kyle Strabala received the Master’s degree in

engineering mechanics from the University of

Nebraska, Lincoln, the Master’s degree in engi-

neering materials from the Universit de Rouen,

and the undergraduate degrees in math and

mechanical engineering from the University of

Nebraska. He is currently working towards the

Ph.D. degree at the Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA.

His research interests include physical human–

robot interaction, user interfaces, and perception and modeling of

human intent for personal robots.

Mike Vande Weghe received the S.B. degree in

electrical engineering from the Massachusetts

Institute of Technology (MIT), Cambridge, and

the M.S. degree in robotics from Carnegie Mellon

University (CMU), Pittsburgh, PA.

He has worked for over 10 years in mechanical,

electrical, and software development at CMU,

where he is presently a Senior Research Engineer

at the Robotics Institute. He is responsible for

hardware development, robot control, and soft-

ware infrastructure on HERB. Before coming to CMU, he worked for

Parlance Corporation and BBN on real-time computer speech recogni-

tion, and for Lutron Electronics on high-frequency switching power

systems.

Julius Ziegler received the M.Sc. degree in

computer science from the University of Karls-

ruhe, Germany, in 2006.

He is a research scientist at the Research

Center for Information Technology, Karlsruhe

(FZI) and is Manager of the Department of Mobile

Perception Systems. His research interests include

methods for perception, motion planning and

control, and their application to full size autono-

mous cars.

Srinivasa et al. : HERB 2.0: Lessons Learned

2428 Proceedings of the IEEE | Vol. 100, No. 8, August 2012

