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Abstract—Off-road autonomy, crucial for applications such as
search-and-rescue, agriculture, and planetary exploration, poses
unique problems due to challenging terrains, as well as due to
the risk involved in testing or deploying such systems. Accessible
platforms have the potential to widen the field to a broader set
of researchers and students. Existing efforts in making on-road
autonomy more accessible have seen success, yet aggressive off-
road autonomy remains underserved. We seek to fill this gap
by introducing HOUND, a 1/10th-scale, inexpensive, off-road
autonomous car platform that can handle challenging outdoor
terrains at high speeds. To aid development speed, we integrate
HOUND with BeamNG, a state-of-the-art driving simulator to
enable both software in the loop as well as hardware in the
loop testing. To reduce the extent of ruggedization required, and
thus cost, we integrate a rollover prevention system as a safety
feature into the platform. Real-world trials over 50 kilometers
demonstrate the platform’s longevity and effectiveness over
varied terrains and speeds. Build instructions, datasets and code
disseminated via: https://sites.google.com/view/prl-hound/home

I. INTRODUCTION

Off-road autonomy has various applications, including

search-and-rescue [57], agriculture [16], and planetary ex-

ploration [53]. Here, off-road environments refer to environ-

ments with highly uneven terrain, with structures such as

hills or ditches as tall or deep as, if not taller or deeper

than, the vehicle itself. Off-road environments are not tailored

to be traversed by vehicles; they present low traction and

bumpy surfaces leading to difficulties in state estimation as

well as control. Such environments can also be physically

unforgiving, resulting in potential sensor degradation if not

outright damage. Unlike on-road driving, there are no rules

that explicitly dictate expected vehicle behavior. This can make

benchmarking and comparison of off-road systems non-trivial.

Much of the progress in modern robotics has come from

large efforts toward improving infrastructure for research and

education. On-road autonomous driving, a generally resource-

intensive field, is being democratized by efforts such as

MuSHR [46] and F1-tenth [38], which lowered the barriers

of entry by providing a small, low-cost, easy-to-use hard-

ware/software platform. The AutoRally [21] platform had a

similar aim for off-road aggressive driving, being less expen-

sive and smaller than the platforms used in other works [9, 33].

While it created a significant cost reduction, this work seeks

to further lower the cost through new low-cost hardware and

novel algorithms previously not available, to enable off-road

autonomy research for a larger audience.

Fig. 1: HOUND has been tested on dirt hills, grasslands, gravel trails, and
tarmac.

As there are no explicit rules in off-road autonomy, evalu-

ating an autonomy stack requires knowing whether its actions

would incur damage or not. As such, we provide integration

with BeamNG [5], a high-fidelity vehicle simulator used both

in the industry as well as academia [6, 31], known particularly

for its accurate crash simulation.

A major concern for high-speed off-road navigation tends

to be rollovers [21], as repeated rollovers can damage the

components over time, costing both money and time in repairs.

In essence, the vehicle rolls over due to excess lateral accel-

eration. As such, we integrate a low-level rollover prevention

system (RPS) as a safety feature into our platform that allows

researchers to push the limits without needing to repair the

platform regularly or using expensive, ruggedized hardware.

The main contribution of our work is an integrated platform

(see Fig1), with open-source software, and hardware, that

can be used by off-road autonomy researchers, and robotics

researchers in general, at a relatively low cost of ≈$3000.

Our open-source software stack removes a major barrier to

research: the need to engineer an entire off-road autonomy

stack before starting focused research. Further, we believe that

a common accessible platform enables easy data sharing across

research projects. We demonstrate the utility of the simulator

by using it to validate the RPS. We evaluate the RPS both

in an isolated fashion, as well as in conjunction with a high-

level controller to show that it does not interfere excessively.

Finally, we test the longevity of this system in the real world

for 50 km over 4 different terrains, reaching speeds up to 7

m/s and lateral accelerations up to 9 m/s2.

https://sites.google.com/view/prl-hound/home


Fig. 2: Autonomy stack components, specified with (rate in Hz, latency in ms), with ≈ implying estimated latency based on maximum update rate. SITL
spoofs perception, useful for isolating control problems, whereas HITL spoofs sensors, useful for testing deployed software.

II. RELATED WORK

A. Aggressive off-road autonomy

Aggressive off-road autonomy presents unique challenges

as compared to on-road driving. The surface-tire interactions

become more relevant due to slippage, vibrations due to terrain

unevenness can make inertial state estimation harder, and

occlusion due to environmental structures such as trees and

ditches can make accurate mapping challenging. As such,

work has been done towards perceiving outdoor environments

as probabilistic elevation maps [41, 34], and their exten-

sions [48, 33] which use data-driven methods to address

environment occlusion via inpainting. Work by Fork et al.

[17] has extended planar dynamics models [20] towards non-

planar surfaces, whereas other works [29, 19] have presented

approaches for learning such 3-dimensional dynamics. In this

work, we incorporate some of the recent advances in off-

road autonomy for extrinsic state estimation [34, 48] and

control [27, 52] into a real-world system.

B. Research platforms

Full-scale autonomous driving systems are expensive, re-

quire vast resources, such as a large testing area, and can

pose safety risks. As such, small-scale research platforms

have become a popular entry point to autonomous driving

research [35, 26, 13, 46, 38]. Notably, the MuSHR[46] and F1-

tenth[38] platforms, inspired by the MIT-RACECAR[35], are

popular platforms that have enabled a wide variety of research,

even in external institutions [24, 8, 51]. The AutoRally [21]

platform further enabled research in outdoor environments [59,

39], but is significantly more expensive due to the use of

industrial-grade sensors and the ruggedization required for off-

road driving (see Table I). In this work, we incorporate a

rollover prevention system into the autonomy stack to reduce

the cost associated with ruggedization. Our work is related

to the VertiWheeler [14], a recent work focusing on off-

road navigation for rock crawling at lower speeds, but our

focus is more on high-speed off-road navigation with rollover

prevention. FastRLap [47] is a recent work focusing on using

reinforcement learning for outdoor navigation with a small-

scale platform, whereas we focus on creating a standardized

small-scale research and education platform for outdoor au-

tonomy.

C. Rollover prevention

Rollover prevention is a popular problem in the domain

of utility-grade automobile research, as it poses a safety risk

to large vehicles or vehicles with a high center of mass

during turning or side-slope traversal [45, 43, 55]. In this

context, an Advanced Driver Assistance System(ADAS) uses a

rollover index (RI) such as Load Transfer ratio [56, 15], Force

angle measure [22, 40] or Time to Rollover [11] to detect an

imminent rollover and either alert the driver or additionally

apply remedial controls [54]. For autonomous systems, works

such as [3, 29] propose using the rollover indicator as part of

the cost for the model predictive controller (MPC). For safety-

critical tasks such as rollover prevention, erroneous extrin-

sic/intrinsic state estimation or dynamics mismatch can result

in catastrophic failure. In our work, we incorporate a low-level

reactive controller that uses Force angle measure [40] as the

RI, inspired by Yedavalli and Huang [60], into the autonomy

stack that only depends on an inertial measurement unit (IMU)

and a wheel speed sensor. Additionally, we show that such a

system can work in conjunction with an MPC that uses the

rollover cost without loss of performance while reducing the

chance of incidental rollovers.

III. SYSTEM OVERVIEW

A. Hardware specifications

The HOUND’s physical platform is built using the Blackout

SC-1/10 platform, also used in the MuSHR [46] due to its low

cost and low weight as compared to a 1/5th scale platform. As

the autonomy stack is parameterized by vehicle properties, the

use of a bigger/different chassis is not precluded by our work.

Details regarding the sensor stack are shown in Fig. 2, Table

I. The onboard single-board-computer (SBC) is an NVIDIA

Jetson Orin NX as it provides a good compromise between

cost and size-weight-and-power (SWaP) when compared to

the Nano and AGX variants. The physical platform weighs

close to 4 Kg and can reach speeds beyond 12 m/s on tarmac.

For system hardware specifications, please see table II, Fig 2.

In contrast to previous outdoor autonomy platforms such as

AutoRally [21], and FastRLap [47], which perform GPS-IMU

fusion on the SBC, we use the Ardupilot [2] framework. Here,

a separate microcontroller board running the Ardupilot soft-

ware [32] runs an EKF [42], currently for GPS-IMU fusion,



Platform Focus Sensing Full cost Autonomy cost(sensing & compute) Hardware / Software Rollover protection

F1Tenth [38] Indoor IMU, RGBD, LiDAR $3,000 $2,000 None / None
MuSHR [46] Indoor IMU, RGBD, LiDAR $1,000 $500 None / None
AutoRally [21] Outdoor IMU, Stereo RGB, GPS $15,000 $9,000 Steel body, industrial grade sensors / None
HOUND Outdoor IMU, RGBD, LiDAR, GPS $3,000 $2,000 Enclosed plastic shell / RPS

TABLE I: Cost/features comparison among platforms. Costs approximated to the nearest 1000. Autorally’s use of industrial grade sensors results in an
autonomy cost ≈ 4x that of the HOUND, which uses commercial grade sensors and RPS to protect against rollover damage.

Specification Value

Max. wheelspeed (max Vw) 23.0m/s (no load)
Static rollover limit (RIL) ≈ 0.9
Battery backup (idle/driving) 80 mins/15 mins @ 5m/s
Weight (with battery) ≈ 4.0Kg

Component Name

High-level computation Nvidia Jetson Orin NX 16 GB
Ardupilot board mRo PixRacer Pro (3 IMUs, 1 Barometer)
GPS Ublox F9P-01B RTK
RGB-D camera Intel Realsense D435/D455
LiDAR YDLidar X4
Motor control/feedback Flipsky FSESC 4.12
Chassis Redcat racing Blackout SC-1/10
Steering Servo ProTek RC 170SBL
Battery Spektrum SPMX324S100 (47.36Wh)

TABLE II: Note that while the maximum wheelspeed can reach 23 m/s,
autonomy experiments are not expected to exceed 7− 9 m/s.

but optionally for fusing additional odometry measurements,

either from visual odometry or motion capture. Ardupilot

has been used in this capacity before by works [36, 25].

Additionally, it provides a hardware bridge between the SBC

and the chassis with several fail safes as well as various tools

such as Missionplanner [12] for convenient field testing. The

above components are housed inside a 3D-printed body (see

Fig. 3) designed to protect against environmental factors and

incidental rollovers, up to a limit. For more details, refer to

Appendix VII-A and VII-B.

B. State estimation

The intrinsic state estimation, which includes pose-twist

estimation, and IMU filtering, is done on the Ardupilot board

and communicated to the SBC (see Fig. 2 for details). For

extrinsic state estimation, we use GPU-based probabilistic

elevation mapping [34] in conjunction with a learning-based

elevation inpainting system [48] to address occlusions. The

elevation map is body-centric. On the Orin NX, the latency

of projecting the pointcloud to the elevation map is invariant

up to a relatively large map size, however, the latency of

inpainting scales quadratically with the map size. Thus, we

maintain a large “raw” elevation map, and inpaint only a

smaller, cropped portion of it, big enough for navigation

at 6-8 m/s with planning horizons up to 1 second. Before

inpainting, spikes in the elevation map that occur due to

noise in depth sensing are median filtered. This minimizes

the latency without excessively compromising on map quality

and makes inpainting easier over time when the car operates

in a small loop. Details regarding the map size, latencies and

update rates can be found in Fig. 2.

Fig. 3: Illustration of the coordinate frame used by HOUND

C. High-level controller

The controller’s state vector consists of world frame position

Xw, Y w, Zw, world frame roll-pitch-yaw φ, θ, ψ, body frame

velocity V b, body frame linear acceleration Ab, and body

frame rotation rates ωb in the reference frame shown in Fig.

3. The controller also takes the elevation map, and a path

G = (g1, . . . , gm), gj ∈ R
2 in the world frame. The controller

produces wheel speed Vw and steering angle δ as the output.

The end users may implement any controller that follows

the aforementioned input-output scheme. As the default high-

level controller, we implement a variant of MPPI [27] as our

sampling-based controller using Pytorch and PyCUDA.

1) Dynamics model: We use a single-track bicycle

model [52], which considers non-planar surfaces, with a sim-

plified Pacejka tire model [1], as it performs better than the

kinematic no-slip model [28] near the tire’s grip limit [49].

The dynamics model is used to predict future states for a

given control sequence U = (u1, . . . , um), uj = (δj , V j
w). We

assume that the tires always remain in contact, as such the

height and tilt –z, φ, θ–are obtained by projecting the location

of the tires on the elevation map and V b
z = 0, as done by Meng

et al. [33]. The body rates ωb
x, ω

b
y are obtained by transforming

world frame roll-pitch-yaw rates into the body frame [30]. The

body frame forces F b
x , F

b
y , F

b
z and rotational acceleration ω̇b

z

are given by:

F b
x = Fxr + Fxf cos(δ)− Fyf sin(δ) +mg sin θ,

F b
y = Fyr + Fyf cos(δ) + Fxf sin(δ) +mg sinφ,

F b
z = m(g cosβ − Vxωy + Vyωx),

ω̇b
z = ((Fxf sin(δ) + Fyf cos(δ))Lf − FyrLr)/Jz

(1)



Where Fxf , Fyf represent the wheel-frame longitudinal and

lateral forces generated by the front tire, Fxr, Fyr represent

the same for the rear tires, β represents the angle made by the

body-frame Z-axis with the world’s Z axis(see Fig. 3), Lf , Lr

represent the distance from the center of mass to the front

and the rear axle respectively, m represents the mass of the

vehicle, Jz represents the mass moment of inertia around its Z

axis. These lateral and longitudinal accelerations are then used

to update the body frame velocity V b, which is transformed

into the world frame to update the position.

2) Cost function: For the cost along the trajectory, follow-

ing recent work [33, 29], we aim to regulate vertical force

F b
z , angle to the world frame Z axis β, body frame forward

velocity V b
x , rollover index RI (see Eq. 4), cross-track error

Ex(p) and Euclidean distance to goal along the path Eg(p),
p = (Xw, Y w), p ∈ R

2.

C =WfT (F
b
z , F

b
L) +WβT (β, βL) +WvT (V

b
x , VL)+

WrT (RI,RIL) +WsEx(p) +WgEg(p)
(2)

Where C is the total cost that gets summed along the trajec-

tory. Note that the terms with a “L” subscript represent the

limiting value for the corresponding variable, and T (x, L) =
max(0, x−L). Wf ,Wβ ,Wv,Wr,Ws,Wg are weights on these

costs.

D. Rollover Prevention

While we build on existing work (see II-C), we outline

the specific implementation of rollover prevention used in

our work as our constraints may differ from those of prior

works. The RPS is part of the Low-Level Controller. The Low-

Level Controller allows some form of operator intervention

at all times, thus, the operator can always prevent collisions

based on visual contact. However, rollovers are caused by

inertial effects not felt outside the vehicle, which makes

them much harder for the operator to prevent. The RPS is

safety-critical, therefore, we avoid dependence on intrinsic and

extrinsic state estimation, which may be erroneous. As such,

the method outlined here only depends on wheel speed and

IMU measurements. We also do not assume knowledge of the

tire parameters and so, we assume no slip. We show that the

dependence on this assumption is not strong. Additionally, the

RPS must not impose substantial computing requirements as it

must run constantly in the background at a high update rate.

Due to these constraints on state estimation, knowledge of

vehicle parameters, and compute power, model-based based

approaches to rollover prevention, such as [29, 33] do not

address our problem. We assume that the steering actuation is

instantaneous. Finally, we assume that the wheels remain in

contact with the ground at all times. More details for the RPS

and low-level controller can be found in Appendix VII-C

Consider a car turning on a sloped surface, which induces

a positive roll angle φ, being observed in a non-inertial frame.

The lateral and vertical accelerations (Ab
y, A

b
z resp.) produce

counteracting moments around the contact point of the right-

side tires with arm lengths Hcom, Lt/2, resp. where Hcom

refers to the height of the center of mass above the contact

surface under the vehicle and Lt refers to the track width

of the vehicle(see Fig. 3). A rollover is imminent when the

moment produced by Ab
y exceeds that of Ab

z [40]. Let this

critical lateral acceleration be Ac
y .

|Ab
y|Hcom < Ab

zLt/2 OR |Ab
y| < Ac

y,

Ac
y = Ab

zLt/(2Hcom)
(3)

We use the force-angle-measure as our rollover[40] index(RI)

which is the ratio of lateral to vertical acceleration.

RI = Ab
y/A

b
z,

RIL = Lt/(2Hcom)
(4)

Where RIL refers to the limiting or critical value of the

rollover index beyond which a rollover is imminent(|RI| ≥
RIL), following from the expression of Ac

y in 3. Note that the

term “angle” is used in the name as one can interpret the RI as

arctan(Ab
y/A

b
z), though we use it as a ratio for mathematical

convenience.

The RPS consists of two parts; the static limiter, and the

feedback controller.

1) Static Limiter: Assuming no slip, the wheel speed Vw
and steering input δ produce a centrifugal force that can be

used to obtain the steering angle limit. As the tires will always

have some slip, this limiter will underestimate the steering

angle limit, and so we also introduce a user-tunable “slack”

δs. We also account for gravity-induced lateral acceleration.

Ab
y = V 2

w tan(δ)/Lfr,

δC = ± tan−1((Ac
y ∓ g sin(φ))Lfr/V

2
w)± δs

(5)

Where Lfr represents the wheelbase. Note that the slack

variable allows for a configurable reduction in the conser-

vatism that arises from the no-slip assumption and is tuned

empirically on the platform.

2) Feedback Control: Feedback control is necessary as the

static limiter can suffer rollovers from model mismatch or

environmental factors. This also helps the end-user tune δs;

ideally, the feedback mechanism should never kick in, while

using as much slack as possible. The feedback controller

uses IMU feedback to satisfy Eq. 3 with minimal steering

angle change. To handle non-linearities, we use feedback

linearization before applying LQR to this system. Assume that

for satisfying Eq. 3, the small change in lateral acceleration is

∆Ay , then (from 5) the required change in steering angle can

be found from the lateral acceleration as:

∆δ = ∆Ay(cos
2(δ)Lfr/V

2
w) (6)

Observe that this approach would continue to adjust the

steering angle until ∆Ay goes to 0, regardless of tire slip,

which weakens the dependence on the “no-slip” assumption.

The LQR controller then provides a setpoint for the ∆Ay to

regulate both the lateral acceleration error and the roll rate.

The state transition equation, state penalty and control penalty



(a) Beam-node based physics simulation (b) Elevation map replication for off-road map (c) Isolated rollover setting on flat ground

Fig. 4: BeamNG’s soft-body physics simulation (4(a)) allows accurate simulation of second-order inertial effects, useful for problems such as rollover
prevention(4(c)). The integration with BeamNG spoofs the elevation map(4(b)) for the off-road environment to isolate the control problem.

matrices, assuming ∆t is the update time, are given by:
[

Ab
y

Ab
z
−RIL
ωx

]

t+1

=

[

1 0
K 1

]

[

Ab
y

Ab
z
−RIL
ωx

]

t

+

[

1
K

]

∆
Ab

y

Ab
z

,

K = ∆tAb
z

Hcom

Jx/m
, Q =

[

10 0
0 10

]

, R = 1

(7)

Where Jx,m refer to the roll moment of inertia and mass

respectively. Note that in practice additional constraints may

be used in Eq. 3 to reduce Ac
y for safety reasons.

E. Simulator interface

We use BeamNG [5], a high-fidelity soft-body physics

simulator geared towards mobile systems, that simulates phys-

ical systems as a collection of beams and nodes (see Fig.

4(a)). BeamNG has been used in the industry, as well as

in academia [6, 31]. We build our SITL and HITL stack

around this simulator. The SITL can replicate the elevation

map (see Fig. 4(b)), useful for isolating control problems and

benchmarking elevation mapping. HITL is used for testing

the software directly on the SBC (see Fig. 2). For both the

HITL and SITL, the simulator can run on a separate computer

connected by WiFi/Ethernet, allowing accurate estimation of

compute load on the SBC. Note that our interface can be used

for studying off-road autonomy in general, though we only

use two particular vehicles for our experiments (see 4(b)).

IV. EVALUATION

A. Experimental evaluation of simulator accuracy

We evaluate how well the simulator predicts real-world

behavior by comparing its dynamics prediction errors against

the errors of two simpler mathematical models. For simplicity,

we perform this evaluation on a flat surface.

Hypothesis H1: The simulator’s error is <= error for either

of the other models for all metrics.

Scenario: In the real world, 3 trajectories, totaling ≈ 100s
of data, are collected on an outdoor, flat tiled surface at 50Hz.

Using IMU data, the coefficient of friction is estimated to be

≈ 0.65± 0.1. Car specifications were measured directly. The

car is moved in circular patterns at speeds up to ≈ 8m/s,
and accelerations up to ≈ 7m/s2. The dynamics model is

initialized with real data only at the start of a new control

sequence.

Metrics: We calculate L2 norm errors for body frame

acceleration, rotation rate, and velocity, normalizing them by

the largest error among models to allow relative comparison.

Models:

• BeamNG: represents the simulator’s error.

• slip3d: represents the error for the model described in

III-C1.

• noslip3d: represents the error for a no-slip kinematic

bicycle model [28], with its velocity projected into 3D

using the elevation map, as also done by Meng et al.

[33].

Result: Fig. 6 shows that the simulator’s error is slightly

lower than the next best in Velocity and rotation rate, and much

lower in Acceleration(p < 0.02 for all). Note that all error

bars represent 95% confidence intervals. Thus, hypothesis H1

is confirmed.

B. Validating RPS’s utility as a safety system

We evaluate the utility of the RPS by evaluating how much

it restricts the vehicle’s maneuverability, and how much it

prevents rollovers. To stress the RPS, we set the tire friction for

the small car to be 50% more than the default and exaggerate

the roll characteristics through suspension tuning. Note that the

simulator automatically reduces friction for off-road settings

by ≈ 20%. This, combined with the bumpiness of off-road

terrain makes wheel-slip more likely in the off-road settings.

1) Isolated evaluation of rollover prevention: We test the

RPS by forcing the vehicle into a rollover by applying max-

imum steering to one side while moving at a fixed speed V

(see Fig. 4(c)).

Hypothesis H2: The Full RPS(III-D) achieves a greater

ratio of peak Ab
y/A

b
z than the static limiter(III-D1) while

having the same or lower rollover rate.

Scenarios: We use the “Small car” and the “Big car”(see

Fig. 4(a)), over two terrains, Flat(Fig. 4(c)) and Off-road(Fig.

4(b)), for 50 iterations each. Fig. 4(c) describes the set-

ting, where V is increased linearly with each iteration, from

[4.8, 7.2]m/s for the small car, and [9.6, 14.4]m/s for the big

car. We also test the RPS’s failure rate over a broader range

of speeds, for 5 iterations at 4 speeds for each scenario.

Metric: We use the rollover rate and the peak ratio of lateral

to vertical acceleration achieved once the car begins turning,

up to a roll angle of 90 degrees.



(a) Peak Ab
y/A

b
z (b) Rollover rate (c) Rollover rate vs speeds (d) Min. Ab

z

Fig. 5: Static limiter obtains lower Ab
y/A

b
z in 5(a) and more rollovers(5(b)). In 3 out of 4 scenarios, the rollover rate is 0 for both static limiter and full RPS

in 5(b). 5(c), 5(d) show the breaking of instantaneous steering and constant ground contact assumption.

Fig. 6: BeamNG performs as well as if not better than other models.

HLC with Scenario TTCp(s) TTCnp(s) αz(rad/s2) R.O.avg

RPS OFF Tight 11.04± 1.56 8.76± 1.47 207.74± 157.77 2.28
RPS ON Tight 8.39± 0.13 8.39± 0.13 170.60± 18.45 0
RPS OFF Shallow 17.63± 0.76 17.47± 0.59 210.05± 86.92 0.16
RPS ON Shallow 17.07± 0.15 17.07± 0.15 117.53± 14.28 0

TABLE III: HLC w/ RPS ON performs at least as well as if not better than
HLC w/ RPS OFF and makes the trajectories smoother, indicated by the lower
αz

Algorithms: We compare “No prevention”, “Static limiter”

(III-D1) with δs set to 0 and “Full RPS” (III-D) with δs set to

30 % of the maximum steering angle. It should be noted that

as platforms apart from ours shown in table I do not posses

RPS, they are represented by the “No prevention” algorithm

in these experiments.

Result: Across all scenarios, full RPS achieves at least 83%

of the ratio achieved with no prevention. Fig. 5(a) and Fig 5(b)

show that the full RPS obtains a higher ratio of Ab
y/A

b
z and a

lower rollover rate when than the static limiter(p < 0.02 for

all). Thus, hypothesis H2 is confirmed.

2) In the loop evaluation of rollover prevention: We test

the RPS (III-D) in conjunction with the high-level controller

(HLC) (III-C). To simulate dynamics mismatch, we set the

friction coefficient used by the model to be 33% lower than

its value set in simulation. Scenarios: We use the small car

on flat ground, with two trajectories, for 50 iterations. The

first forces hard turning to reach the end, increasing rollover

probability (Tight), and the second provides shallow turns and

long straights (Shallow). We randomly add noise to the start

location for each iteration. Upon rollover, the vehicle is reset

to the closest location on the target trajectory, and given a 1-

second penalty to reflect the delay for resetting the vehicle in

the real world. This is an optimistic comparison, as in the real

world, rollovers can be fatal to the hardware.

Hypothesis H3: The Full RPS system does not excessively

interfere with the performance of the system.

Metric: We measure the time to reach the final goal with the

1-second penalty (TTCp) and without it (TTCnp), maximum

yaw acceleration just before rollover αz , and average number

of rollovers (R.O.avg) for an iteration.

Algorithms: We compare the HLC(III-C) running without

RPS (“RPS OFF”) against running it with RPS (“RPS ON”).

It should be noted that “RPS OFF” represents the approach of

preventing rollovers by incorporating the rollover index into

the cost function of a model predictive controller, as in [29,

33].

Result: Table III, shows that the completion time TTCp

is lower with the RPS ON for the Tight turns scenario,

and slightly lower for the Shallow turns scenario(p < 0.02
for both). Thus, RPS does not interfere with HLC unless

necessary, confirming hypothesis H3. The TTCnp in table III

also shows that HLC with RPS ON is at least as good as if not

slightly better even when not considering the 1-second penalty,

from which we infer that using RPS does not jeopardize the

performance of the system.

C. Real world Evaluation

Scenario: For real-world evaluation we only run the system

with the RPS “ON”, with δs = 0.3, in the manual mode as

well as the autonomous mode using the HLC(III-C), using

the default MPPI controller for waypoint following, with no

repairs between runs.

Hypothesis H4: The complete stack survives high lateral

accelerations (> 8m/s2) and speeds (> 5m/s) over a large

distance(> 10km) with minimal part damage.

Metrics: We measure the “peak” lateral acceleration

P (Ab
y), speed P (V b

x ), delayed vertical acceleration just before

rollover D(Ab
z), number of rollovers (R.O.), and distance

covered (S). The Peak values represent the top 99.7th per-

centile of the data, corresponding to ≈ 13 seconds. Note

that the acceleration and speed values are low-pass filtered

with a cutoff frequency of 2 Hz to remove large spikes in



(a) Trajectory plots for tight-turns test case (b) Trajectory plots for shallow-turns test case

Fig. 7: RPS reduces rollovers, not only when the vehicle needs to turn harder(Fig 7(a)) but also when the vehicle might rollover incidentally due to yaw
instability from bumps in an off-road environment, indicated by the waviness of the RPS OFF trajectory and the high yaw accelerations αz in Table III.

(a) Off-road driving on uneven terrain (b) Airborne situations (c) Sensor degradation, occlusion from dust

Fig. 8: High speed offroading 8(a)) often results in airborne situations(8(b)). Dust trails in multi-agent settings (8(c)) present interesting challenges.

Mode P (Ab
y)(m/s2) P (V b

x )(m/s) R.O. D(Ab
z)(m/s2) S(Km)

Auto 7.41 6.95 2 3.29 ≈12
Manual 8.92 8.01 1 0.75 ≈38

TABLE IV: Low D(Ab
z) indicates weightlessness or loss of ground contact

accelerations. An R.O. is when the roll angle > 1.0rad while

the vehicle speed > 0.5m/s. Delayed values are the values

0.2 seconds before the R.O.

Result: Real world experiments over ≈50Km (Table IV)

show that the complete stack obtains speeds > 5m/s, lateral

accelerations above > 8m/s2, and 3 rollovers (R.O.). The

rollovers damage only a sacrificial, easy-to-replace LiDAR

mount in the last run (see Appendix VII-B). Over the 50

kilometers, the mean and standard deviation of the speed was

(2.18, 2.38)m/s, and the mean and standard deviation of the

lateral acceleration was (2.49, 2.57)m/s2. Thus, hypothesis

H4 is confirmed. For further qualitative assessment of our

real-world experiments, we refer the reader to the publicly

released dataset.
V. DISCUSSION

Autonomy stack: The autonomy stack presented in this

work provides a useful reference point that combines relatively

mature state-of-the-practice methods. Considering the low

inertia of the system, we aimed for a sub-50 ms perception-

to-control latency in the autonomy stack(see Fig.2). Due to

SWaP constraints, this precluded using additional capabilities,

such as semantic segmentation [37], as well as the use of

learned dynamics models [29] without increasing the latency

or memory requirements. We believe, however, that a standard-

ized platform such as this can make it easier for researchers

to improve individual sub-components over time, such that

additional capabilities become available eventually.

Choice of simulator and simulation fidelity: While many

good simulators for robotics exist today, we chose BeamNG

as it is geared specifically towards simulating vehicles, and

is used by the industry for the same. It is geared towards

simulating vehicle damage, which is particularly useful for

inferring whether an off-road autonomy stack is safe or not,

without having to create hand-crafted constraints on velocities,

and accelerations, which can create misaligned incentives

if the simulator is being used for training a reinforcement

learning agent. We do not preclude future extensions that allow

the use of other simulators.

We only verify simulation fidelity for operation on flat

surfaces. Replication of real-world elevation maps, their in-

tegration into the simulator, and the acquisition of precise

GPS coordinates to obtain more accurate benchmarks can be

addressed by future work.

Reducing cost and increasing accessibility In Table I, we

compare the cost of a 1/5th scale platform (AutoRally [21])

with our system that uses a 1/10th scale platform. While a

bigger vehicle would be more expensive, note that the cost of

sensing and computing is not as closely tied to the size, and

is higher due to the use of industrial-grade components.

We find from 50 kilometers of real-world testing that low-

cost commercial-grade hardware can indeed be used for such a

platform. We believe that this is at least in part made possible

through the use of the RPS safety mechanism. While a few

rollovers would not cause significant damage to our platform,

a rollover every 100 meters of travel would incur 500 rollovers

for 50 kilometers, requiring repeated repairs, and incurring a

greater cost over time than using ruggedized hardware.

Notes on rollover prevention: It should be noted that in

the IV-B2 experiment, while the high-level controller could

use either adaptive control methods or online sys-ID as in [4]



to address a dynamics mismatch, it is introduced on purpose

to demonstrate how the RPS can help in the case of a faulty

high-level controller. From Table III, it can be seen that the

dynamics mismatch causes the HLC to apply larger than

necessary inputs that result in higher yaw acceleration(p <
0.02). In contrast, corrections from RPS smoothen out the

trajectories (see Fig. 7). In contrast to the isolated setting(see

Fig. 5(c)), in the closed loop experiments there are no rollovers

(see table III) despite the peak speeds exceeding 8.0 m/s for

both scenarios, as the HLC does not provide unreasonable

commands to cause rollovers on purpose.
In our isolated experiments, we also push the system to

unreasonably high speeds to understand the limits of the safety

mechanism. The unevenness of off-road surfaces results in

airborne (Fig. 8(b)) situations, apparent from the lower vertical

acceleration(Fig. 5(d)), breaking the assumption of constant

ground contact – broken more often in the real world(Table

IV, Fig. 8(b)). To the best of our knowledge, autonomous mid-

air control of cars is currently an open problem that could be

addressed by future work.
In Fig5(a), it can also be seen that the lateral acceleration

ratio for the small car on the flat surface is slightly (≈ 3%)

higher when using RPS as compared to when not using any

prevention. Note that due to the vehicle’s suspension, the body

of the vehicle can roll slightly even before RIL is reached.

Due to an effect known as “jacking”[18] the center of mass

moves upwards relative to the outside tire’s contact point due

to this body roll. Once the center of mass moves upwards, the

RIL(see Eq. 4) becomes smaller, creating a positive feedback

loop; requiring less lateral traction to sustain the rollover. This

happens much faster on the smaller vehicle owing to its lower

roll inertia (≈ 3.5 times faster on average). When a rollover

is prevented, the center of mass is kept low. This allows

the system to sustain slightly higher lateral accelerations.

Note that we consider this to be an unintended effect of the

rollover prevention system – not something that the system

was designed to do.
Sensor degradation: During our field experiments, we

observed that in dry off-road environments, apart from sensor

degradation from dust coverage [10], dust trails from a lead

vehicle can cause issues such as false depth or no depth (see

8(c). Depending on the density of the dust particles, this may

obstruct lidar as well, which can create interesting situations

for multi-agent off-road navigation problems that future work

could address.
Licensing: The HOUND software stack is built using

multiple open-source components, with either MIT, BSD-3, or

GPL-v3 licenses. The BeamNG simulator is an exception to

this. While the HOUND-BeamNG integration is open-source,

the simulator itself is not. However, at the time of writing,

BeamNG is available for academic purposes at no cost.

VI. CONCLUSIONS AND FUTURE WORK

The paper presents an inexpensive, 1/10th scale re-

search platform for High-speed Off-road Under-actuated Non-

holonomic Driving(H.O.U.N.D.). HOUND integrates state-of-
the-art methods for terrain mapping, localization, and model

predictive control geared towards aggressive offroad driving

into a single platform. The platform is integrated with a high-

fidelity vehicle simulator, BeamNG, to allow both software and

hardware-in-the-loop testing. We deploy HOUND in the real

world, at high speeds, on four different terrains covering 50

km of driving, and highlight the utility of rollover prevention

for traversing difficult terrain at high speed through real-world

experiments.

At the moment, the perception system uses elevation maps

to represent the environment. This requires less computation

than a 3D representation and is convenient for predicting

vehicle dynamics. However, the assumptions imposed on the

perception and dynamics models make them a lossy compres-

sion of the real world. For instance, an elevation map might

consider a fallen log of wood as a hill, leading to errors in

physics prediction, which may lead to errors in navigation.

Future work may explore how this problem may be addressed

in a compute and memory-efficient manner for real-time

operation on such robots. Smaller robots are safer and easier

to operate, which makes dataset generation easier compared

to using full-size vehicles. Future work should investigate the

re-targeting of datasets collected on small platforms to their

use on large and full-size platforms.
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VII. APPENDIX

Fig. 9: Illustration describing how the components are connected to each other

A. Utilising the Ardupilot ecosystem:

The Ardupilot ecosystem provides many plug-and-play fea-

tures that we take advantage of in this work. It takes care of

time synchronization between itself and the SBC, as well as

provides certain safety features for field operations.

As the Ardupilot board acts as a bridge between the SBC

and the actuators, it allows the operator to always be in

control of the final commands being sent to the hardware.

For instance, the ardupilot board can “disarm” the vehicle

under different circumstances by setting the motor command

to “0”, preventing the car from moving of its own volition

or hitting the brakes if it is currently moving. The board can

be, and by default is, configured to disarm the vehicle either

through a two-position switch on the hand-held remote, or by

the loss of radio contact with said remote. It can additionally
be configured to disarm if the vehicle moves outside of

a particular region, generally known as “geofencing” [44],

or if the vehicle loses the GPS signal completely during

autonomous operation. Note that in the case of GPS loss,

operation in manual modes is still possible.

When an internet connection is available to the SBC,

RTCM [50] corrections can be obtained using NTRIP [58],

which can be forwarded to the GPS by the ardupilot board

to obtain high-accuracy RTK positioning. During field opera-

tions, the MissionPlanner [12] UI running either on the user’s

laptop or phone (see Fig 9), connected to the SBC over WiFi,

can be used to calibrate the IMU and compass in the ardupilot

board, change configuration parameters, or reboot it. The UI

also provides a convenient way of sending GPS waypoints to

the SBC, which can then be used by the high-level controller,

or a local planner. Additionally, the onboard buzzer on the

ardupilot boards is used for producing notification sounds

that let the user know the internal status of the sub-systems.

For instance, the notification sounds can let the user know

if the perception system has started running yet or not, or if

the system has started or stopped recording data. If the user

only wishes to collect data from the platform with manual

driving, the perception stack and low-level controller can be

configured to auto-boot, and the user can perform this task

without needing to carry a laptop with them to monitor the

vehicle’s internal status.

B. Hardware design decisions

Heat management: To protect the system from environ-

mental factors as well as collisions, most of the hardware is

placed in an enclosed shell (see Fig 3). We use an active

negative pressure cooling system, where the fan creates a slight

negative pressure in the shell, and routes the air around all the

components before exhaustion (see Fig 10(a)). The exhaust

goes over the motor, extracting the motor’s heat as well. While

the exhaust air is hotter than the ambient, it is still much cooler

than the motor’s temperature and can provide the necessary

airflow for sustained cooling. The intake vent is positioned

and sized to minimize the entry of dust and dirt. While the

default setup uses negative air pressure, a positive pressure

system would work as well, requiring a dust filter under the

fan and flipping the orientation of the fan.

Electromagnetic interference management: The SBC,

devices that use USB-3.0 protocol, and power converters, all

produce electromagnetic interference(EMI) that affects the

GPS’s accuracy [23]. On big platforms, the spacing between

the GPS and such EMI-generating devices can be large, and so

this may or may not be a concern for them. On the HOUND,

we minimize the impact of the EMI on the GPS by one,

maximizing the separation between the SBC and the GPS, and

two, by placing two layers of Aluminum shielding between

it and the power-electronics (see Fig 10(b)). The Aluminum

shielding is created using Aluminum tape, readily available

from any hardware store, or online.

Sacrifical LiDAR mounts: As we show in our experiments,

rollover prevention is not without limitations. Eventually, the

vehicle is bound to roll over. The LiDAR becomes the most
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(a) Heat management using negative pressure (b) Managing electromagnetic interference. (c) Sacrificial LiDAR mounts

Fig. 10: Small enclosures create challenges for heat management 10(a) and electromagnetic interference 10(b). Sacrificial LiDAR mounts absorb the impact
energy during incidental rollovers to reduce damage to the LiDAR.

susceptible sensor during a rollover as it protrudes significantly

out of the body shell. If the LiDAR were to be mounted

directly onto the roof, one of two things could happen, either

the LiDAR survives but the roof caves in, or the roof survives

but the LiDAR is damaged. The mid-section, on which the

LiDAR is mounted, can take at least 10 hours to print, and

the LiDAR costs at least $100. An alternate design choice

would be to create a “roll cage” around the lidar, however,

that would now obstruct the LiDAR’s view. To avoid damage

to either we use sacrificial mounts to attach the LiDAR to

the roof, designed to be strong enough to survive low-speed

rollovers but to absorb energy and break on high-speed impacts

(see Fig 10(c)). These parts can be printed much faster and

can reduce damage to the LiDAR.

C. Low Level Controller

The Low-Level Controller is responsible for sending the

motor control and steering control commands to the Ardupilot

board, where they are converted to appropriate pulse-width-

modulated signals. It operates in two modes – manual and

autonomous, where the RPS is “ON” by default in both. In

the manual mode, the low-level controller listens to control

commands from the user’s hand-held remote control (9). In

the autonomous mode, it listens to the control commands

from the high-level controller, however, the user’s throttle

input corresponds to the wheel speed limit. For instance, if

the operator visually infers that a collision is about to occur,

and the vehicle is in autonomous mode, the user can reduce

the speed limit to prevent the collision. Alternatively, the user

can slowly increase the speed limit as they gain confidence in

their custom controller. This speed limit is also published on a

separate ROS topic should the high-level controller need it. For

instance, in our implementation of the MPPI, we change the

sampling range according to the speed limit imposed by the

user, such that wheel speeds above this limit are not sampled.

wheelspeed control: The wheel speed control takes as

input the wheel speed target V ∗

w and produces a duty cycle

signal for the motor using a closed-loop PI controller with

a feed-forward term. Here, the current wheel speed Vw is

obtained from the VESC.

D =
Ei

En

KfV
∗

w +Kp(V
∗

w − Vw) +Ki

∫ t

0

(V ∗

w − Vw) dτ (8)

Where D refers to the motor duty cycle, Ei, En represent the

instantaneous and nominal battery voltage, Kf ,Kp,Ki refer

to the feedforward gain, proportional gain, and integral gain.

The feed-forward term’s gain is obtained by measuring the

ratio of the duty cycle to wheel speed on a flat tarmac surface

for a small range of speeds, and the gains for the proportional

and integral terms are tuned such that changes in slope or

surface can be dealt with in real-time.

Note on wheel speed measurement: To simplify the

sensing apparatus, we assume that all the wheels rotate at the

same wheel speed. We find that this assumption works well

for high-speed driving (> 2m/s) on uneven, smooth terrain,

but begins to break down when dealing with extremely rough

terrain, such as in rock-crawling, due to the use of open dif-

ferentials in the vehicle’s drivetrain [49]. The work by Datar

et al. [14] addresses this by having separate measurements for

each wheel, however, it comes at the cost of additional build

complexity.

Why the RPS only adjusts steering angle: In III-D, we

only adjust the steering angle for two reasons. First, the rate

at which lateral acceleration can be changed (lateral jerk) by

the steering is much higher than what is achieved by changing

the vehicle’s velocity. Consider the following example; when

turning at a speed of 3.0m/s with a friction coefficient of

1.0, the steering angle would be ≈ 15 degrees. The steering

can move from +15 to −15 degrees in 0.1 seconds, based

on the servo specifications. This results in a lateral jerk of

≈ 200m/s3. On the other hand, when turning, only a small

fraction of the grip is available for changing speed. For the

sake of the argument, assume that this is not the case, and all

of 9.81m/s2 of longitudinal acceleration is available. Within

0.1 seconds, the effective lateral jerk would still be ≈ 50m/s3,

which is 4x lower than what would be obtained from the

steering.

Second, slowing down while turning can momentarily in-

crease the lateral acceleration due to a phenomenon gener-

ally known as “lift-off oversteer” [7]. Intuitively, reducing

the speed –done to prevent a rollover due to excess lateral

acceleration– moves more weight onto the front tires almost

instantly. This momentarily reduces the turning radius, without

significantly reducing the vehicle’s velocity. This increase in

lateral acceleration then results in a rollover. The exact extent

to which this happens, and therefore preventing it, would

require knowledge of the vehicle’s body frame velocity as well

as the tire parameters, which we chose not to depend on.
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