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Abstract—Grasping small objects surrounded by unstable or
non-rigid material plays a crucial role in applications such as
surgery, harvesting, construction, disaster recovery, and assisted
feeding. This task is especially difficult when fine manipulation is
required in the presence of sensor noise and perception errors;
errors inevitably trigger dynamic motion, which is challenging to
model precisely. Circumventing the difficulty to build accurate
models for contacts and dynamics, data-driven methods like
reinforcement learning (RL) can optimize task performance
via trial and error, reducing the need for accurate models of
contacts and dynamics. Applying RL methods to real robots,
however, has been hindered by factors such as prohibitively high
sample complexity or the high training infrastructure cost for
providing resets on hardware. This work presents CherryBot,
an RL system that uses chopsticks for fine manipulation that
surpasses human reactiveness for some dynamic grasping tasks.
By integrating imprecise simulators, suboptimal demonstrations
and external state estimation, we study how to make a real-
world robot learning system sample efficient and general while
reducing the human effort required for supervision. Our system
shows continual improvement through 30 minutes of real-world
interaction: through reactive retry, it achieves an almost 100%
success rate on the demanding task of using chopsticks to
grasp small objects swinging in the air. We demonstrate the
reactiveness, robustness and generalizability of CherryBot to
varying object shapes and dynamics (e.g., external disturbances
like wind and human perturbations). Videos are available at
https://goodcherrybot.github.io/

I. INTRODUCTION

How can we automate the task of picking cherries from a
tree branch that is blowing in the wind, causing the branch
to shake and the cherries to tremble? This scenario is an
example of fine grasping without rigid-surface support, and
its challenges are two-fold. First, for fine manipulation of
small objects, perception errors and sensor noise dominate,
making it difficult to grasp the objects precisely [1, 2]. Second,
the problem is inherently dynamic since any contact with
the object might set the entire scene into motion, which is
complicated to model [3, 4]. Similar challenges arise in our
everyday interactions, from mundane tasks such as removing
broken shells from gelatinous egg whites to surgical tasks that
detach clots from deformable organs. Given the ubiquitous
nature of these tasks, developing robotic solutions to automate
them holds immense practical and economic value.

For a predetermined, specific task, it is possible to invest
in dedicated hardware [5, 6], specialized tools [7, 8, 9], and
elaborately designed systems [10, 11] to solve these challenges.

Fig. 1: The CherryBot system generalizes to various scenarios of dynamic
fine manipulation: blowing wind, sliding grape cluster, moving water, and
swinging string.

However, this research investigates a more universal solution:
assuming that fine manipulation is required, inaccuracy is
unavoidable and real-time reaction is necessary, can we enable
dynamic fine grasping without stable support? An ideal agent
should be:

• Precise enough to increase the likelihood of task success.
• Robust to perception errors and sensor noises that are

likely to arise in the fine manipulation domain.
• Reactive to hard-to-model dynamic scenarios, external

perturbations, and changes caused by its own movements.
• Generalizable to objects with different sizes, shapes and

textures.
To address these challenges, we build a test bed using

generic hardware that includes a robot arm and chopsticks
for fine manipulation. The design of chopsticks is simple yet
versatile and has been widely adopted in surgery [12, 13],
meal assistance [14] and micro-manipulation [2, 15, 16]. We
note that the thin rods of chopsticks make fine manipulation
more difficult and that our assembled hardware has sensing and

https://goodcherrybot.github.io/


Fig. 2: The dynamic grasping task is challenging: any contact with an object might set it into motion, which is difficult to model. This challenge is exacerbated
when fine manipulation is required, especially in the presence of sensor noise and perception errors.

actuation inaccuracies. However, the insights drawn from our
accessible setup could be easily transferred to other platforms or
tools that are built to operate with higher precision [5, 17, 18].

Prior work constructed analytic models [19, 20, 21] or
motion primitives [22] for manipulation tasks with rich contacts.
Instead, we choose reinforcement learning (RL) to circumvent
some of the complexity of building accurate models for contacts,
dynamics, different objects, or external disturbances. Despite
their impressive potential for generalizability [23], applications
of RL remain limited for real robots due to, for example,
sample efficiency [24] and the costs of resetting [25]. Though
careful system design has enabled successfully deployed RL
systems to learn on locomotion and dexterous manipulation
tasks [26, 24], the characteristics of our problem, i.e., fine
manipulation with precise contact and hard-to-model dynamics,
raise additional challenges in robustness and reactivity.

It is tempting to bypass modeling entirely and directly
deploy a model-free RL algorithm for training in the real
world. While this approach may eventually learn, it often
necessitates tremendous human effort for supervision and resets
and is likely to be too inefficient. To make the training more
practical, we propose CherryBot, an RL system that combines
pre-training in an imprecise simulation with fine-tuning in
the real world. With an external state estimation module,
CherryBot can be deployed across various scenarios and fulfills
the aforementioned requirements:

• Efficiency: To enhance sample efficiency for real-world
manipulation, we leverage imperfect information readily
available to most robots, such as an inaccurate simulator
and a heuristic-based baseline policy.

• Precision and Robustness: We introduce a challenging
task that involves a single hard-to-grasp object with
diverse dynamics for real-world fine-tuning. While this in-
tensifies the difficulty of the task and training, it minimizes
the need for human intervention and promotes the learning
of robust policies that are resilient to disturbances.

• Reactiveness: We carefully design the action space to
strike a balance between tractable learning (low-frequency
control, slow response, short horizon) and responsiveness
(high-frequency control, fast response, long-horizon rea-
soning). This design optimizes the system’s ability to react
swiftly while ensuring effective learning.

• Generalizable: Our system supports the plug-and-play
integration of an external state estimation module even
if it introduces certain inaccuracies, allowing deployment

across various downstream tasks.
Our work contributes a system that, given only 30 minutes

of interaction in the real world, achieves superhuman reactive-
ness on a dynamic, high-precision task: using chopsticks to
grasp a slippery ball swinging in the air. We demonstrate
the effectiveness of our system in a variety of evaluation
conditions: operating under dynamic disturbances by human or
environmental factors, varying perception noise, and changing
object shapes and sizes, for which it outperforms a heuristic-
based controller that requires hours of tuning. We conduct
extensive ablations in a simulator and the real world to provide
empirical evidence about how our design choices affect sample
efficiency for deploying RL systems in the real world and to
verify the robustness of our proposal.

II. RELATED WORKS

Dynamic fine grasping. From precondition grasping like
DexNet [27] and TransporterNet [28] to a closed-loop, vision-
based controller like Qt-Opt [23], most prior works grasped
palm-sized objects in a quasi-static table-top setting [29]. In
our work, objects are much smaller. Even if the agent intends to
grasp across the center of the cherry, for example, the execution
alone demands a sub-millimeter precision. Several previous
works addressed fine grasping [2, 10] but are limited to static
scenarios with rigid surface support. In contrast, we examine a
dynamics scene in which failed grasps can potentially move the
object. Researchers in the field of dynamic manipulation have
developed highly capable systems [30], although these systems
come with the drawback of relying on expensive dedicated
vision systems. In our approach, however, we prioritize the use
of generic and accessible hardware, which is more susceptible
to making mistakes. Consequently, it becomes crucial to
develop a reactive agent that can effectively recover from such
errors. We modify the common evaluation criteria for grasping
to allow an agent that fails to get a firm grasp in one shot to
continue the trial until it achieves a successful grasp, similar
to how humans address dynamic grasping challenge [16].

Reinforcement learning. Despite its wide successes in
simulator and locomotion [24, 31, 32], RL has limited real
world applications in manipulation. The few successes of
applying RL to dexterous manipulation came at the cost
of sample inefficiency, which has not made it a preferred
choice over model-based control or a hand-designed controller.
[23] depends on the large scale of a robot arm farm; [33]
requires scalable and dedicated hardware. Previous works
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Fig. 3: An overview of the learning framework. The system first pre-trains
in simulation and then fine-tunes in the real world. We carefully design the
training paradigm to ensure sample efficiency and learning robustness.

focused on model-free RL while our work leverages practical
assumptions, including inaccurate simulation [26], imperfect
demonstration [34], and normalization techniques [35, 36] to
boost sample efficiency for RL and show it is practical on real
robots and can achieve superhuman reactiveness.

Offline reinforcement learning (ORL). The recently emerg-
ing field of ORL [37, 38] has shown some potential for lever-
aging offline datasets for RL training [39, 40, 41, 42, 43, 44].
However, whether doing online fine-tuning on top of pre-trained
ORL agents could keep improving the performance remains
an open question [45].

Visual Servoing (VS). VS controls a robot using real-time
visual feedback [46, 47]. It usually requires estimating the pose
of the object in the Cartesian space and deriving a control law,
such as PID control, directly in the 3D space [48]. Due to
the requirement of precision, it is natural to apply VS to fine
manipulation tasks. We follow this protocol in the design of our
heuristic controller. However, it would require a tremendous
amount of expert knowledge and gain-tuning to make the
controller generalize across different scenarios or be robust
to disturbance and noise. Our baseline controller took hours
of gain-tuning but still fails due to disturbances, exemplifying
how VS can be sensitive to unexpected dynamics.

III. METHOD

To address fine manipulation problems in dynamic scenes,
we propose a comprehensive framework for efficient training

of real-world RL and build a high-performance robotic system.
We train a policy to enable a robot equipped with chopsticks
to conduct dynamic fine-grasping tasks with non-rigid support.
Following established practices in visual servoing [49, 50],
we incorporate a separate perception module, using estimated
robot and environment states as input to the policy. Notably,
our policy includes a hierarchical controller (Hier) to balance
reactivity to dynamics and tractability of learning. At test time,
we consider fine grasping of small objects (size 1 ⇠ 8 cm)
with varying shapes and textures in a dynamic scene: objects
might have unstable support and can be moving (e.g., initial
velocity, or wind disturbance).

We present a system overview in Fig 3. Initially, we
employ pre-training in an approximate simulator with domain
randomization (SimR), leveraging sub-optimal demonstrations
(Demo). Subsequently, we fine-tune the system in the real
world on a task with a single object (Proxy) that presents
dynamic challenges but simplifies perception and allows for
easy and stochastic reset (StoRe). To further enhance training
efficiency, we incorporate asynchronous updating (Async) and
appropriately regularized off-policy RL (LN). During testing,
the policy integrates an external perception module (Vis) to
achieve generalization across different objects and scenes.

Our contribution lies in instantiating distinct system com-
ponents to address the combined challenges of real-world RL
and dynamic fine manipulation. We outline these challenges
in Table I and note how each system component addresses
them. To ascertain the impact of each design choice, we
conduct ablation studies to measure sample efficiency in both
simulation and the real world, where all studies are conducted
using 5 consecutive random seeds (Refer to Appendix. VII-B
for details). While individual components may have been
the subject of previous studies, the combination presented
in our work is novel. Our system can grasp a diverse set of
small objects in varying dynamic scenarios in the real world,
demonstrating the robustness and generalizability to novel
objects and disturbances, which could generalize to other tasks
with dynamics or requiring fine manipulation.

In this section, we delve into the specifics of our design
decisions, grouped into three categories: controller interface
design, simulator pre-training and real-world fine-tuning.

RL challenges Task challenges

Efficient Reset Robust Reactive Precise General

Hier X
Demo X
SimR X X

Proxy X X X X X
StoRe X X
Async X

LN X
Vis X X

TABLE I: Some challenges inherent to training RL algorithms for dynamic
fine manipulation and the design decisions we make to address them.
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Fig. 4: Analysis of using hierarchical mixed-frequency controllers in
simulation. Left: Impact of different control frequencies on learnability. A
hierarchical hybrid-frequency strategy helps balance learnability and policy
reactivity. Right: Impact of (simulated) latency on performance.

Previous research on dynamic tasks has favored the develop-
ment of 1000Hz controllers [33, 51] and vision systems [52].
However, as demonstrated in Fig 4a, high-frequency control
can negatively impact task horizon and sample efficiency
for robotic learning. Real-life RL manipulations commonly
employ controllers operating at 5 ⇠ 15 Hz for quasi-static
tasks [24, 44].

To address this challenge, we adopt a hierarchical controller
framework, enabling the RL policy to function at a higher level
with a moderate control frequency of 20 Hz, while interpolating
commands to a high-frequency (1000Hz) controller. Our system
demonstrates that such a controller is capable of solving
dynamic tasks and, combined with coherent exploration, makes
the learning of a reactive policy tractable.

Furthermore, in the real world, sensor readings suffer from
latency and latency can adversely affect reactivity. While [53]
demonstrated the advantages of latency randomization in simu-
lation pre-training for a quasi-static task, our own experiments
(Fig 4b) revealed that even a small simulated latency ( 0.005
s) can harm our task’s reactivity to dynamics. Consequently,
we made the deliberate decision to exclude simulating latency
or latency randomization in simulator training.

Insight: Learning medium-frequency hybrid controllers can
effectively balance policy reactivity with the tractability of
learning.

B. Leveraging practical information: Approximate simulator
SimR and sub-optimal offline data Demo

An RL agent initialized from scratch in the real world makes
random movements, frequently encounters safety constraints,
and spends a significant portion of training time waiting to be
reset. To counter these challenges, we turn to the paradigm
of offline pre-training followed by real-world fine-tuning.
Where should the data for pre-training actually come from?
Since human data collection is expensive for our dynamic
fine manipulation task, we instead rely on relatively cheap
and abundant, but imperfect, sources of supervision, i.e.,
approximate simulators and data from heuristic controllers.
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Fig. 5: Analysis of the choice of an off-policy RL algorithm that can learn
from offline data while continuing to improve efficiently during fine-tuning.

Choosing an appropriate off-policy algorithm. We first
consider an appropriate RL algorithm that can efficiently learn
from offline data, simulation samples and online fine-tuning.
Although various offline RL methods [42, 43] have been
proposed to conduct first pre-training and then fine-tuning,
we found that standard online RL algorithms (such as soft
actor critic (SAC) [32]) are far more effective for fine-tuning
than targeted offline RL methods, as Fig 5 shows. In our work,
we used variants of soft actor critic [32] for both pre-training
and fine-tuning. Our modifications are described below.

Leveraging imperfect data from the simulation. Simu-
lation can provide an appealing source of information since
sampling is cheap. However, our task depends heavily on
precise contacts and dynamics, but our hardware has varying
degrees of kinematic and dynamic errors, making it challenging
to construct a precise simulator and making direct simulation-
to-reality transfer difficult.

We constructed an approximate simulator, as described in
Sec. IV. To best leverage such a simulation that is definitely
mismatched with reality, we randomize the dynamics of
the physical simulation [53], exposing the agent to a wide
distribution of possible physics parameters. Unaware of the
changing dynamics of the environment, the agent needs to
develop a robust strategy that is conservative to variations in the
world dynamics, making it more amenable to real-world fine-
tuning. Specifically, we train a Q-function and policy networks
with samples from our simulator and then use the networks
to initialize the fine-tuning phase. Without pre-training, an RL
agent could not improve its task performance even after hours
of real-world training, as shown in Fig 6a.

Leveraging sub-optimal offline data. Beyond simulation
data, it is useful to provide the agent access to real-world
data with sufficient state-action coverage. While it may be
expensive to solicit data from a human supervisor or to generate
optimal demonstration, it is relatively easy to design a heuristic
policy that is sub-optimal but can provide useful state action
coverage. In this work, we design a simple heuristic controller
that contains a state machine with closed-loop control (see
Appendix VII-D). Though this controller has limited reactivity
and is not robust to noise, we found that seeding the replay
buffer of our RL agent with this sub-optimal data helps with
both asymptotic performance and sample efficiency (Fig. 6b).
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Fig. 6: Analysis of the impact of pre-training for fine manipulation. (Left)
Having pre-trained in simulation enabled real-world fine-tuning to make
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many fewer samples. Both techniques significantly aid with learning efficiency.

Insight: Pre-training using standard off-policy RL methods
with imperfect prior data from heuristic controllers and
simulation can significantly help with sample efficiency for
real-world fine-tuning.
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Fig. 7: We measure sample efficiency in simulation by training epochs but
in the real world by training time. Combining the asynchronous update, high
Update-To-Data (UTD) ratio and LayerNorm regularizer greatly improves the
speed of training during the real-world finetuning stage.

C. Fine-tuning in the real world: Proxy task and efficient
reinforcement learning

Although pre-training can significantly aid with data effi-
ciency, it is unlikely to achieve optimal performance without
further training in the real world. To enable practical fine-
tuning in the real world, we focus on two questions: (1) what
real-world training setup allows for both ease of training and
robust learning, and (2) how do we make this process more
efficient?

Pragmatic fine-tuning via a single proxy task. Conven-
tional wisdom might suggest training the RL agent directly on
a large variety of test scenarios. However, a real-world training
setup would require a prohibitively large number of objects
and scenarios to be instrumented, which can be laborious
and expensive. Instead, we posit (1) to isolate the perception
challenge and control challenge, and (2) first address the control
challenge via a Proxy task that is appropriately dynamic and
difficult, such that it can yield a policy that generalizes to a
variety of dynamic scenarios without actually being explicitly
exposed to them during training. We identify the criteria needed
to set up a proxy task as follows: (1) representative of the
motion and strategies involved in a broader family of tasks, (2)
reset-friendly, or having largely autonomous reset, (3) learnable

but not trivial, and (4) yields a policy that is robust. For our
dynamic fine grasping problem, we define the following proxy
task: firmly grip a ball swinging in the air, as Fig 8b shows.
We attach a ball to a thin fishing line to hang it in the air to
allow a swinging motion. The task naturally provides a reset
since the string resets the ball around its static position due to
gravity, obviating the need for a human supervisor to reset the
scene.

Exposing the agent to varying initial conditions enables
developing a more robust policy: stochastic reset. While
waiting for a long period to allow the object to come to rest
would yield a static reset, we show, surprisingly, that resuming
sampling with a randomly moving object enables learning
of more dynamic and adaptive behaviors. By embracing this
type of stochastic reset (StoR), we construct a harder-to-learn
task, i.e., the agent must react to different initial positions and
velocities, so it experiences a larger diversity of conditions
during training. As a result, the learned policy becomes more
robust to varying dynamic conditions, improving skill transfer
to novel disturbances and objects (see Appendix. VII-B for
quantitative ablation).

Insight: Designing appropriate proxy tasks to train the
agent can simplify the training infrastructure. Additionally,
training with stochastic reset can improve the robustness
and generalizability of learned policies.

Efficient fine-tuning: Improving gradient throughput
with asynchronous updates and regularization

To improve training efficiency in the real world, we care
about not only the sample efficiency but also the wall clock
time efficiency. In the simulation, operations (e.g., sampling
step, resetting hardware) are almost instant. In the real world,
however, idle time is unavoidable and adversely affects the
speed at which we collect samples: for every second of samples
collected, our system spends 4 seconds waiting for a reset. We
replace the common training paradigm in simulation, which
takes one gradient update after collecting one environment
step. We instead perform asynchronous RL updates up to the
limit of our computer alongside robot operation. This greatly
increases our gradient throughput, effectively committing 10
to 20 updates per data point collected (Update-To-Data, UTD).

Most off-policy RL methods lower their UTD ratios because
additional gradient updates lead to unbalanced training of
policy/value functions (i.e., exploding actor / value losses).
In this work we find that this problem can be significantly
mitigated by using appropriate regularization. By using a
standard technique such as layer normalization [54], we are
able to avoid overfitting and take significantly more gradient
steps per data point (See Appendix. VII-B0b). As shown in
Fig 7, the combination of asynchronous updates and LayerNorm
regularization achieve moderately faster training in simulation
but, during fine-tuning on the real robot, significantly boosts
the efficiency of learning in terms of wall-clock time.



a Hardware overview. b Proxy task. c Assembled robot. d MuJoCo simulation.

Fig. 8: The CherryBot hardware system.

Insights. Improving gradient throughput by leveraging
asynchrony and more gradient steps per data point with
regularization can make fine-tuning efficient enough for
practical real-world use.

IV. COMPLETE SYSTEM DESIGN FOR CHERRYBOT

We combine the preceding design decisions and insights
into a single system, CherryBot (Fig 3), that can handle
challenging dynamic fine manipulation tasks in the real world.
Below, we describe the hardware infrastructure and concrete
implementation details.

Hardware. Fig. 8a shows an overview of our hardware. We
built a 6-DOF robot arm equipped with a pair of chopsticks
as its end effector, as shown in Fig. 8c. Since our hardware is
assembled from parts with joints that are not strictly rigid,
inaccuracies accumulate along robot links. We document
our modeling and system identification procedure in Ap-
pendix VII-A, where we explain how we used a neural network
to predict the residual backlash for each joint, achieving
position errors < 3 mm at the robot’s end effector.

Reset mechanism. At the end of every sampled trajectory
in the real world (average length is about 80 timesteps or 4
seconds), we conduct a fixed trajectory for reset. We (1) slowly
raise the robot arm to a set position, (2) touch the string in
the proxy task, expecting to constrain its motion and reduce
system entropy, and (3) return the robot arm to a fixed start
pose and restart the task. The reset process takes about 16
seconds, during which our policy and value networks keep
sampling experiences from the replay buffer and conducting
RL updates. Notably, the reset leaves the object in a dynamic
condition, introducing the dynamism we need for learning
robust policies.

Simulation. As described in Section III-B, we leverage
simulation for pre-training value functions and policies. We
construct the simulation in MuJoCo [55] and perform a system
identification procedure. We identify the forward kinematics of
the arm and associated dynamics parameters for each joint and
built a residual neural network to further improve accuracy, as
described in Appendix. VII-A.

Perception. We use different perception modules for training
and testing. At training time, we use a motion capture system,

Optitrack, to obviate many perception challenges and yield an
accurate position for the single object to grasp used in the proxy
task (error ⇠ 0.01mm). At test time, accurate state estimation
may not be available. Our system instead accepts any external
perception module that can estimate the object’s center of
mass, following common practice in visual servoing [49, 50].
Noticeably, our system does not necessitate a highly precise
estimation module w.r.t. the fine manipulation tasks.

Utilizing an external perception module allows our system
to be deployed in various downstream tasks. For illustration,
we demonstrate our system using (1) a simple segmentation
method with smoothing and (2) an off-shelf detection system,
YOLO (both documented in App. VII-B). When the object is
static, easy to recognize and the scene is clean, our in-house
module detects the object with little error. However, our scenes
can have occlusions and can be changing (e.g., cherry shaking
in the wind partially occluded by the leaves), and the perception
error could reach ⇠5mm. In our experiment, we will also inject
noise to the perception module’s output to demonstrate the
robustness of our proposal to perception noise.

Additional hardware for dynamic disturbance evaluation.
The goal of our fine grasping policies is to firmly grasp the
object, despite dynamic disturbances. It is challenging to test
this type of robustness without additional machinery to intro-
duce disturbances. To this end, we design a motor disturbance
mechanism to systematically inject dynamic disturbance so we
could evaluate the robustness of agents. As shown in Fig 10a,
the motor perturbs the motion of the ball by rotating the motor’s
arm and dragging the string attached to it. By varying the
string’s hanging point, the object can be pulled with different
sizes of disturbance (from smaller disturbances to bigger ones,
denoted as 20 ⇠ 100).

V. EVALUATION

In our experiments, we evaluate our proposal on fine
manipulation challenges (grasping slippery balls or various
small items) and during dynamic disturbances (created using
programmed motor movements or human interference). We
intend to answer the following questions: (1) Can a policy
learned by CherryBot be robust and reactive to dynamic
scenarios? (2) Can our policy generalize to different objects?



Fig. 9: We deployed our system to generalize to a wide variety of objects with different shapes and textures.

Marble ball Cherry Gaussian noise Static ball Dynamic ball

Rew. Succ. TTS Rew. Succ. TTS Rew. Succ. TTS Rew. Succ. TTS Rew. Succ. TTS

Our RL 242.3 100% 1.77 321.7 100% 0.92 130.4 90% 2.06 565.3 100% 0.28 512.3 100% 0.48
20HZ VS 64.3 60% 1.12 113.1 70% 1.17 -30.9 50% 2.29 196.2 100% 1.49 183.5 90% 1.38

100HZ VS 48.4 50% 0.93 110.7 60% 0.32 109.3 60% 0.64 535.0 100% 0.49 255.0 90% 0.49
Human - - - - - - - - - -38.8 100% 2.20 -100.2 100% 2.86
Replay - - - - - - - - - -56.9 80% 1.45 -218.4 50% 2.29

BC - - - - - - - - - -354.4 30% 0.58 -487.0 10% 0.48

TABLE II: Evaluation results, including average reward (Rew.), success rate (Succ.), and time-to-success for only successful trials (TTS in seconds). Note
the RL agent is able to adapt to its mistakes and would retry after failure rapidly, therefore achieving a high success rate within the allocated 6 seconds.

a Motor for more dynamic dis-
turbance.

b Human disturbance.

Fig. 10: Dynamic disturbance evaluations we considered. These disturbances
test the robustness of the learned CherryBot policies.

(3) Is our proposal robust across random seeds? (4) How do
our design decisions impact the final results for CherryBot?

A. Tasks
We test the reactivity, robustness, and generalization of our

agent quantitatively and qualitatively. View the video recordings
on our website for visualization of our evaluations.

Reactivity to dynamics in the scene. In natural scenarios,
a small object might be moved by external disturbance, e.g., a
leaf flying in the wind. We simulate this kind of disturbance by
installing a motor that pulls the string that suspends the object
(Fig. 10a). Additionally, we introduce a more challenging,
more spontaneous source of external interference—humans. As
shown in Fig. 10b, a person would drag the string while the
agent tries to grasp and shake the ball attached to it. We provide
a qualitative video on the website reporting the performance
of our agent on the latter task.

Robust to perception noise. In the real world, perception
errors are inevitable due to, e.g., lightning conditions or

occlusions. We simulate such errors by injecting noise into the
tracked positions of the object, i.e., adding a small Gaussian
noise to the output of our Optitrack system and using this
noisy position as the states [56].

Generalization. Different objects have varying shapes, sizes,
and textures. We first conduct a quantitative evaluation of our
system’s generalization ability on grasping hanging cherries
with varying shapes and sizes and a hanging marble ball with a
slippery surface that made grasping with chopsticks taxing even
for humans [16]. Further, we conduct qualitative evaluations
on an assortment of objects and dynamic scenarios (Fig. 9),
grasping objects of varying shapes (clip, chess), sizes (duck,
puzzles) and textures (chess, grapes) and with varying non-
rigid support (wind disturbance, floating water, melting cream,
falling sand). We further included experiments using an off-the-
shelf detection system, YOLO, which empowered our system
to grasp objects with more diverse shapes and colors, shown
in App. VII-F.

Ablation. During training, we employ a high-accuracy
tracking cage that eliminates perception errors, making it an
ideal platform for ablation testing. We first place the tracker
ball at a fixed position and ask the agent to grasp the Static
ball, examining how precisely the agent can grasp. Second, we
hang the ball and give it a random initial velocity (Dynamic
ball), testing the agent’s reactivity to dynamic scenes.

B. Baselines

We evaluate our agent on five candidate baselines: (1) 20HZ
VS, our heuristic-based controller that we used to collect
demonstrations, and (2) 100HZ VS: our heuristic controller
with a different set of gains. Optionally, we test (3) Humans:
a human expert teleoperation the robot, (4) Replay: replaying



successful human demonstrations, and (5) Behavior Cloning
(BC): a practical imitation learning algorithm [57] trained with
our collected data, detailed in App. VII-E.

For each task and each agent we selected, we test over
10 trials and summarize performance statistics. In total, we
conducted more than 500 trials. For fair evaluation and to
accommodate the slow motion of the human baseline, we use a
fixed horizon (6 seconds) at test time.We determine the success
of the trajectory by inspecting whether the robot could securely
lift the object and stabilize it at a height of 0.1m in the world
frame.

C. Reactivity to dynamic disturbance
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Fig. 11: Success rate under different disturbance. The CherryBot controller’s
RL agent is robust to disturbances that significantly exceed those for baseline
methods.

Fig 11 shows the agents’ performance under varying degrees
of dynamic disturbance injected by the motor dragging. We
observe that our RL agent outperforms the baselines by a large
margin across all degrees of motor dragging disturbance. In
the human disturbance task, our RL agent succeeded in 17 of
29 trials of human disturbance within the time limit.

D. Robustness to noise
As shown in Table II, when Gaussian noise is applied to the

sensor, the RL agent performed the best, achieving a 90%
success rate, significantly outperforming the baseline VSs
(20Hz achieved 50% and 100Hz achieved 60% success rates).
The noisy state estimation is fatal to our vanilla VS baselines
which took hours of gain tuning, and it will require further
tuning or adding of adaptive modules to improve performance.
In contrast, our agent was naturally robust to those noises due
to our design choice of SimR, Proxy, and StoRe to train
the agent on more challenging tasks before deployment.

E. Generalization
Table II displays our quantitative results on hanging marble

balls and cherries, measuring the rewards, success rate and time-
to-success on picking up these objects. Our agent significantly
outperforms the baselines; the baselines succeeded in some
trials quickly, but they could not readjust to their failures to
complete the task within the allocated time and instead kept
batting the object around.

We further evaluate our agent on more diverse generalization
tasks in Fig 9 and show the success rate in Table III. Our

Task Succ. (%) Task Succ. (%) Task Succ. (%)

Water Cherry 60 (9/15) Puzzle 100 (10/10) Duck 50 (5/10)

Clip 30 (3/10) Cream Cherry 100 (10/10) Sand Cherry 53.3 (8/15)

Chess 80 (8/10) Grapes 70 (7/10) Tree Cherry 40 (4/10)

TABLE III: Success rates of generalization tasks. CherryBot learned policies
and was able to generalize non-trivially across objects.

agent’s overall success rate was 64% (of 100 trials), even
with our simple perception module. We summarize in four
categories the factors explaining the low success rates on some
generalization tasks: (1) the object has no firm contact point
and keeps slipping out (clip and chess), (2) the object size
is too big (duck), (3) the failure of grasping is fatal (cherry
drops in the falling-sand task), and (4) perception errors due
to occlusion (tree cherry-pick).

F. Further analysis
We examine the performance of all baselines on our proxy

task, which removes perception noises but tests the agent’s
precision and dynamic reactivity. Table II presents results on
proxy tasks in both static and dynamic modes. In general,
our RL agent outperforms all baselines in success rate, time
to succeed, and total rewards. Both the 20Hz and 100Hz
VS baselines could also achieve 90 to 100% success rates,
respectively, on the proxy tasks, albeit taking a longer time
to succeed than our RL agent. It is worth noting that our
RL agent, which runs at a hybrid control frequency, uses less
time to succeed compared to 100HZ VS. This implies that our
hierarchical framework with its low-frequency learned policy
develops a more efficient strategy for grasping in the dynamic
scene than our hand-designed controller.

Are we cherry-picking a cherry-picking agent? To
clarify the reproducibility of our proposal: we use an open-
sourced codebase d3rlpy [58], with default implementations and
hyperparameters, to run our ablation studies in the simulation
and our real-world robotic experiments. We conducted 5
random seed sweeping in simulator ablation studies and
3 random seed sweeping in real-world fine-tuning studies,
verifying the the efficacy and reproducibility of our proposal.
See Appendix VII-H for details.

VI. CONCLUSION

We present a system, CherryBot, for learning robust dynamic
fine grasping in unstable conditions. We provide empirical
evidence demonstrating the effectiveness of our proposed
system on a low-cost chopsticks-equipped robot and validate
its efficiency, reactivity, robustness and potential to generalize,
showing how reinforcement learning can be a practical and
competitive tool to learn dynamic and precise behavior.

Despite successfully performing a diverse set of grasping
tasks in the real world, there remain significant challenges to
address in future work. Expanding our system to a wider range
of tasks, including those with longer time horizons, could
broaden its applicability. Upgrading the current perception
module to include object pose and to have an end-to-end vision-
based RL system could enhance its usability and allow further



fine-tuning after being deployed. Exploring the theoretical
reasons behind the importance of our design decisions, or
providing insights into their applicability to different hardware
or domains, would also open fascinating areas of future study.
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VII. APPENDIX

A. Hardware

We document how we built a simulation via kinematic
modeling and a system identification procedure. We explain
how we used a neural network to predict the residual backlash
to achieve position errors < 3 mm at the robot’s end effector.
We also elaborate on our perception module at test time.

a) Modelling and Kinematic Calibration: Performing fine-
motor skills requires a carefully calibrated kinematics model
that reflects the hardware setup in the real world. The robot
manufacturer provides a kinematics model, but this (a) does not
account for the chopsticks end-effector, and (b) is not tuned to
the degree of accuracy that we require. Therefore, we employ
data-driven calibration pipelines that allow us to achieve highly
accurate position estimates from joint angles.

The Optitrack cage provides precise and accurate pose
information, which we can leverage as ground truth data. When
we mount a pair of chopsticks to the robot end-effector, one
of them is fixed (“primary” chopsticks) and the other one can
be rotated by the end effector joint (“moving” chopsticks). By
placing a tracker on the tip of the primary chopstick, we can
measure the end-effector position in the 3D space.

First, we need to measure the robot’s base position and
orientation on the table. We spin the base joint of the robot for
several rotations in both directions. This causes the tracker to
trace out a circle several times. By measuring the position and
inclination of the circle, we can determine the tilt and position
of the robot on the table.

We then use teleoperation to control the robot to move inside
the workspace, recording the end-effector position and the robot
joint angles. We then use this data with either a black-box
or gradient-based optimizer (using the factory defaults as the
initial guess) to solve for a set of accurate parameters for the
kinematics model by minimizing the FK loss. To regularize the
optimization, we find that it is important to penalize deviating
too far from the manufacturer-given kinematics model. We
observed the kinematic error being 1.2 ⇠ 3 mm at the end
effector tip in the task space we tested.

b) Residual Estimation to Improve Kinematics: To combat
inaccuracies in our kinematics, particularly due to backlash in
the arm joints, we train a model to predict the backlash in each
joint of the arm as a function of the current joint angles. The
intuition behind this is that in certain orientations the backlash
of the joints may induce errors that are predictable. These
dynamics wouldn’t be able to be captured by the DH parameters
that parameterize the arm kinematics, but a nonlinear function
approximator like a neural network would be able to predict
this.

The residual estimator network is trained on a dataset of joint
angles and grounds truth positions (as determined by the mocap
cage) collected in and around the workspace. Additionally, the
predicted backlash is constrained to be at most 10% more than
the figure listed by the manufacturer, to prevent deviating too
far from the kinematic model. In practice, we found that this
approach reduced the average position error from 1.8mm to
1.5mm, about a 17% reduction, which is significant given the
high-precision nature of the task.

c) System Identification: To build a simulator with dy-
namics as close to real as possible, we also employ black box
optimizer to fit the dynamic transition in our simulator to the
real world using recorded trajectories of the robot in and around
the workspace. we optimize the environment’s parameters
(centers of mass of joint bodies, friction coefficients, contact
solver parameters, etc.) in order to minimize the divergence
of simulated rollouts from the ground truth recording. Again,
we regularize this optimization by penalizing the divergence
of the simulator parameters from the initial guess.

To run the optimization program efficiently, the code
leverages the fast computational speed of Julia and the Lyceum
MuJoCo wrapper [59]. We do not expect that this optimization
pipeline will result in a simulator that matches reality exactly
because of the limitations of the simulator: for example, the
shape of the chopsticks and contact parameters are simplified.
But it does yield good enough parameters to enable simulator
pre-training.

d) Perception Module: Our system can accept any percep-
tion module at test time as long as it yields an estimate of the
center of the mass of the object to grasp. For demonstration,
we built a heuristic-based perception module that estimates
the object’s centroid position from an Azure Kinect camera. It
uses salient pixels to estimate the object’s CoM position from
RGB-D streams. At test time, the user chooses an object to
grasp and specifies a salient color (e.g., red for cherries). We
first filter out noise in the image using a Gaussian blur and
mask the salient region similar to the desired color. With edge
and contour detection, we can get the centroid of the object
in pixel space. We then project the 2D point location to 3D
using camera intrinsic and calibrated extrinsic matrices.

When the object is static, easy to recognize and the scene
is clean, our current perception module detects the object with
little error - detecting a red marble on a white background has
a 0.3mm error. However, in our experiments, the scenes can
have occlusions and can be changing (e.g., cherry shaking in
the wind partially occluded by the leaves), and the perception



error could reach � 5 mm.
We conduct ablation experiments to verify the robustness

of our system to perception noise: After injecting a Gaussian
noise with a mean of 5 mm into the perception module, the
performance of the visual servo controller dropped from 90%
to 50 60%, shown in Table II. Our system. however, achieved
90% even with these noises present, highlighting its robustness
to perception noise.

e) Policy Input and Output: Our agent follows [2] and
uses the end effector pose (i.e., 3D vector of x-y-z position
and 4D quaternion of rotation) plus the perception info (i.e.,
3D vector of the center of mass) as input. The high-level
policy (20Hz) outputs a command effector pose (3D xyz + 4D
rotation), which will be translated by an Inverse Kinematic
solver to be a 7D vector of commanded joint positions for the
whole arm, including the end effector. Each positional joint
command is fed to a lower-level PID controller (1000Hz).

B. System Design Ablations
All ablation experiments mentioned in III were run with

the same experimental design to make fair comparisons.
Unless otherwise specified in the paper, we focus on the SAC
implementation provided by the d3rlpy library, using the default
hyperparameters in d3rlpy library, sweeping across the seeds
120, 121, 122, 123, and 124. When run in simulation, we use the
simulator whose tuning process is described in Sec. VII-A0c,
and real-life experiments are run with the same hardware and
perception as described in Sec. IV.

Aside from the ablations studied in depth in Section III, we
also performed a few more experiments validating other design
choices.

a) Update-to-Data Ratio: The UTD (Update-to-Data
ratio) controls the ratio of gradient steps per environment
step. Our system achieves an effective UTD=10 through
asynchronous updates. We illustrate in Fig. 12 that higher
UTD values of 10 and 20 result in much faster convergence
than the traditional choice of UTD=1. Running more updates
for the same amount of data seems to drastically increase the
sample efficiency and expedite learning. The key takeaway is
that a large UTD ratio can be favored for its practicality in
real-world training with real-time constraints and it showed
empirical improvement in learning speed, making real-world
learning more tractable.

b) LayerNorm: : LayerNorm is a simple regularization
that turns out to be very effective when we employ a high
UTD ratio. To show the impact of Layer Norm regularizer, we
run trials for it with different UTDs.

c) Stochastic and static reset performance: Our proxy
task features a ball swinging from a string which, notably, has
a stochastic reset, as described in Section III-C. We illustrate
the impact of this design choice via an ablation study in the
simulator, training two agents with static or stochastic reset
for the same number of epochs. During the evaluation, we
test the two agent’s performance on the static-reset task and
stochastic-reset task. The one trained with stochastic reset
yielded an average score of 198.8 on 10 trials, significantly
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Fig. 12: Training our RL agent in the simulator with varying
values of UTD. Higher values of UTD converge much faster
than lower ones.

a UTD=1 b UTD=10

Fig. 13: Analysis of using LayerNorm regularization at different UTD

higher than the agent trained with static reset, which yielded
only 127.8. Evidently, the use of stochastic reset, which yields
a larger and more varied initial state distribution, promotes a
better-performing policy.

C. Task Design
We use a proxy task (as described in the main paper) as a

representative task during our agent’s fine-tuning stage and then
solve other generalization tasks in zero-shot at deployment time.
Instead of “catching” the moving objects directly, we move the
agent to be close to the target first and then manipulate it. Thus,
the challenging task was divided into two stages: 1) the simple,
slow-reaching stage and 2) the reactive grasping stage. During
the first stage, assuming the position of the moving objects is
known, we use a heuristic policy to approach the object slowly
to be within about ⇠ 3 centimeters away (as the object moves,
the distance is not guaranteed to be upper bounded). Then, we
will use the learned RL policy or our baseline policies to solve
the task in the reactive grasping stage.

Success criteria: The task is considered successful if the
robot is able to firmly grasp and lift the correct target object.
In the real world, we also used the force torque sensor on the
robot joint (which yielded noisy readings) to judge the success
of the grasp.

Reward design Prior RL works had reported using both
sparse and dense rewards for manipulation tasks to encourage a
desired motion [34, 60, 24]. Our reward function also consists
of two parts: dense rewards and sparse rewards. The various
dense and sparse terms of the reward function are described
in Table IV.



Dense Rewards

Weight Description

-5 k·k2 between object and the chopsticks
-10 k·k2 between object and goal
+1 Correctness of distance between chopstick tips
+2 Squeezing torque of chopstick

Sparse Rewards

-5 Object stayed around initial position
+5 Firmly grasp the object and lift to goal

-10 k·k2 between object and chopsticks >10cm

TABLE IV: Rewards design

D. Heuristic controller design
We design our VS(visual servo) controller following human’s

grasping philosophy in a state-machine manner. Similar to
our system, the VS controller also relies on an external state
estimation module. First, the robot will align the centroid of
the object with the center of chopsticks tips using PD control
in 3 axes. It adjusts its pose until the position offset is within
a small threshold (1mm), and will then close the chopsticks
to attempt the grasp. After that, it will move the object to the
goal position with a proportional positional controller. If the
robot cannot maintain the height offset within 1 mm during
any state, we will return the policy back to the alignment state.
The heuristic-based VS controllers are sensitive to gain-tuning
and precision of the perception. We spent a reasonable amount
of hours tuning the gains of our controller, but there perhaps
still remains room for improvement.

E. Imitation Learning
In our early exploration, we experimented with human

teleoperators and simple imitation learning. We noted that
the replay of the successful demonstration did not have a
100% success rate, suggesting that fine manipulation requires
a precise and reactive policy to be robust to potential sensor
and actuator errors.

We follow [2] for imitation learning baseline. For the replay,
we sample 20 out of 100 successful trajectories generated by
human teleoperation. For behavior cloning, we only used the
100 successful trajectories in training. We follow the convention
of imitation learning [2, 26] and filter out failed trajectories.

Surprisingly, in both static and dynamic ball setups, BC’s
performance is even worse than replay, suggesting that the
performance of imitation learning is heavily dependent on data
support. It is hard to apply BC on these fine manipulation
tasks because a tiny divergence between train and test will
shift the agent far from a success, motivating us to seed a
self-supervised learning method that can learn from trial and
error.

F. Off-shelf Perception Module
Our system can plug in any external separate perception

module that returns the center-of-mass (CoM) of the object and

does not necessitate a high-accuracy perception module. To
showcase the robustness of our system, we include experiments
using an off-the-shelf detection system, YOLO [61], on our
website. YOLO allows our system to grasp objects with more
diverse shapes and colors. To use YOLO, we calculate the
center of the bounding box returned by YOLO to feed to our
system. We ask our system to pick up some plastic figures,
exemplifying how to apply our system to handle objects with
more complicated shapes and shades.

G. Generalization tasks and their emphasis

Our chosen real-world evaluation tasks effectively capture
our agent’s ability to generalize from the proxy task to more
practical settings. Particularly, these tasks feature real-world
complications that are not present during training, allowing us
to test the agent’s ability to compensate for it at test time.

• Cherry-Picking: Our agent’s eponymous cherry-picking
task is complicated by noisy perception affected by
occlusion. The branches and leaves get in the way of
the camera, resulting in biased and noisy estimates of
the cherry’s position. In succeeding, the agent shows its
robustness to overcome these perception challenges.

• Water Cherry, Cream Cherry, Sand Cherry, and Grape:
These tasks’ main defining traits are the presence of new,
unmodeled dynamics. In the case of the cherry floating
in the water, if the cherry is disturbed it will float in
the direction of the applied force. The cream cherry is
relatively less mobile, but the base upon which it sits is
deformable. Similarly, the cherry atop the sand is resting
on a very unstable surface that is actively falling apart
over time. Finally, the grape is on top of a pile of other
grapes which tends to collapse when disturbed. In all
four cases, there are new dynamics that are completely
unrepresentative of conditions at train time. Evidently, the
agent is able to generalize to these new dynamics and
successfully solve the task.

• Clip, Chess, Puzzle, and Duck: These tasks showcase the
agent’s ability to grasp objects with completely different
shapes. The agent was trained only to grasp small spheres,
but in succeeding in these tasks, it shows that the agent
still learns a grasping strategy that is widely applicable
to other types of shapes.

H. Robustness to random seeds and hyperparameters

We used a standard, open-source implementation of RL
algorithms, d3rlpy, to run our ablation studies in the simulation
and our real-world robotic experiments. We use the default
implementation of SAC and IQL in d3rlpy alongside the default
hyperparameters. The only edits we make are to enable high
UTD and LayerNorm. We did not change the hyperparameters
or the algorithms when we ran the experiment. To enable d3rlpy
to run on the real robot: we changed the location of the action
normalization function in d3rlpy to ensure it will be called
both for the offline dataset and online finetuning on a real
robot.



Figure Task Succ. (%) Figure Task Succ. (%)

Water Cherry 60 (9/15) Puzzle 100 (10/10)

Duck 50 (5/10) Clip 30 (3/10)

Cream Cherry 100 (10/10) Sand Cherry 53.3 (8/15)

Chess 80 (8/10) Grapes 70 (7/10)

Tree Cherry 40 (4/10) Marble Ball 100

TABLE V: Visualization and Success rates of testing tasks.

Prior to running the experiments we fixed the random seed.
To verify the significance of our findings in the ablation
study, we conducted seed sweeping in the simulator, with
5 consecutive random seeds 120 ⇠ 124, as shown in 7. To
verify the reproducibility of our proposed system in the real
world, we trained our whole system including pretraining and

fine-tuning with seed 121 ⇠ 124), the performance shown in
6a is summarized over all random seeds ran in the real world.
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