
Learning a Value Function Based Heuristic for
Physics Based Manipulation Planning in Clutter

Wissam Bejjani, Rafael Papallas, Matteo Leonetti and Mehmet R. Dogar

Abstract— In this work, we propose interleaving planning
and execution, in a closed-loop setting, using a Receding
Horizon Planner (RHP) for pushing manipulation in clutter.
In this context, we address the problem of finding a suitable
value function based heuristic for planning in near real-time,
and for estimating the reward from the horizon to the goal. We
estimate such a value function first by using plans generated by
an existing sampling-based planner. Then, we further optimize
the value function through reinforcement learning.

I. INTRODUCTION

We propose learning a heuristic for planning a manip-
ulation task in clutter. The task is to push an object to a
goal region, with little to no repositioning of other objects.
Such robotic manipulation skills are needed in a variety
of applications such as [1], [2], [3]. This requires pushing
certain items out of the way, without dropping them off the
shelf, while reaching for a target item.

Impressive planners have been proposed for pushing-based
motion planning in clutter [4], [5], [6]. Real-world execution
of these trajectories, however, still poses great challenges.
The main difficulty is due to the inevitable inaccuracy in
the physics model used by the planners. This inaccuracy is
emphasized particularly when multiple objects are in contact.

We present an example of the task in Fig. 1, where the
green object has to be pushed to a target region (the green
region) while keeping the red objects close to their original
positions (red regions). The top row of Fig. 1 shows the ex-
ecution of an open-loop trajectory generated by a sampling-
based planner, while the bottom row presents an execution of
our system. The overlaid animated figures (on the top-right
corner of the images) show the planner’s prediction of how
the objects should move during interaction. When planned
trajectories are executed open-loop, the real motion of the
objects can differ significantly from the motion predicted by
the planner. For this reason, in the shown example, the open-
loop controller fails to accomplish the task.

A solution to this problem is to interleave planning and
execution. In this approach, a sequence of actions is planned,
but only the first action in this sequence is executed. Then,
the current state is updated by observing the environment,
after which another sequence of actions is planned, and the
routine is repeated. We show an execution of such a control
scheme in the bottom row of Fig. 1. Even if objects move
differently than predicted, the controller has the opportunity
to correct for it.

Authors are with the School of Computing, University of Leeds,
United Kingdom {w.bejjani, r.papallas, m.leonetti,
m.r.dogar}@leeds.ac.uk

O
pe

n-
lo

op
K

in
o-

dy
na

m
ic

pl
an

ne
r

C
lo

se
d-

lo
op

R
H

P
ex

ec
ut

io
n

Fig. 1: Top: robot failing to push the green box to the goal
region by following a precomputed plan using kino-dynamic
planning. Bottom: robot successfully executing the task using
closed-loop RHP execution.

One possible implementation is to run one of the afore-
mentioned planners at every step of the execution, to generate
the new sequence of actions. The computation time these
planners require, however, is prohibitively high, typically
taking from tens of seconds to minutes for one plan [7], [4],
[5], [6], [2], [8], [9]. In contrast, we are interested in real-
time execution, which requires a planner that can quickly
suggest an action for the current state of the world.

To generate plans quickly, we propose planning only a
small sequence of actions in to the future. We run a Receding
Horizon Planner (RHP) with a short horizon h, and take
advantage of an appropriate proxy function for the value of
the states beyond the horizon. This value of a state must
estimate how rewarding it would be to reach the goal from
that state. In this work, we use RHP as the robot control
policy. At every step, RHP generates a solution of the form:

〈a0, . . . , ah−1〉 = arg max
〈a0,...,ah−1〉

h−1∑
k=0

γkrk+1 + γh max
a

q(sh, a)

(1)
where γ is the discount factor, r is the immediate reward,
and q is the value of a state-action pair, that is, the expected
reward for reaching the goal starting from that state and using
that action. We avoid hand-crafted reward functions and set
r = −1 for every state transition.

In domains where multiple physics-based object-to-object
contact is possible, acquiring the value function is a challenge
on its own, let alone the optimal one. The horizon can
mitigate the inaccuracy of the value function estimate, by
ranging from infinity, with the robot planning all the way
to the goal, to zero, with the robot acting greedily with the

Kino-dynamic RRT

planner

Learning an action-value

function from the

behavior pattern of the

planner

S
ta

te 𝑆0

Undated DNN RHP-driven searches

Optimizing the action-value

function using Reinforcement

Learning

Closed-loop execution

using RHP

𝑠𝑎

Fig. 2: Overview of the proposed approach.

respect to the value function. With an infinite horizon the
value function is ignored, while with h = 0 the behavior
depends entirely on the value function. In the latter case, if
the value function is optimal (that is, q(s, a) ≥ qπ(s, a) ∀s ∈
S, a ∈ A, for any policy π), so is the resulting policy. In
practice, a short but non-zero horizon takes advantage of
both the planner and the value function without relying on
either one entirely, and we experiment with several values
for h.

The focus of this work is on learning, with no prior
knowledge, a value function that we can use as a heuristic
within RHP. In order to do this, we propose a two step
data-driven approach: 1) We extract a value function from
examples of problem instances1 solved by existing sampling-
based planners, 2) then, we use a reinforcement learning
(RL) algorithm to gradually update the value function from
estimating the value based on the behavior of the sampling-
based planner to estimating the actual optimal value of the
manipulation task. Fig. 2 shows an overview of this approach.

II. LEARNING AN ACTION-VALUE FUNCTION FROM
SAMPLING-BASED PLANNERS

A. Generating example plans

Sampling-based planners treat every new planning in-
stance independently from previously solved instances. Also,
they must plan until the goal, and they do not offer useful
information on the searched areas of the state-state space
from which the goal was not reached. However, sampling-
based planners provide a probabilistically complete tool
to solve complex planning problems in high-dimensional
state spaces, without necessarily requiring a hand-crafted or
domain-dependent heuristic. We implement a state-of-the-art
kino-dynamic planner [4], used for solving physics-based
manipulation in clutter planning problems. We generate P
random problem instances. Then, for each instance p, we
run the kino-dynamic planner to generate a solution of the
form of a sequence of actions. Fig. 3 shows an example of
a problem instance solved by the kino-dynamic planner.

B. Learning The Action-Value Function From Observed Tra-
jectories

We use the solution plans to the P problem instances,
solved by the kino-dynamic planner, to train a deep neural
network (DNN) to predict the action-value estimate for a
given state-action pair. The DNN represent the action-value

1A problem instance is defined by the the initial positions of the objects
and their corresponding goal regions. Only one of the objects has its goal
region placed away from its initial position

Fig. 3: The initial configuration (left) and the final configu-
ration (right) of an example scene.

function estimate q̂(s, a; θ) with parameters θ. To train the
DNN, we use every state-action pair encountered along every
example plan. For each example plan, and for every state-
action pair in that plan, we compute the update target:

q(spl , a
p
l) =

L−l−1∑
k=0

γkrl+k+1 = r(
1− γL−l

1− γ
) (2)

where p stands for the index of the plan generated by the
kino-dynamic planner and l is the index of the state-action
pair in that plan. The second equality takes advantage of
the fact that in our formulation all the immediate rewards,
denoted as r, are the same2.

While the DNN trained as above learns to predict the
action-values for the actions executed in states along the
trajectory generated by the kino-dynamic planner, the values
predicted by the DNN for actions that have not been used
by the planner along these states can be arbitrary. As a
result of function approximation, however, these actions will
nonetheless have a value. The value can converge to an
arbitrary number, determined by the effect of the target
value in the states that the planner did traverse. A possible
undesirable effect is that the values of the actions not chosen
by the planner can be higher than the chosen one. This
can later cause an action that was not favored by the kino-
dynamic planner to look more favorable to RHP that uses
the action-value function as a heuristic.

In order to avoid this phenomenon, we ground the uncho-
sen actions to a target value that is lower than the target
value of the chosen action. Driven by the observation that,
in the domain of pushing tasks, a mistake is in most cases
not irreparable, but can be overcome through a number of k
additional actions. Hence, we use for the action-value of the
unchosen actions the following update target:

q(spl , a
p
u) =

{
r(1−γL−l+k

1−γ), if q̂(spl , a
p
u; θ) ≥ q(spl , a

p
l)

q̂(spl , a
p
u; θ), otherwise

(3)
where au ∈ A\{al} is an unchosen action3. This imposes

that the unchosen actions that have a higher value than the
chosen one, have a value equivalent to being k steps further
away from the goal than the chosen action.

2If γ = 1 the equation collapses to q(spl , a
p
l) = (L− l)r

3if γ = 1 the first component of the equation collapses to q(spl , a
p
u) =

(L− l + k)r

III. HEURISTIC-GUIDED DEEP REINFORCEMENT
LEARNING

The performance of action-value based RHP is bounded
by the quality of its heuristic. So far, the knowledge en-
capsulated in the DNN is based on the average behavior of
the kino-dynamic planner. To further optimize the action-
value function, we use reinforcement learning to 1) improve
the action-value function estimate of the optimal one and to
2) ground the unexperienced state-space transitions to their
actual values.

We implement the Deep Q-Learning (DQN) algorithm
[10]. We initialize the DNN to the trained DNN from the
previous section. Further, We formulate an RL policy, that we
call ε-RHP, which selects a random action with probability
ε and with probability 1 − ε the policy queries RHP for an
action. We found that focusing the search towards the goal by
augmenting the RL policy with RHP, reduces the chances of
the action-value function from diverging which is common
problem in RL when used in conjunction with a DNN as a
function approximator.

IV. SEARCHING THE ACTION-SPACE UP TO THE HORIZON

We use the learned action-value function q̂(s, a; θ) as
heuristic RHP, i.e. we use it as an approximation in Eq. 1
in-place of the unknown optimal action-value function at sh.

One naı̈ve way to plan until the horizon is to explore all
possible action sequences up to the horizon h. However, an
exhaustive search would scale badly with the horizon depth
h and the size of the action set A, O(|A|h). Instead, we bias
the search towards promising actions. We implement RHP
such that it simulates n roll-outs of horizon h each. Each
of the n roll-outs is started from the current state s0. At
every step t in a roll-out, RHP samples an action using the
soft-max of the action-value function:

P (a|st) =
exp(q̂(st, a; θ)/τ)

Σai∈Aexp(q̂(st, ai; θ)/τ)
(4)

where τ is the temperature parameter. This would favor
exploring actions whose value learned in the previous section
is the highest. The return of a roll-out is computed as an h-
step return, where the first h rewards are generated by the
model, and the action-value function acts as a proxy for the
rewards beyond the horizon:

R0:h = r1 + γr2 + . . .+ γh−1rh + γhq̂(sh, ah; θ).

RHP then executes the first action in the roll-out that obtains
the highest return. This procedure reduces the number of
simulated actions per RHP query to n × h. The action-
value function, therefore, plays two roles: to inform the
search through the soft-max sampling, and as a proxy for
the rewards that are not sampled from the model.

V. EXPERIMENTS

The manipulation scenario follows the same model intro-
duced in Sec. I. We evaluate the applicability of the proposed
approach to control a real robot executing a manipulation
in clutter task in near real-time. Before implementing the

TABLE I: The performance results of the kino-dynamic
planner (KDP) and the learned value function (GP: greedy
policy, RHP-33: n=3,h=3, RHP-66: n=6,h=6) w.r.t. different
uncertainty levels

Planner Learned value function

KDP GP RHP-33 RHP-66

No uncert. suc. rate [%] 98.0 51.5 88.8 94.4
Avg. exec. time [s] 49.4 0.6 7.9 21.2

Low uncert. suc. rate [%] 24.5 48.6 88.2 94.0
Avg. exec. time [s] 41.1 0.6 8.0 22.7

Med. uncert. suc. rate[%] 28.5 47.3 88.0 91.2
Avg. exec. time [s] 42.5 0.6 8.1 18.4

High uncert. suc. rate[%] 15.7 45.6 87.3 90.1
Avg. exec. time [s] 37.6 0.7 8.5 17.3

control policy on the real robot, we measure the success rate
of a policy in simulation. The success rate is measured over
500 random task instances such that at the end of a run, if
any the boxes was out of its corresponding target region, then
we considered that run a failure. Otherwise, we considered
it a success. As a way of gaging how a policy copes with
dynamics that are different then the one it was trained on, we
injected different levels of uncertainty in the physics model
(shape, friction, and density of the boxes).

The DNN is trained over P = 9000 plans with k = 4. It
is further optimized with RHP-guided RL where each RHP
query runs n = 6 roll-outs of h = 6 horizon depth each. The
results of our simulated experiments, presented in Table I,
confirm that the performance of the kino-dynamic planner
degrades when the planning model is different than the
execution model. The results also show that increasing the
number of roll-outs and the horizon depth helps in mitigating
the increased uncertainty. The performance increase comes
at a cost of an increased computation time. However, it is
still within reasonable limits for near real-time manipulation.

We performed experiments on a UR5 robot. Example
task instances are shown in Figures 1 and in the video
link https://youtu.be/xwa0fTTuQ1g. In each task, we tested
the trained RHP policy and compared it to the open-loop
execution of the kino-dynamic planner. During the execution
of RHP, closed-loop feedback on object poses was supplied
using an OptiTrack system for RHP to run the roll-outs on
the model. As expected, the reactive capability of RHP made
its reaction robust to the dynamics of the real world.

VI. CONCLUSIONS

The key contribution is in showing that a sub-optimal
value function can drive RHP to control a robot in the domain
of physics-based manipulation in clutter: the robot is able to
perform fast closed-loop re-planning to deal with the inherent
uncertainty in this domain, which challenges existing plan-
ners. We show how a heuristic value function can be learned
from sampling-based planners and reinforcement learning.

These findings motivate us to further develop our re-
search on real-time dynamic manipulation. We are currently
extending this work to admit visual input for the state
representation. This will allow the robot to seamlessly adapt
to a changing number of objects in the scene.

REFERENCES

[1] D. Leidner, W. Bejjani, A. Albu-Schäffer, and M. Beetz, “Robotic
agents representing, reasoning, and executing wiping tasks for daily
household chores,” in Proceedings of the 2016 International Confer-
ence on Autonomous Agents & Multiagent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 2016,
pp. 1006–1014.

[2] M. Dogar, K. Hsiao, M. Ciocarlie, and S. Srinivasa, “Physics-based
grasp planning through clutter,” in Robotics: Science and Systems,
2012.

[3] C. Hernandez, M. Bharatheesha, W. Ko, H. Gaiser, J. Tan, K. van
Deurzen, M. de Vries, B. Van Mil, J. van Egmond, R. Burger, et al.,
“Team delfts robot winner of the amazon picking challenge 2016,” in
Robot World Cup. Springer, 2016, pp. 613–624.

[4] J. A. Haustein, J. King, S. S. Srinivasa, and T. Asfour, “Kinodynamic
randomized rearrangement planning via dynamic transitions between
statically stable states,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on. IEEE, 2015, pp. 3075–3082.

[5] N. Kitaev, I. Mordatch, S. Patil, and P. Abbeel, “Physics-based
trajectory optimization for grasping in cluttered environments,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference
on. IEEE, 2015, pp. 3102–3109.

[6] J. E. King, J. A. Haustein, S. S. Srinivasa, and T. Asfour, “Nonpre-
hensile whole arm rearrangement planning on physics manifolds,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference
on. IEEE, 2015, pp. 2508–2515.

[7] M. R. Dogar and S. S. Srinivasa, “A planning framework for non-
prehensile manipulation under clutter and uncertainty,” Autonomous
Robots, vol. 33, no. 3, pp. 217–236, 2012.

[8] A. M. Johnson, J. King, and S. Srinivasa, “Convergent planning,”
vol. 1, no. 2, pp. 1044–1051, July 2016.

[9] Muhayyuddin, M. Moll, L. Kavraki, and J. Rosell, “Randomized
Physics-based Motion Planning for Grasping in Cluttered and Un-
certain Environments,” ArXiv e-prints, Nov. 2017.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

