
Deep Reinforcement Learning in a Handful of Trials
using Probabilistic Dynamics Models

Kurtland Chua, Roberto Calandra, Rowan McAllister, Sergey Levine
University of California, Berkeley

{kchua,roberto.calandra,rmcallister}@berkeley.edu,svlevine@eecs.berkeley.edu

Abstract— Model-based reinforcement learning (RL) algo-
rithms can attain excellent sample efficiency, but often lag
behind the best model-free algorithms in terms of asymptotic
performance, especially those with high-capacity parametric
function approximators, such as deep networks. In this paper,
we study how to bridge this gap, by employing uncertainty-
aware dynamics models. We propose a new algorithm called
probabilistic ensembles with trajectory sampling (PETS) that
combines uncertainty-aware deep network dynamics models
with sampling-based uncertainty propagation. Our compari-
son to state-of-the-art model-based and model-free deep RL
algorithms shows that our approach matches the asymptotic
performance of model-free algorithms on several challenging
benchmark tasks, while requiring significantly fewer samples
(e.g. 25 and 125 times fewer samples than Soft Actor Critic and
Proximal Policy Optimization respectively on the half-cheetah
task).

I. INTRODUCTION

Reinforcement learning (RL) algorithms provide for an
automated framework for decision making and control: by
specifying a high-level objective function, an RL algorithm
can, in principle, automatically learn a control policy that
satisfies this objective. This has the potential to automate
a range of applications, such as autonomous vehicles and
interactive conversational agents. However, current model-free
reinforcement learning algorithms are quite expensive to train,
which often limits their application to simulated domains [1],
[2], [3], with a few exceptions [4], [5]. A promising direction
to reducing sample complexity is to explore model-based
reinforcement learning (MBRL) methods, which proceed by
first acquiring a predictive model of the world, and then
using that model to make decisions [6], [7], [8]. MBRL is
appealing because the dynamics model is reward-independent
and therefore can generalize to new tasks in the same
environment, and it can easily benefit from all of the advances
in deep supervised learning to utilize high-capacity models.
However, the asymptotic reward of MBRL methods on
common benchmark tasks generally lags behind model-free
methods. That is, although MBRL methods tend to learn
more quickly, they also tend to converge to more suboptimal
solutions.

In this paper, we take a step toward narrowing the gap
between model-based and model-free RL methods. Our
approach is based on several observations that, though

Accepted at the IROS 2018 Workshop on Machine Learning in Robot
Motion Planning.

relatively simple, are critical for good performance. We
first observe that model capacity is a critical ingredient
in the success of MBRL methods: while efficient models
such as Gaussian processes can learn extremely quickly,
they struggle to represent very complex and discontinuous
dynamical systems [9]. Neural network (NN) models can
scale to large datasets with high-dimensional inputs, and
can represent such systems more effectively. However, they
struggle with the opposite problem: in the low-data regime
in which MBRL always starts, they tend to overfit and make
poor predictions far into the future. For this reason, MBRL
with NNs has proven exceptionally challenging.

Our second observation is that this issue can, to a large
extent, be mitigated by properly incorporating uncertainty
into the dynamics model. While a number of prior works have
explored uncertainty-aware deep neural network models [10],
[11], including in the context of RL [12], [13], our work is,
to our knowledge, the first to bring these components together
in a MBRL framework that approaches the asymptotic
performance of state-of-the-art model-free RL methods, at a
fraction of the sample complexity.

Our main contribution is a MBRL algorithm called
probabilistic ensembles with trajectory sampling (PETS)
summarized in Figure 1) with high-capacity NN models
that incorporate uncertainty via an ensemble of bootstrapped
models, where each model encodes distributions (opposed
to point predictions), rivaling the performance model-free
methods on standard benchmark tasks at a fraction of the
sample complexity. An additional advantage of PETS over
prior probabilistic MBRL algorithms is an ability to isolate
two distinct classes of uncertainty: aleatoric (inherent system
stochasticity) and epistemic (subjective uncertainty, due to
limited data). Isolating epistemic uncertainty is especially
useful for directing exploration [14], although we leave this
for future work. Finally, we present a systematic analysis of
how incorporating uncertainty into MBRL with NNs affects
performance, in both model training and planning. We show,
that PETS’s particular treatment of uncertainty significantly
reduces the amount of data required to learn a task, e.g. 25
times fewer data on half-cheetah compared to the model-free
Soft Actor Critic algorithm [15].



Ground Truth

Bootstrap 1

Bootstrap 2

Training Data

Dynamics Model Planning via Model Predictive ControlTrajectory Propagation

Fig. 1: Our method (PE-TS): Model: Our probabilistic ensemble (PE) dynamics model is shown as an ensemble of two
bootstraps (bootstrap disagreement far from data captures epistemic uncertainty), each a probabilistic neural network that
captures aleatoric uncertainty (inherent variance of the observed data). Propagation: Our trajectory sampling (TS) propagation
technique uses our dynamics model to re-sample each particle (with associated bootstrap) according to its probabilistic
prediction at each point in time, up until MPC-horizon. Planning: Our MPC algorithm recompute at each time-step and
applies the first action of each action sequence, up until the task-horizon.

II. RELATED WORK

Model choice in MBRL is delicate: we desire effective
learning in both low-data regimes (at the beginning) and
high-data regimes (in the later stages of the learning process).
For this reason, Bayesian nonparametric models, such as
GPs, are often the model of choice in MBRL [7], [16],
[17], [18], [8], [19]. However, such models typically induce
additional assumptions on the system, such as the smooth-
ness assumption inherent in GPs with squared-exponential
kernels [20]. Parametric function approximators have also
been used extensively in MBRL [21], [22], [23], [24], but
were largely supplanted by Bayesian models in recent years.
Methods based on local models, such as guided policy search
algorithms [5], [25], [26], can efficiently train NN policies, but
using time-varying linear models, which only locally model
the system dynamics. Recent improvements in parametric
function approximators, such as NNs, suggest that such
methods are worth revisiting [27], [28], [29], [30], [31],
[12], [13], [32], [33]. Unlike Gaussian processes, NNs have
constant-time inference and tractable training in the large
data regime, and have potential to represent more complex
functions, including non-smooth dynamics that are often
present in robotics [28], [34], [33]. However, most works
that use NNs focus on deterministic models, consequently
suffering from overfitting in the early stages of learning.
For this reason, our approach is able to achieve even higher
data-efficiency that prior deterministic MBRL methods such
as [33].

Constructing good Bayesian NN models remains an open
problem [35], [10], [36], [37], although recent promising work
exists on incorporating dropout [38], ensembles [39], [11], and
α-divergence [40]. Such probabilistic NNs have previously
been used for control, including using dropout [12], [41] and
α-divergence [13]. In contrast to these prior methods, our
experiments focus on more complex tasks with challenging
dynamics, including contact discontinuities, and we compare
directly to prior model-based and model-free methods on
standard benchmark problems, where our method exhibits
asymptotic performance that is comparable to model-free
approaches.

III. MODEL-BASED REINFORCEMENT LEARNING

We now detail the MBRL framework and the notation used.
Adhering to the Markov decision process formulation [42],

we denote the state s ∈ Rds and the actions a ∈ Rda of
the system, the reward function r(s,a), and we consider
the dynamic systems governed by the transition function
fθ : Rds+da 7→ Rds such that given the current state
st and current input at, the next state st+1 is given by
st+1 = f (st,at). For probabilistic dynamics, we represent
the conditional distribution of the next state given the current
state and action as some parameterized distribution family:
fθ(st+1|st,at) = Pr(st+1|st,at), overloading notation.
Learning forward dynamics is thus the task of fitting an
approximation f̃ of the true transition function f , given
the measurements D = {(sn,an), sn+1}Nn=1 from the real
system.

Once a dynamics model f̃ is learned, we use it to predict
the distribution over trajectories resulting from applying a
given policy (e.g., a sequence of actions). We hence compute
the distribution of the reward for a given policy, and use it
to optimize the best policy to use. In Section IV we discuss
multiple methods to model the dynamics, while in Section V
we detail how to compute the distribution over trajectories
and how to parametrize the controller.

IV. UNCERTAINTY-AWARE NEURAL NETWORK DYNAMICS
MODELS

This section describes a number of ways to model uncertain
dynamics, including our method: an ensemble of bootstrapped
probabilistic neural networks. Whilst uncertainty-aware dy-
namics models have been explored in a number of prior works
[12], [13], the particular details of the implementation and
design decisions in regard incorporation of uncertainty have
not been rigorously analyzed empirically. As a result, prior
work has generally found that expressive parametric models,
such as deep neural networks, generally do not produce
model-based RL algorithms that are competitive with their
model-free counterparts in terms of asymptotic performance
[33], and often even found that simpler time-varying linear
models can outperform expressive neural network models [5],
[43].

Any MBRL algorithm must select a class of model
to predict the dynamics. This choice is often crucial for
an MBRL algorithm, as even small bias can significantly
influence the quality of the corresponding controller [6], [44].
A major challenge building a model that performs well in low
and high data regimes: in the early stages of training, data



is scarce, and highly expressive function approximators are
liable to overfit. In the later stages of training, data is plentiful,
but for systems with complex dynamics, simple function
approximators might underfit. While Bayesian models such
as GPs perform well in low-data regimes, they do not scale
favorably with dimensionality and often use kernels ill-suited
for discontinuous dynamics [9], which is typical of robots
interacting through contacts.

Fig. 2: Model uncertainties captured.

Model Aleatoric Epistemic
uncertainty uncertainty

Baseline Models
Deterministic NN (D) No No
Probabilistic NN (P) Yes No
Deterministic ensemble NN (DE) No Yes
Gaussian process baseline (GP) Homoscedastic Yes
Our Model
Probabilistic ensemble NN (PE) Yes Yes

In this paper, we study how expressive NNs can be
incorporated into MBRL. To account for uncertainty, we
study NNs that model two types of uncertainty. The first type,
aleatoric uncertainty, arises from inherent stochasticities of a
system, e.g. observation noise and process noise. Aleatoric
uncertainty can be captured by outputting the parameters of
a parameterized distribution, while still training the network
discriminatively. The second type – epistemic uncertainty
– corresponds to subjective uncertainty about the dynamics
function, due to a lack of sufficient data to uniquely determine
the underlying system exactly. In the limit of infinite data,
epistemic uncertainty should vanish, but for datasets of
finite size, subjective uncertainty remains when predicting
transitions. It is precisely the subjective epistemic uncertainty
which Bayesian modeling excels at, which helps mitigate
overfitting. Below, we describe how we use combinations
of ‘probabilistic networks’ to capture aleatoric uncertainty
and ‘ensembles’ to capture epistemic uncertainty. Each
combination is summarized in Table 2.

a) Probabilistic neural networks (P): We define a
probabilistic NN as a network whose output neurons en-
code any parametric distribution, capturing aleatoric uncer-
tainty. We use the negative log prediction probability as
our loss function lossP(θ) = −

∑N
n=1 log f̃θ(sn+1|sn,an).

For example, we might define our predictive model to
output a Gaussian distributions with diagonal covariances
parameterized by θ and conditioned on sn and an, i.e.:
f̃ = Pr(st+1|st,at) = N (µθ(st,at),Σθ(st,at)). We can
derive a loss function from the log-likelihood. Such a network
output, which parameterizes a Gaussian distribution, mod-
els heteroscedastic aleatoric uncertainty (heteroscedasticity
means the random output variability is a function of the
input). However, it does not model epistemic uncertainty,
which cannot be captured with purely discriminative training.
Choosing a Gaussian distribution is a common choice for
continuous-valued states, and reasonable if we assume that any
stochasticity in the system is unimodal. However, in general,
any tractable distribution class can be used. To provide
for an expressive dynamics model, we can represent the

parameters of this distribution (e.g., the mean and covariance
of a Gaussian) as nonlinear, parametric functions of the
current state and action, which can be arbitrarily complex but
deterministic. This makes it feasible to incorporate NNs into
a probabilistic dynamics model even for high-dimensional
and continuous states and actions.

b) Deterministic neural networks (D): For comparison,
we define a deterministic NN as a special-case
probabilistic network that outputs delta distributions
centered around point predictions denoted as f̃θ(st,at):
f̃θ(st+1|st,at) = Pr(st+1|st,at) = δ(st+1 − f̃θ(st,at)),
trained using the MSE loss
lossD(θ) =

∑N
n=1 ‖sn+1 − f̃θ(sn,an)‖. Although MSE

can be interpreted as lossP(θ) with a Gaussian model of fixed
unit variance, in practice this variance cannot be used for
uncertainty-aware propagation, since it does not correspond
to any notion of uncertainty (e.g. a deterministic model with
infinite data would be adding variance to particles for no
good reason).

c) Ensembles (DE and PE): A principled means to
capture epistemic uncertainty is with Bayesian inference.
Whilst accurate Bayesian NN inference is possible with
sufficient compute [10], approximate inference methods [45],
[38], [46] have enjoyed recent popularity given their simpler
implementation and faster training times. Ensembles of
bootstrapped models are even simpler still: given a base
model, no additional (hyper-)parameters need be tuned,
whilst still providing reasonable uncertainty estimates [47],
[36]. We consider ensembles of B-many bootstrap models,
using θb to refer to the parameters of our bth model f̃θb

.
Ensembles can be composed of deterministic models (DE) or
probabilistic models (PE) – as done by [11] – both of which
define predictive probability distributions: f̃θ = 1

B

∑B
b=1 f̃θb

.
Each of our bootstrap models have their unique dataset
Db, generated by sampling (with replacement) N times the
dynamics dataset recorded so far D, where N is the size of
D. We found B = 5 sufficient for all our experiments.

V. PLANNING AND CONTROL WITH LEARNED DYNAMICS

This section describes different ways uncertainty can
be incorporated into planning using probabilistic dynamics
models. Once a model f̃θ is learned, we can use it for
control by predicting the future outcomes of candidate
policies or actions and then selecting the particular candidate
that is predicted to result in the highest reward. MBRL
planning in discrete time over long time horizons is generally
performed by using the dynamics model to recursively predict
how an estimated Markov state will evolve from one time
step to the next, e.g.: st+2 ∼ Pr(st+2|st+1,at+1) where
st+1 ∼ Pr(st+1|st,at). When planning, the choice of action
at can depend on the state, forming a policy, π : st → at.
Otherwise, planning with actions independent of the state
is typically framed as model predictive control (MPC) [48].
MPC can be considered a special-case policy, trained as a
function of the dynamics model, and thereafter only dependent
on time, not state. We use MPC in our own experiments
for several reasons, including implementation simplicity,



lower computational burden (no gradients), no requirement
to specify the task-horizon in advance, whilst achieving the
same data-efficiency as [12] who used a Bayesian NN with
a policy to learn the cart-pole task in 2000 time steps. Our
full algorithm is summarized in Section VI.

Given the state of the system st at time t, the predic-
tion horizon T of the MPC controller, and an action se-
quence at:t+T

.
= {at, . . . ,at+T }; the probabilistic dynamics

model f̃ induces a distribution over the resulting trajectories
st:t+T . At each time step t, the MPC controller applies
the first action at of the sequence of optimized actions
argmaxat:t+T

∑t+T
τ=t Ef̃ [r(sτ ,aτ )]. A common technique to

compute the optimal action sequence is a random sampling
shooting method due to its parallelizability and ease of
implementation. [33] use deterministic NN models and MPC
with random shooting to achieve data efficient control for
in higher dimensional tasks than what is feasible for GP to
model. Our work improves upon [33]’s data efficiency in two
ways: First, we capture uncertainty in modeling and planning,
to prevent overfitting in the low-data regime. Second, we
use CEM [49] instead of random-shooting, which samples
actions from a distribution closer to previous action samples
that yielded high reward.

Evaluating the exact expected trajectory reward using
recursive state prediction is generally intractable. Multiple
approaches to approximate uncertainty propagation found in
the literature [50], [51]. These approaches can be categorized
by how they represent the state distribution: deterministic,
particle, and parametric methods. Deterministic methods use
the mean prediction and ignore the uncertainty, particle
methods propagate a set of Monte Carlo samples, and
parametric methods include Gaussian or Gaussian mixture
models, etc. Although parametric distributions have been
successfully used in MBRL [8], experimental results [52]
suggest that particle approaches can be competitive both
computationally and in terms of accuracy, without making
strong assumptions about the distribution used. Hence, we
use particle-based propagation, specifically suited to our PE
dynamics model which distinguishes two types of uncertainty,
detailed in Section V-A. Unfortunately, little prior work
has empirically compared the design decisions involved
in choosing the particular propagation method. Thus, we
compare against several baselines in Section V-B.
A. Our state propagation method: trajectory sampling (TS)

Our method to predict plausible state trajectories begins
by creating P particles from the current state, spt=0 = s0 ∀ p.
We found P = 20 sufficient in all our experiments. For each
particle we associate a bootstrap b(p, t), sampled uniformly
from {1, . . . , B}, where B is the number of bootstrap models
in the ensemble. A particle’s bootstrap index can potentially
change as a function of time t. We consider two TS variants:

• TS1 refers to particles uniformly re-sampling a bootstrap
per time step. If we were to consider an ensemble as
a Bayesian model, the particles would be effectively
continually re-sampling from the approximate marginal
posterior of plausible dynamics. We consider TS1’s

bootstrap re-sampling to place a soft restriction on
trajectory multimodality: particles separation cannot
be attributed to the compounding effects of differing
bootstraps using TS1.

• TS∞ refers to particle bootstraps never changing during
a trial. Since an ensemble is a collection of plausible
models, which together represent the subjective uncer-
tainty in function space of the true dynamics function f ,
which we assume is time invariant. TS∞ captures such
time invariance since each particle’s bootstrap index is
made consistent over time. An advantage of using TS∞
is aleatoric and epistemic uncertainties are separable
(e.g. aleatoric state variance is the average variance
of particles of same bootstrap, whilst epistemic state
variance is the variance of the average of particles of
same bootstrap indexes). Epistemic is the ‘learnable’
type of uncertainty, useful for directed exploration [14].
Without a way to distinguish epistemic uncertainty
from aleatoric, an exploration algorithm (e.g. Bayesian
optimization) might mistakingly choose actions with high
predicted reward-variance ‘hoping to learn something’
when in fact such variance is caused by persistent and
irreducible system stochasticity offering zero exploration
value.

In both variants, we then propagate particles by sampling
spt+1 ∼ f̃θb(p,t)

(spt ,at). Note that TS can capture multi-modal
distributions and can be used with any probabilistic model.

B. Baseline state propagation methods for comparison

To validate our state propagation method, in the experi-
ments of Section VII-B we compare against four alternative
state propagation methods, which we now discuss.

a) Expectation (E): To judge the importance of our TS
method using multiple particles to represent a distribution we
compare against the aforementioned deterministic propagation
technique. The simplest way to plan is iteratively propagating
the expected prediction at each time step (ignoring uncer-
tainty) st+1 = E[f̃θ(st,at)]. An advantage of this approach
over TS is reduced computation and simple implementation:
only a single particle is propagated. The main disadvantage
of choosing E over TS is small model biases can compound
quickly over time, with no way to tell the quality of the state
estimate.

b) Moment matching (MM): Whilst TS’s particles
can represent multimodal distributions, forcing a unimodal
distribution via moment matching (MM) can (in some
cases) benefit MBRL data efficiency [12]. Although un-
clear why, [12] (who use Gaussian MM) hypothesize this
effect may be caused by smoothing of the loss surface
and implicitly penalizing multi-modal distributions (which
often only occur with uncontrolled systems). To test this
hypothesis we use Gaussian MM as a baseline and as-
sume independence between bootstraps and particles for
simplicity spt+1

iid∼ N
(
Ep,b

[
sp,bt+1

]
,Vp,b

[
sp,bt+1

])
, where

sp,bt+1 ∼ f̃θb
(spt ,at). Future work might consider other

distributions too, such as the Laplace distribution.



c) Distribution sampling (DS): The previous MM ap-
proach made a strong unimodal assumption about state
distributions: the state distribution at each time step was
re-cast to Gaussian. A softer restriction on multimodality
– between MM and TS – is to moment match w.r.t. the
bootstraps only (noting the particles are otherwise independent
if B = 1). This means that we effectively smooth the loss
function w.r.t. epistemic uncertainty only (the uncertainty
relevant to learning), whilst the aleatoric uncertainty remains
free to be multimodal. We call this method distribution
sampling (DS): spt+1 ∼ N

(
Eb
[
sp,bt+1

]
,Vb

[
sp,bt+1

])
, with

sp,bt+1 ∼ f̃θb
(spt ,at).

VI. ALGORITHM SUMMARY

Algorithm 1 Our model-based MPC algorithm ‘PETS’:
1: Initialize data D with a random controller for one trial.
2: for Trial k = 1 to K do
3: Train a PE dynamics model f̃ given D.
4: for Time t = 0 to TaskHorizon do
5: for Actions sampled at:t+T ∼CEM(·), 1 to NSamples do
6: Propagate state particles spτ using TS and f̃ |{D,at:t+T }.
7: Evaluate actions as

∑t+T
τ=t

1
P

∑P
p=1 r(s

p
τ ,aτ )

8: Update CEM(·) distribution.
9: Execute first action a∗

t (only) from optimal actions a∗
t:t+T .

10: Record outcome: D← D ∪ {st,a∗
t , st+1}.

Here we summarize our MBRL method PETS in Algo-
rithm 1. We use the PE model to capture heteroskedastic
aleatoric uncertainty and heteroskedastic epistemic uncer-
tainty, which the TS planning method was able to best use.
To guide the random shooting method of our MPC algorithm
we found the CEM method learned faster.

VII. EXPERIMENTAL RESULTS

We now evaluate the performance of our proposed
MBRL algorithm called PETS using deep probabilistic
dynamics models. First, we compare our approach on
standard benchmark tasks against state-of-the-art model-
free and model-based approaches in Section VII-A. Then,
in Section VII-B, we provide a detailed evaluation of the
individual design decisions in the model and uncertainty
propagation method and analyze their effect on performance.
Experiment videos as well as a link to experiment code
can be found at https://sites.google.com/view/
drl-in-a-handful-of-trials.
A. Comparisons to prior reinforcement learning algorithms

We compare our Algorithm 1 against the following re-
inforcement learning algorithms for continuous state-action
control:

• Proximal policy optimization (PPO): [3] is a model-
free, deep policy-gradient RL a algorithm (we used the
implementation from [53].)

• Deep deterministic policy gradient (DDPG): [2] is an
off-policy model-free deep actor-critic algorithm (we
used the implementation from [53].)

• Soft actor critic (SAC): [15] is a model-free deep actor-
critic algorithm, which reports better data-efficiency than
DDPG on MuJoCo benchmarks (we obtained authors’
data).

• Model-based model-free hybrid (MBMF): [33] is a
recent deterministic deep model-based RL algorithm,
which we reimplement.

• Gaussian process dynamics model (GP): we compare
against three MBRL algorithms based on GPs. GP-E
learns a GP model, but only propagate the expectation.
GP-DS uses the propagation method DS. GP-MM is
the algorithm proposed by [54] except that we do not
update the dynamics model after each transition, but
only at the end of each trial.

The results of the comparison are presented in Figure 3.
Our method reaches performance that is similar to the
asymptotic performance of the state-of-the-art model-free
baseline PPO. However, PPO requires several orders of
magnitude more samples to reach this point. We reach PPO’s
asymptotic performance in fewer than 100 trials on all four
tasks, faster than any prior model-free algorithm, and the
asymptotic performance substantially exceeds that of the
prior MBRL algorithm by [33] which corresponds to the
deterministic variant of our approach (D-E). This result
highlights the value of uncertainty estimation. Whilst the
probabilistic baseline GP-MM slightly outperformed our
method in cartpole, GP-MM scales cubically in time and
quadratically state dimensionality, so was infeasible to run
on the remaining higher dimensional tasks. It is worth noting
that model-based deep RL algorithms have typically been
considered to be efficient but incapable of achieving similar
asymptotic performance as their model-free counterparts.
Our results demonstrate that a purely model-based deep RL
algorithm that only learns a dynamics model, omitting even
a parameterized policy, can achieve comparable performance
when properly incorporating uncertainty estimation during
modeling and planning. In the next section, we study which
specific design decisions and components of our approach
are important for achieving this level of performance.

B. Analyzing dynamics modeling and uncertainty propagation

In this section, we compare different choices for the dynam-
ics model in Section IV and uncertainty propagation technique
in Section V. The results in Figure 4 first show that w.r.t.
model choice, the model should consider both uncertainty
types: the probabilistic ensembles (PE-XX) perform best in all
tasks, except cartpole (‘X’ symbolizes any character). Close
seconds are the single-probability-type models: probabilistic
network (P-XX) and ensembles of deterministic networks
(E-XX). Worst is the deterministic network (D-E).

These observations shed some light on the role of uncer-
tainty in MBRL, particularly as it relates to discriminatively
trained, expressive parametric models such as NNs. Our
results suggest that, the quality of the model and the
use of uncertainty at learning time significantly effect the
performance of the MBRL algorithms tested, while the use of
more aadvanced uncertainty propagation technique seem to
offers only minor improvements. We reconfirm that moment
matching (MM) is competitive in low-dimensional tasks
(consistent with [12]), however is not a reliable MBRL choice
in higher dimensions, e.g. the half cheetah.

https://sites.google.com/view/drl-in-a-handful-of-trials
https://sites.google.com/view/drl-in-a-handful-of-trials


Half-cheetah

Number of Timesteps

Re
w

ar
d

0 20000 40000

12000

6000

7-DOF Pusher

Number of Timesteps

Re
w

ar
d

0 5000 10000

0

-300

-100

15000

7-DOF Reacher

Number of Timesteps

Re
w

ar
d

0 5000 10000

0

-200

-100

15000

Cartpole

Number of Timesteps
Re

w
ar

d
0 1500

200

0

100

3000

-200

Our Method 
(PE-TS1)

[Nagabandi et al. 2017] 
(D-E)

PPO
at convergence

SAC 
at convergencePPO GP-E

[Kamthe et al. 2017]
(GP-MM) SACGP-DS DDPG

DDPG 
at convergence

0
10000 30000

Fig. 3: Learning curves for different tasks and algorithm. For all tasks, our algorithm learns in under 100K time steps or 100
trials. With the exception of Cartpole, which is sufficiently low-dimensional to efficiently learn a GP model, our proposed
algorithm significantly outperform all other baselines. For visual clarity, we plot the maximum reward seen so far, averaged
over 10 experiments.

The analysis provided in this section summarizes the
experiments we conducted to design our algorithm. It is
worth noting that the individual components of our method –
ensembles, probabilistic networks, and various approximate
uncertainty propagation techniques – have existed in various
forms in supervised learning and RL. However, as our
experiments here and in the previous section show, the
particular choice of these components in our algorithm
achieves substantially improved results over previous state-of-
the-art model-based and model-free methods, experimentally
confirming both the importance of uncertainty estimation in
MBRL and the potential for MBRL to achieve asymptotic
performance comparable to the best model-free methods at a
fraction of the sample complexity.

VIII. DISCUSSION & CONCLUSION

Our experiments suggest several conclusions that are
relevant for further investigation in model-based reinforcement
learning. First, our results show that model-based reinforce-
ment learning with neural network dynamics models can
achieve results that are competitive not only with Bayesian
nonparametric models such as GPs, but also on par with
model-free algorithms such as PPO and SAC in terms of

Cartpole 7-DOF Pusher

7-DOF Reacher Half-cheetah

D-E
P-E

P-DS
P-MM DE-DS

DE-TS∞
DE-TS1

DE-MMDE-E
PE-E

PE-DS
PE-TS∞

PE-TS1
PE-MM

150

200

Re
w

ar
d

Re
w

ar
d

D-E
P-E

P-DS
P-MM DE-DS

DE-TS∞
DE-TS1

DE-MMDE-E
PE-E

PE-DS
PE-TS∞

PE-TS1
PE-MM

8000

0

4000

Re
w

ar
d

0

-200

-100

D-E
P-E

P-DS
P-MM DE-DS

DE-TS∞
DE-TS1

DE-MMDE-E
PE-E

PE-DS
PE-TS∞

PE-TS1
PE-MM

Re
w

ar
d

D-E
P-E

P-DS
P-MM DE-DS

DE-TS∞
DE-TS1

DE-MMDE-E
PE-E

PE-DS
PE-TS∞

PE-TS1
PE-MM

0

-300

-100

Fig. 4: Final performance for different tasks, models, and
uncertainty propagation techniques. The model choice seems
to be more important than the technique used to propagate the
state/action space. Among the models the ranking in terms
of performance is: PE > P > DE > D.

asymptotic performance, while attaining substantially more
efficient convergence. Although the individual components of
our model-based reinforcement learning algorithms are not
individually new – prior works have suggested both ensem-
bling and outputting Gaussian distribution parameters [11],
as well as the use of MPC for model-based RL [33] – the
particular combination of these components into a model-
based reinforcement learning algorithm is, to our knowledge,
novel, and the results provide a new state-of-the-art for
model-based reinforcement learning algorithms based on
high-capacity parametric models such as neural networks.
The systematic investigation in our experiments was a critical
ingredient in determining the precise combination of these
components that attains the best performance.

Our results indicate that the gap in asymptotic performance
between model-based and model-free reinforcement learning
can, at least in part, be bridged by incorporating uncertainty
estimation into the model learning process. Our experiments
further indicate that both epistemic and aleatoric uncertainty
plays a crucial role in this process. Our analysis considers
model-based algorithm based on dynamics estimation and
planning. A compelling alternative class of methods uses the
model to train a parameterized policy [16], [8], [55]. While the
choice of using the model for planning versus policy learning
is largely orthogonal to the other design choices, a promising
direction for future work is to investigate how policy learning
can be incorporated into our framework to amortize the cost
of planning at test-time. Our initial experiments with policy
learning did not yield an effective algorithm by directly
propagating gradients through our uncertainty-aware models,
though future work could consider alternative methods for
policy learning. Finally, the observation that model-based RL
can match the performance of model-free algorithms suggests
that substantial further investigation of such of methods is
in order, as a potential avenue for effective, sample-efficient,
and practical general-purpose reinforcement learning.



REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[4] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in neural information processing systems (NIPS), pp. 849–
856, 2009.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” J. Mach. Learn. Res., vol. 17, pp. 1334–
1373, Jan. 2016.

[6] C. G. Atkeson and J. C. Santamaría, “A comparison of direct and model-
based reinforcement learning,” in Proceedings of the International
Conference on Robotics and Automation (ICRA), 1997.

[7] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard,
“Gaussian process model based predictive control,” in American Control
Conference, vol. 3, pp. 2214–2219, IEEE, 2004.

[8] M. Deisenroth, D. Fox, and C. Rasmussen, “Gaussian processes for
data-efficient learning in robotics and control,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), vol. 37, no. 2,
pp. 408–423, 2014.

[9] R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth,
“Manifold Gaussian processes for regression,” in International Joint
Conference on Neural Networks (IJCNN), pp. 3338–3345, 2016.

[10] R. Neal, Bayesian learning for neural networks. PhD thesis, University
of Toronto, 1995.

[11] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Neural
Information Processing Systems (NIPS), pp. 6405–6416, 2017.

[12] Y. Gal, R. McAllister, and C. Rasmussen., “Improving PILCO with
Bayesian neural network dynamics models,” 2016.

[13] S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft,
“Learning and policy search in stochastic dynamical systems with
Bayesian neural networks,” ArXiv e-prints, May 2016.

[14] S. Thrun, “Efficient exploration in reinforcement learning,” 1992.
[15] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv preprint arXiv:1801.01290, 2018.

[16] J. Ko, D. J. Klein, D. Fox, and D. Haehnel, “Gaussian processes and
reinforcement learning for identification and control of an autonomous
blimp,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 742–747, IEEE, 2007.

[17] D. Nguyen-Tuong, J. Peters, and M. Seeger, “Local Gaussian process
regression for real time online model learning,” in Neural Information
Processing Systems (NIPS), pp. 1193–1200, 2008.

[18] A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic
predictive control of combustion plants based on Gaussian process
models,” Automatica, vol. 44, no. 6, pp. 1621–1631, 2008.

[19] S. Kamthe and M. P. Deisenroth, “Data-efficient reinforcement learning
with probabilistic model predictive control,” in International Conference
on Artificial Intelligence and Statistics (AISTATS), 2018.

[20] C. E. Rasmussen, M. Kuss, et al., “Gaussian processes in reinforcement
learning.,” in Neural Information Processing Systems (NIPS), vol. 4,
p. 1, 2003.

[21] E. Hernandaz and Y. Arkun, “Neural network modeling and an extended
DMC algorithm to control nonlinear systems,” in 1990 American
Control Conference, pp. 2454–2459, May 1990.

[22] W. T. Miller, R. P. Hewes, F. H. Glanz, and L. G. Kraft, “Real-
time dynamic control of an industrial manipulator using a neural
network-based learning controller,” IEEE Transactions on Robotics
and Automation, vol. 6, pp. 1–9, Feb 1990.

[23] L.-J. Lin, Reinforcement Learning for Robots Using Neural Networks.
PhD thesis, Carnegie Mellon University, 1992.

[24] A. Draeger, S. Engell, and H. Ranke, “Model predictive control using
neural networks,” IEEE Control Systems, vol. 15, pp. 61–66, Oct 1995.

[25] C. Finn, X. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Deep spatial autoencoders for visuomotor learning,” in International
Conference on Robotics and Automation (ICRA), 2016.

[26] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and
S. Levine, “Combining model-based and model-free updates for
trajectory-centric reinforcement learning,” in International Conference
on Machine Learning (ICML), 2017.

[27] A. Baranes and P.-Y. Oudeyer, “Active learning of inverse models
with intrinsically motivated goal exploration in robots,” Robotics and
Autonomous Systems, vol. 61, no. 1, pp. 49–73, 2013.

[28] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation
skills with online dynamics adaptation and neural network priors,”
arXiv preprint, 2015. arXiv:1509.06841.

[29] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,”
in IEEE International Conference on Robotics and Automation (ICRA),
pp. 3223–3230, May 2015.

[30] I. Lenz, R. Knepper, and A. Saxena, “DeepMPC: Learning deep latent
features for model predictive control,” in Robotics Science and Systems
(RSS), 2015.

[31] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” arXiv
preprint, 2016. arXiv:1606.07419.

[32] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic MPC for model-based
reinforcement learning,” in International Conference on Robotics and
Automation (ICRA), 2017.

[33] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” ArXiv e-prints, Aug. 2017.

[34] I. Mordatch, N. Mishra, C. Eppner, and P. Abbeel, “Combining
model-based policy search with online model learning for control
of physical humanoids,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 242–248, May 2016.

[35] D. J. MacKay, “A practical Bayesian framework for backpropagation
networks,” Neural computation, vol. 4, no. 3, pp. 448–472, 1992.

[36] I. Osband, “Risk versus uncertainty in deep learning: Bayes, bootstrap
and the dangers of dropout,” NIPS Workshop on Bayesian Deep
Learning, 2016.

[37] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” arXiv preprint arXiv:1706.04599, 2017.

[38] Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” in Advances in
Neural Information Processing Systems, pp. 3584–3593, 2017.

[39] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped DQN,” in Neural Information Processing Systems
(NIPS), pp. 4026–4034, 2016.

[40] J. M. Hernández-Lobato, Y. Li, M. Rowland, D. Hernández-Lobato,
T. Bui, and R. E. Turner, “Black-box α-divergence minimization,”
2016.

[41] J. C. G. Higuera, D. Meger, and G. Dudek, “Synthesizing neural
network controllers with probabilistic model based reinforcement
learning,” arXiv preprint arXiv:1803.02291, 2018.

[42] R. Bellman, “A Markovian decision process,” Journal of Mathematics
and Mechanics, pp. 679–684, 1957.

[43] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep Q-
learning with model-based acceleration,” in International Conference
on Machine Learning (ICML), pp. 2829–2838, 2016.

[44] P. Abbeel, M. Quigley, and A. Y. Ng, “Using inaccurate models
in reinforcement learning,” in International Conference on Machine
Learning (ICML), pp. 1–8, 2006.

[45] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” arXiv preprint arXiv:1505.05424, 2015.

[46] J. M. Hernández-Lobato and R. Adams, “Probabilistic backpropagation
for scalable learning of Bayesian neural networks,” in International
Conference on Machine Learning, pp. 1861–1869, 2015.

[47] B. Efron and R. Tibshirani, An introduction to the bootstrap. CRC
press, 1994.

[48] E. F. Camacho and C. B. Alba, Model predictive control. Springer
Science & Business Media, 2013.

[49] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer, “The cross-
entropy method for optimization,” in Handbook of statistics, vol. 31,
pp. 35–59, Elsevier, 2013.

[50] A. Girard, C. E. Rasmussen, J. Quinonero-Candela, R. Murray-Smith,
O. Winther, and J. Larsen, “Multiple-step ahead prediction for non
linear dynamic systems–a Gaussian process treatment with propagation
of the uncertainty,” Neural Information Processing Systems (NIPS),
vol. 15, pp. 529–536, 2002.

[51] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Rasmussen,
“Propagation of uncertainty in Bayesian kernel models—application to

http://arxiv.org/abs/1509.06841
http://arxiv.org/abs/1606.07419


multiple-step ahead forecasting,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. 2, pp. 701–704, April
2003.

[52] A. G. Kupcsik, M. P. Deisenroth, J. Peters, G. Neumann, et al., “Data-
efficient generalization of robot skills with contextual policy search,”
in Proceedings of the 27th AAAI Conference on Artificial Intelligence,
pp. 1401–1407, 2013.

[53] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Openai baselines.” https://
github.com/openai/baselines, 2017.

[54] S. Kamthe and M. P. Deisenroth, “Data-efficient reinforcement learning
with probabilistic model predictive control,” CoRR, vol. abs/1706.06491,
2017.

[55] R. McAllister and C. E. Rasmussen, “Data-efficient reinforcement
learning in continuous state-action Gaussian-POMDPs,” in Neural
Information Processing Systems (NIPS), pp. 2037–2046, 2017.

https://github.com/openai/baselines
https://github.com/openai/baselines

	Introduction
	Related work
	Model-based reinforcement learning
	Uncertainty-aware neural network dynamics models
	Planning and control with learned dynamics
	Our state propagation method: trajectory sampling (TS)
	Baseline state propagation methods for comparison

	Algorithm summary
	Experimental results
	Comparisons to prior reinforcement learning algorithms
	Analyzing dynamics modeling and uncertainty propagation

	Discussion & conclusion
	References

