
Discontinuity-Sensitive Optimal Trajectory Learning by Mixture of
Experts

Gao Tang1 and Kris Hauser2

Abstract— Many robotic tasks, ranging from model predic-
tive control to reinforcement learning, may be characterized
as solving a parametric optimization problem where the op-
timal solutions are function of problem parameters. However,
nonconvexity, discrete homotopy classes, and control switching
cause discontinuity in the parameter-solution mapping, thus
making learning difficult for traditional continuous function
approximators such as neural networks. This paper proposes
a discontinuity-sensitive approach to learn optimal trajecto-
ries with high accuracy. A Mixture of Experts (MoE) model
composed of a classifier and several regressors is proposed.
The optimal trajectories to sampled problem parameters are
clustered such that in each cluster the trajectories are con-
tinuous function of problem parameters. Numerical examples
on benchmark problems show that training the classifier
and regressors individually outperforms coupled training of
MoE. Compared with either supervised learning with neural
network or deep reinforcement learning, this approach achieves
dramatic improvements in the reliability of trajectory tracking.

I. INTRODUCTION

Nonlinear Optimal Control Problems (OCPs) are critical
to achieve high performance in robotics applications such
as model predictive control [1] and kinodynamic motion
planning [2]. There is intense interest in using learning
to obtain approximations of optimal policies, either using
supervised learning [4], [7] or deep reinforcement learning
(DRL) [8]. In this paper, we highlight the problem that
function approximators such as Standard Neural Networks
(SNN) perform poorly near discontinuities that are prevalent
in many nonlinear OCPs. Fig. 1 shows the results of using
SNN to learn a pendulum swing up task from precomputed
optimal trajectories. The optimal trajectories are calculated
by solving optimal control problems from different initial
states (angle and angular velocity) to swing up state. The
optimal trajectories have three possible goal states due to
periodicity of angles so the parameter-solution mapping is
discontinuous and has three homotopy classes. Near the
region of homotopy class switching, SNN predicts a final
state that interpolates between two goal states, as shown in
Fig. 1b. As a result, such a prediction cannot be used for
designing trajectory tracking controller.

This paper addresses the discontinuity of parameter-
solution mapping by modifying the Mixture of Experts

*This work was not supported by any organization
1Gao Tang is with Department of Mechanical Engineering and

Material Science, Duke University, Durham, NC 27708, USA
gao.tang@duke.edu

2Kris Hauser with the Department of Electrical and Computer
Engineering, Duke University, Durham, NC 27708, USA
kris.hauser@duke.edu

2 0 2 4 6 8 10

2

1

0

1

2

(a) Samples of data

4 6 8
θ

0.0

0.5

1.0

1.5

2.0

2.5

ω

Optimal

Prediction

(b) SNN Prediction

2 0 2 4 6 8 10

2

1

0

1

2

(c) Samples of clustered data

4 6 8
θ

0.0

0.5

1.0

1.5

2.0

2.5

ω

Optimal

Prediction

(d) MoE Prediction

Fig. 1: Illustration of dataset and prediction of a selected state
from SNN and MoE for the pendulum swing up task. (a) samples
of optimal swing up trajectories from different initial states. The red
circles are swing up states. (b) prediction of a selected state by SNN
with large error. (c) samples of clustered optimal trajectories where
each color denotes one cluster. Trajectories are clustered according
to final angle. (d) prediction by MoE to the same state as (b).

(MoE) model [3], [5], [12]. An MoE model has a classi-
fier (gating network) to select one out of many regressors
(experts) to make the prediction. We differentiate from [3],
[5], [12] by using the prediction from one regressor instead
of weighted average of all regressors. The training data is
clustered into continuous regions such that each regressor
learns a continuous function, thus avoiding the problem faced
by SNN. As shown in Fig. 1d, the prediction does not average
two nearby homotopy classes.

Training of MoE has been done by backpropagation [12]
and expectation maximization [5]. In this paper, backprop-
agation is used to train the classifier and regressors indi-
vidually instead of coupledly. In fact, coupled training does
decrease regression error, but it leads to lower task success
rate. Experiments on benchmark underactuated control prob-
lems demonstrate that suitably trained MoE models can learn
near-optimal trajectories suitable for trajectory tracking with
remarkably high success rates (99.5+%), while SNN and
DRL suffer from the discontinuity of the parameter-solution
mapping.

Our approach is fundamentally different from imitation



regressor 1 regressor r

x x

...

x
classifier

y1 yr

y

Fig. 2: Illustration of MoE. The prediction is made by one
out of r regressors selected by the classifier.

learning [10] which learns the policy of the expert. Our
approach directly learns the optimal trajectory and relies on
tracking algorithm for stability guarantee. Besides, if the
test set has the same distribution with training set, there
is no need to recollect expert’s trajectory. Admittedly, our
approach requires we know precisely the system dynamics.
Our approach is also different from reinforcement learning
[8] since it is supervised learning and has better sample
efficiency. Besides, it directly learns the trajectory other than
policy.

II. MIXTURE OF EXPERTS

The MoE model is composed of a classifier and r regres-
sors, as shown in Fig. 2. We denote P(ppp,wc) ∈ Rr as the
output from the classifier and {yi(ppp,wi)}r

i=1 as the outputs
from each regressor where ppp is problem parameter and wc,wi
are neural network weights. The prediction of MoE is thus

z(ppp) = Σ
n
i=1Pi(ppp,wc)yi(ppp,wi) (1)

The output P from the classifier can be the output from
a softmax layer [3] which results in a weighted sum of the
prediction from all regressors. Alternatively, we calculate P
by an argmax layer which results in vector of zeros except
for one entry, essentially selecting one among all regressors.
The target is to find wc and {wi}r

i=1 in order to miminize

L = Eppp∼Pdata loss(z(ppp),z?(ppp)) (2)

where Pdata is a distribution over problem parameters.

III. HOW TO TRAIN MOE–STUDY ON SIMPLE TASK

We study a simple pendulum swing up task from different
initial states. The pendulum has two states–angle and angular
velocity; and one control–the moment. It has to reach a
straight up state where the angle is (2k + 1)π,k ∈ Z. For
this problem, the goal is to control the pendulum to straight
up state from arbitrary state with certain cost function. The
function to be learned maps from system state (angle and
angular velocity, in R2) to an optimal trajectory which is
a collection of time stamped state and control variables, in
R75. The optimal trajectory contains information of optimal
time and control to reach the goal, and the system states

under this control. The initial angle and angular velocity are
sampled on a uniform grid of 1281 points. We compare on
two metrics: 1) trajectory regression error and 2) task success
rate by tracking the predicted trajectory, denoted as rollout
success rate. The following variations are considered:

1) SNN vs MoE,
2) Coupled training (random initialization) against indi-

vidual training with k-Means clustering, and against
clustering by expert knowledge, denoted as custom
clustering, and

3) Retraining after training individually vs no retraining.
The SNN is chosen as fully-connected multi-layer percep-

tron (MLP) of size (2, 300, 75) where each number denotes
size of each layer (from input layer to output layer). For
MoE, the classifier is of size (2, 50, r) and the r regressors are
all of size (2, 20, 75). Custom MoE and random-weight MoE
use 3 experts. The custom clustering divides the data into 3
clusters based on the three possible final angles. We also
use k-Means with 3, 4, and 10 clusters solely on trajectories
with the same design of network size to study the effect of
cluster numbers. We note that custom clustering differs from
k-Means with 3 clusters.

Fig. 3.a plots the prediction error on θ f and Fig. 3.b plots
the state error after trajectory tracking. The regression error
on the validation set, denoted as validation error and rollout
success rate for each model are also listed in Tab. I.

Row 1 shows that SNN has difficulty in making predic-
tions in regions near the discontinuity, averaging between
both sides. MoE does also make inaccurate prediction, but
these are caused by misclassification and the prediction is
a local optimal trajectory belonging to another homotopy
class. Hence, prediction from misclassification still reaches
the vertical position as desired, since the difference in θ f
is 2π . MoE trained from random initialization makes better
prediction than SNN, but is not very successful at trajectory
tracking. This indicates that training MoE by simply mini-
mizing regression error is unable to guide the classifier to
the appropriate clusters.

Row 2 tests MoE clustered by k-Means with various
cluster sizes. k = 3 shows the results when appropriate
clusters are not found by k-Means. k = 4 and k = 10 clusters
finds the discontinuity successfully, and the resulting MoE
achieves high success rate. Although experts knowledge
indicates existence of at least three clusters, the results with
higher number of clusters shows using more than sufficient
clusters does not degrade the performance.

Row 3 shows various choices of retraining after pretraining
MoE with custom clustering. In all cases this approach de-
creases regression error but also rollout success rate. In (vii)
argmax is used following the output layer of the classifier to
give binary outputs. The classifier has no gradient to update
itself so only the regressors are updated. Due to classification
error, the regressors will be trained with trajectories from
other clusters so its prediction tends toward the average.
In (vii) and (ix) we use softmax with different ε . (softmax
function is performed to the output layer after dividing ε .)
In these cases, the classifier is updated but the regressors



2

0

2
SNN MoE Custom MoE Rand

2

0

2
k-means-3 k-means-4 k-means-10

0.0 2.5 5.0
2

0

2
Retrain Argmax

0.0 2.5 5.0

Softmax 1.0

0.0 2.5 5.0

Softmax 0.1

1

0

1

2

3

4

5

6

7

(a) Prediction error of θ f

2

0

2
SNN MoE Custom MoE Rand

2

0

2
k-means-3 k-means-4 k-means-10

0.0 2.5 5.0
2

0

2
Retrain Argmax

0.0 2.5 5.0

Softmax 1.0

0.0 2.5 5.0

Softmax 0.1

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) State error after trajectory tracking

Fig. 3: Comparing several models for learning the pendulum swing-up task.

predict towards the average. As shown in Tab. I, retraining
does decrease the prediction error at the cost of lower rollout
success rate.

These experiments suggest that proper clustering is im-
portant for MoE training. Moreover, rollout success is a
better metric to use in practice, while regression error can be
misleading. Due to misclassifications, lower regression error
can be achieved by averaging at discontinuities, but this leads
to severe failures. We also observe that coupled retraining is
detrimental to performance. This is because the imperfect
classification causes the individual regressors to be provided
with discontinuous training data, again leading to averaging
artifacts. In order to achieve high rollout success, the MoE
prediction cannot be some combination of predictions from
several regressors and each regressor cannot be trained using
data from different clusters.

IV. COMPARISON WITH DRL–STUDY ON VEHICLE TASK

We apply MoE on a ground vehicle task where a vehicle
has 4 states–[x,y,θ ,v] of planar coordinates, orientation and
velocity and 2 controls–[uθ ,uv] of steering and accelerating.

ẋ = vsinθ , ẏ = vcosθ , θ̇ = uθ v, v̇ = uv (3)

The task is to drive the vehicle from any initial states within
some range to the origin with zero velocity and orientation.
The cost function is a weighted sum of time and control
energy.

For MoE, we collect 120,009 optimal trajectories by ran-
domly sampling initial states and solving the corresponding
trajectory optimization problem. In order to apply MoE, 6
clusters of trajectories are used corresponding to 3 possible
final angles and two velocity profile (going forward or
backward). Existence of 6 clusters can be found by either
manifold embedding like UMAP [9] or principle compo-
nent analysis. Defining success as controlling the vehicle
with final state error within 0.5, the success rate is 99.8%
(9,975/10,000) on a validation set, as shown in Fig. 5.

We apply open-source PyTorch implementation [6] of
Proximal Policy Approximation (PPO) [11], a state-of-the-art
DRL method on this task. In order to have fair comparison,
we let PPO be trained with 3,600,000 steps which surpass the
total states seen by MoE (each trajectory has 20 states) by
50%. We use a reward function that penalizes state, control,
and time with additional rewards encouraging the state close
to the goal. The learning curve is shown in Fig. 4 and we
note that successful policies should have positive rewards. It
shows PPO is unable to find a universal policy that applies
to all the states, at least within the same number of states
used in training. Policy rollout on the 10000 initial states
from validation set gets four success out of 10000 random
initial states.

We argue the failure of PPO is not caused by the choice
of reward function but the inability of SNN to learn the
discontinuous policy as MoE does. To demonstrate so, we
modify the sampling region of initial states and validate
the policy on samples of 200 initial states. The region of
initial states that PPO fails to solve while MoE achieves high
success rate is [−10,−10,−π,−3.1] to [10,10,π,3.1]. In the
first experiment, we sample initial states within [5,5,0,0]
and [10,10,0,0]. The policy converges in about 200,000
steps and achieves 200/200 success. Next we sample initial
states within [0,5,0,0] and [10,10,0,0] which doubles the
sampling region of the first experiment. PPO learns a policy
that achieves 161/200 success, which has lower success
rate. Finally we sample initial states within [−10,5,0,0]
to [10,10,0,0] which further doubles the sampling region.
The policy learned by PPO only achieves 19/200 success.
The success of experiment one shows the reward function is
appropriate for PPO. However, next two experiments shows
PPO is unable to learn a policy expressed by SNN as problem
complexity increases.

A summary of rollout results are shown in Fig. 5. This
task shows deep RL has difficulty in problems where optimal
policy is indeed discontinuous. However, MoE is capable of



TABLE I: Comparison of prediction error and rollout success rate on the pendulum problem

Model SNN MoE
Clustering — Custom Rand. k-Means-3 k-Means-4 k-Means-10 Custom Custom Custom
Retrain — — — — — — argmax softmax 1.0 softmax 0.1

Validation error 0.046 0.030 0.035 0.039 0.029 0.051 0.027 0.028 0.026
Success (out of 1,000) 717 998 829 970 1,000 1,000 941 896 969

handling such discontinuity. Besides, we also test deep RL
on a simplified obstacle avoidance problem, a feasible policy
is also difficult to be obtained even with extensive trial of
reward shaping.

Fig. 4: Learning curve from PPO on the vehicle problem

V. CONCLUSION

In this paper we demonstrate that MoE is capable of
handling discontinuity in parameter-solution mapping while
SNN and DRL both have difficulty in problems with dis-
continuity. It is important to train MoE individually with
the correct clusters, and curiously, coupled training of the
regressors and classifier tends to be detrimental to tracking
performance. We also argue that test error is not a good
metric to judge learning models, but rather rollout success
rate under trajectory tracking control is preferable.

Future work includes developing more sophisticated clus-
tering algorithms that automatically find the best partition
strategy. Applying MoE to problems in higher dimensionality
is another direction to explore.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit
solution of model predictive control via multiparametric quadratic
programming,” in Proc. American Control Conf., vol. 1–6, 2000, pp.
872 – 876.

[2] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM (JACM), vol. 40, no. 5, pp. 1048–1066,
1993.

[3] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural computation, vol. 3, no. 1, pp. 79–
87, 1991.

[4] N. Jetchev and M. Toussaint, “Fast motion planning from experi-
ence: trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, no. 1-2, pp. 111–127, Jan. 2013.

1 2 3 4
Problem Difficulty

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

R
at

e

[5, 5, 0, 0]-
[10, 10, 0, 0]

[0, 5, 0, 0]-
[10, 10, 0, 0]

[−10, 5, 0, 0]-
[10, 10, 0, 0]

[−10,−10,−π,−3.1]-
[10, 10, π, 3.1]

MoE

PPO

Fig. 5: Rollout success rate on vehicle problems with dif-
ferent difficulty. As initial states are sampled in increasingly
larger region, PPO achieves lower success rate to complete
failure. MoE manages to achieve high success rate even for
the largest sampling region.

[5] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and
the EM algorithm,” Neural computation, vol. 6, no. 2, pp. 181–214,
1994.

[6] I. Kostrikov, “Pytorch implementations of reinforcement learning al-
gorithms,” https://github.com/ikostrikov/pytorch-a2c-ppo-acktr, 2018.

[7] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters, “Trajectory planning for optimal robot catching in real-time,”
in 2011 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 3719–3726.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[9] L. McInnes and J. Healy, “UMAP: Uniform manifold approx-
imation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[10] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[12] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr

	Introduction
	Mixture of Experts
	How to Train MOE–Study on Simple Task
	Comparison with DRL–Study on Vehicle Task
	Conclusion
	References

