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Abstract— In this work an on-line, dynamic foothold correc-
tion strategy based on visual feedback for legged robots is
presented. Images representing terrain surfaces in the vicinity
of a foothold are evaluated. This is done off-line based on terrain
roughness and the robot’s morphology to select the best possible
foothold. We train a terrain classifier based on a Convolutional
Neural Network (CNN) using the pairs of terrain images and
selected footholds. We evaluate the strategy on the quadruped
robot HyQ while traversing challenging terrain.

I. INTRODUCTION

Mobile legged robots are able to traverse rough and
unstructured terrain in a robust fashion [1], [2], [3], [4], [5],
[6], [7], [8]. However, precise foothold placement and fast
reactions are often necessary to avoid motions and postures
that may result in failure, such as collisions, slippage or
falls during dynamic locomotion. In this work, an on-line,
dynamic foothold correction strategy based on visual feed-
back for legged robots is presented. We implement a terrain
classifier based on a Convolutional Neural Network (CNN),
that maps images of the terrain to foothold corrections.

We test the strategy on the quadruped robot HyQ while
traversing challenging terrain. We based our motion gen-
eration on the Reactive Controller Framework (RCF) [1].
Herein, the feet trajectories are computed periodically based
on synchronized Central Pattern Generators (CPGs). We
apply the correction computed by the CNN classifier on top
of the predefined trajectory, in a continuous fashion during
swing phase for each of the legs.

The main contributions of this work are: 1) a set of heuris-
tic criteria that considers the surface and the robot kine-
matics to select the best foothold; 2) a foothold correction
strategy that is executed while performing fast gait motions,
allowing the robot to cope with rough terrain and 3) the
use of a low-dimensional CNN that is more computationally
efficient with respect to the continuous evaluation of the
heuristics used for training.

II. APPROACH

In this work, we aim to create an "intermediate layer"
that links the robustness of the reactive strategies (namely,
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the RCF [1] with the preventive behavior when visual
information is available. Specifically, we propose an on-line
foothold correction, which uses only on-board sensing to be
executed while the robot traverses difficult environments.

Our method extends the work of [9], and it is devised in
three stages: 1) template recollection; 2) heuristic foothold
selection; and 3) CNN training.

To implement our strategy, we first estimate the location of
the next foothold for each leg. In the case of a statically stable
gait (e.g., a crawling gait) the predicted foothold position
only depends on the tracking of the trajectory of the foot. On
the other hand, while executing a trotting gait, the velocity
of the trunk also influences the next landing position of the
feet.

After obtaining a predicted foothold, a heightmap around
the vicinity of the predicted foothold is acquired from
the vision system, to then compute the foothold correction
using the CNN-based corrector. We then apply the necessary
changes in trajectory to execute the corrections. This is done
continuously during swing phase for each of the legs. Being
able to correct a foothold continuously during swing phase
is of key importance. If the robot is perturbed (e.g., by
an external force applied on the trunk) while traversing a
rough scenario, the continuous correction will allow the leg
to change its landing position to a safe foothold, increasing
the robustness capabilities during locomotion.

Template recollection. We collect a series of templates
consisting of images where each pixel represents the height
of a specific point of the terrain (namely, heightmaps). Tem-
plates can be acquired from three main sources: simulation,
experience or specific templates generated artificially. Each
heightmap consists of a grid of 15×15 pixels with a size of
2 cm2 per pixel. Each pixel represents a possible foothold and
the center pixel of the grid is the expected landing position
without correction (nominal foothold). Figure 1 shows an
example of the quadruped robot HyQ collecting maps in
simulation.

Heuristic foothold selection. We initially create a training
set from the collected maps and select the best foothold
based on surface roughness, robot kinematics and default
swing trajectory. Rougher sections of the terrain are avoided
by discarding cells (pixels in the heightmap) that have large
values of standard deviation and mean of the height with
respect to its neighboring cells. Cells that lead to a foot
frontal collision, shin collision or are not reachable according
to the robot leg kinematics are also discarded. Finally, from
the remaining cells, the one that is closest to the nominal



Fig. 1: Simulation of the quadruped robot HyQ collecting
templates while executing a trotting gait. Templates are
represented by the squared areas around future footholds,
where each of the blue spheres is a potential foothold within
the grid.

foothold is deemed as the optimal foothold. Namely, from
the non-discarded cells, the optimal foothold is the one that
yields the smallest 2-norm of the vector directed from the
nominal foothold to itself. Figure 2 shows an example of an
evaluated template.

It is important to take into account that having a drift-free,
accurate map computed on-board is still a very difficult task
for mobile robots. In legged robots, the task becomes more
challenging when executing dynamic gait motions, due to
the influence of constant impacts and higher velocities with
respect to static gaits. This adds a high level of uncertainty
to the computation of the map. In our case, we deal with this
uncertainty by adding a "safety margin" around the evaluated
footholds. This safety margin defines a radius of cells that
have to comply with the previously mentioned criteria around
an evaluated foothold. If any of the surrounding footholds
within this radius does not comply with the criteria, the cur-
rently evaluated foothold is discarded. It is also worth noting,
that if the system faces a scenario that was not considered
when building the training set, unexpected foothold locations
may be computed by the CNN-based corrector, which may
lead to unsafe landing positions.

CNN training. We train a low-dimensional CNN based
on the set generated using the foothold selection heuristics.
A CNN-based foothold corrector was chosen, due to its
proven effectiveness for processing image data [10], [11].
We achieve a gain in computational efficiency with respect
to the continuous evaluation of the aforementioned heuristics,
thanks to the proposed architecture chosen as a trade-off
between speed and accuracy. Figure 3 shows the chosen
architecture.

III. RESULTS

In this section, we present the results corresponding to
the accuracy and effectiveness of the CNN-based foothold
corrector. Also, the results of the implementation of the

0

15

5

10

10

z

15

y

20

25
20

25

5

x

15
10

5
0 0

Fig. 2: Example of an evaluated terrain template. Red circles
represent the set of available safe footholds, the blue circle
represents the best foothold among the set of safe footholds
(i.e., the closest to the center of the grid). The lower and
upper limb of the leg are reprensented by the black solid
lines and the white circles represent the location of the joints.
The foot follows the trajectory indicated by the solid green
line.

foothold correction strategy are presented.
CNN design and evaluation. Based on the heuristics we

generated 12687 examples. The examples were both created
artificially (i.e., defining the height values of each element of
the 15×15 matrix) and through simulation. The set includes
bars, gaps, blocks and stairs, of various heights and at
different orientations. Half of the examples are used for
training and the other half for testing. We define three types
of footholds: an optimal foothold corresponds to the best
foothold according to the heuristics; safe footholds are the
ones that are not discarded by the heuristics but are further
away from the nominal foothold than the optimal; unsafe
footholds are the ones discarded by the heuristics. The data
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Fig. 3: Architecture of the trained CNN used to map terrain
templates to foothold corrections.
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Fig. 4: Test scenario composed of a pallet with 15 cm height and 90 cm large, followed by a 15 cm height and 30 cm large
wooden beam, separated by a 10 cm gap. The dashed lines correspond to the foot trajectories that are corrected by the
vision-based feedback, during 0.5 m/s trotting gait: left-front (green line), right-front (blue line), left-hind (black line) and
right-hind (yellow line).

was split equally for training and testing. After training, the
CNN-based foothold corrector was tested, achieving approx-
imately 85% of perfect prediction (i.e, choosing the optimal
foothold). It is worth noting that even if the optimal foothold
was not always chosen by the CNN, approximately 99%
of the footholds coming from the corrector corresponded to
safe footholds according to the heuristics based on surface
evaluation and robot kinematics.

To assess the computational gain of our method, we
use the number of clock tick counts divided by the clock
frequency of the processor. We compare the time taken by
both the full-blown heuristics and the CNN-based foothold
corrector. In the case of the full blown heuristics, the time
taken to evaluate one template ranges from 0.1 ms to 20 ms.
On the other hand, the CNN-based foothold corrector takes
between 0.072 ms and 0.1 ms. Therefore, the CNN-based
predictor is 1.5 to 200 times faster than the computation
of the full-blown heuristics. Furthermore, the robot receives
control commands at an update rate of 4 ms. Hence, we are
able to send foothold corrections continuously at any given
time during swing phase without compromising the robot
stability due to real-time constraints.

Simulation results. Figure 4 depicts the details of a
simulation scenario where it is possible to see the heightmap
computed by the perception system and the resulting foot
trajectories while the HyQ robot is trotting using the RCF
[1]. To build the map, we use an RGB-D sensor located
at the front of the robot and generate a local map using
the Grid Map library from [12]. The map is built as the
robot moves, keeping the past information collected from the

vision sensor and placing the map based on the robot state
estimator [13]. For this task, the robot is asked to trot at a
constant forward velocity of 0.5 m/s. This task was chosen
because it is particularly difficult for blind locomotion, since
it may lead to "deadlocks" if one of the legs falls into the
gap.

Paying close attention to the footprints (dashed lines), it
is possible to see the effect of the foothold corrections on
the nominal foot trajectories. Examples of the changes of
trajectory triggered by the foothold corrections are:

• The correction labeled as number 1 shows two correc-
tions, one corresponding to the right front leg (blue
line) and one associated with the right hind leg (yellow
line). In the case of the right front leg, the leg changes
its nominal foothold avoiding a foot frontal collision
with the pallet. Regarding the right hind leg, it also
changes its foothold avoiding both foot frontal and shin
collisions.

• Correction number 2 shows a pair of corrections for the
same legs as correction number 1. In this case, both legs
decide to change footholds before their nominal landing
positions. This prevents the situation corresponding to
the robot stepping close to the edge (avoiding slippage
due to uncertainty in the map) and into the gap (avoiding
shin collision).

• In correction number 3, the right front leg takes a shorter
step, instead of going up to the nominal landing position
(which is outside of the wooden beam). This helps to
avoid a shin collision due to its proximity to the edge
of the wooden beam. This is similar to the correction
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Fig. 5: Plot depicting the trunk height of the robot during
multiple trials of the gap crossing scenario simulation at
0.5 m/s. Red lines indicate the trials without visual reaction
activated, while blue lines indicate the trials where the visual
reaction was active.

executed by the left front leg (green line), labeled with
number 5.

• Correction labeled as 4, shows how the left hind leg
(black line) takes a shorter step before the pallet avoid-
ing shin collision.

Thanks to the corrections, the robot is able to accomplish
the task without performing motions that lead to an unsafe
situation. A similar trial to the one shown in Figure 4 can
be seen in the associated video 1.

Figure 5 shows a series of trials of the gap crossing task
using the RCF with (blue lines) and without (red lines) visual
corrections, in order to test the repeatability of the strategy.
It can be noted that when visual feedback is provided to the
robot, the task is completed successfully, contrary to the case
when no visual corrections are executed.

IV. CONCLUSIONS

We have presented a novel strategy for on-line foothold
correction based on a Deep Convolutional Neural Network
from visual feedback. The simulation results showed that
the robot was able to traverse a difficult scenario, avoiding
undesired motion trajectories that may lead to harmful situa-
tions (e.g., slippage, collisions or falls). As future work, we
will test experimentally our visual reaction strategy on the
HyQ robot while performing both static and dynamic gaits.
Furthermore, we aim to show how the vision-based reaction
can aid to keep the stability when the robot is subject to
disturbances on the trunk.
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