
Provable Infinite-Horizon Real-Time Planning for Repetitive Tasks

Fahad Islam, Oren Salzman and Maxim Likhachev
The Robotics Institute, Carnegie Mellon University
{fi,osalzman}@andrew.cmu.edu, maxim@cs.cmu.edu

Abstract— In manufacturing, robots often have to perform
highly-repetitive manipulation tasks in structured environ-
ments. In this work we are interested in the settings where the
tasks are similar, yet not identical (e.g., due to uncertain orien-
tation of objects) and motion planning needs to be extremely
fast. Preprocessing-based approaches prove to be very beneficial
in these settings—they analyze the configuration-space offline
to generate some auxiliary information which can then be
used in the query phase to speedup planning times. Typically,
the tighter the requirement is on query times the larger the
memory footprint will be. In particular, for high-dimensional
spaces, providing real-time planning capabilities is impractical.
Moreover, as far as we are aware of, none of the general-purpose
algorithms come with provable guarantees on the real-time
performance. To this end, we propose a preprocessing-based
method that provides provable bounds on the query time while
incurring only a small amount of memory overhead in the query
phase. We evaluate our method on a 7-DOF robot arm and show
a speedup of over tenfold in query time when compared to the
PRM algorithm while guaranteeing a maximum query time of
less than 4 milliseconds.

I. INTRODUCTION

Consider the problem of a robot picking up objects from
a high-speed conveyor belt and placing them into bins (see
Fig. 1). Similarly, consider a robot given the task of stock
replenishment—moving in a supermarket and loading items
from a cart it carries to half-empty shelves. These problems
are examples of repetitive tasks performed by (possibly
highly articulated) robots in static environments where the
start and goal of each repetitive task is similar, yet not
identical, to previous tasks. Difference in the exact start and
goal position may be due to uncertainty in the environment
(objects placed on different parts of the conveyor belt or in
different orientation) or due to highly-similar tasks (objects
placed in similar positions on a shelf).

As the set of possible start and goal locations may be
large, caching pre-computed paths for all these queries in
advance is unmanageable. Clearly, once a task is presented
to the robot, it can compute a desired path online. However,
this may incur large online planning times that may be unac-
ceptable in many settings. For example, in our conveyor-belt
setting, reducing the planning time immediately corresponds
to faster unloading capabilities. Moreover, if the planner
cannot guarantee to pick items from the conveyor in a timely
manner, the system is required to account for missed items by
e.g., additional conveyor belts that will redirect items back to
the robot—a costly backup in terms of both time and space.
Thus, a natural approach is to preprocess the environment in
an offline phase to allow for fast planning times online.

Fig. 1: Motivating scenario—a robot (PR2) picking up objects from a
conveyor belt.

One way to preprocess the environment is using the
PRM algorithm [4]. Once a a dense roadmap has been pre-
computed, any query can be efficiently answered online by
connecting the source and goal to the roadmap. Query times
can be significantly sped up by further preprocessing the
roadmaps using landmarks [11]. Unfortunately, there is no
guarantee that a query can be connected to the roadmap as
PRM only provides asymptotic guarantees [3]. Furthermore,
this connecting phase requires running a collision-detection
algorithm which is typically considered the computational
bottleneck in many motion-planning algorithms [8].

Recently, Lehner and Albu-Schäffer [9] suggest the repe-
tition roadmap to extend the PRM for the case of multiple
highly-similar scenarios. While their approach exhibits sig-
nificant speedup in computation time, it still suffers from the
previously-mentioned shortcomings.

A complementary approach to aggressively preprocess a
given scenario is by minimizing collision-detection time.
However this requires designing robot-specific circuitry [10]
or limiting the approach to standard manipulators [14].

An alternative approach is to precompute a set of complete
paths into a library and given a query, attempt to match
complete paths from the library to the new query [1], [2].
Unfortunately, this approach also cannot provide any of the
guarantees required by our applications.

Our work bares resemblance to previous work on subgoal
graphs [12], [13] and to real-time planning [5], [6], [7].
However, in the former, the entire configuration space is
preprocessed in order to efficiently answer queries between
any pair of states which deems it applicable only to low-
dimensional spaces. Similarly, in the latter, to provide guar-
antees on planning time the search only looks at a finite
horizon and interleaves planning and execution.

Our key insight is to combine a precomputed library L of
paths between several start and goal configurations together
with a method to connect any start and goal configuration
to a path in L without having to perform collision detection.

This insight allows us to provide provable bounds on the
time to solve motion-planning queries which is in the order
of milliseconds for a seven DOF manipulator.

We evaluate our approach in simulation on the PR2 robot1

(see Fig. 1) and demonstrate a speedup of over tenfold in
query time when compared to the PRM algorithm with a
little memory footprint if 0.2 Mbs and while guaranteeing a
maximal query time of less than 4 milliseconds.

II. ALGORITHM FRAMEWORK

A. Problem Formulation and assumptions
Let X be the configuration space of a robot operating

in a static environment. We are given in advance a start
configuration sstart ∈ X and some goal region G ⊂ X . In
the query phase we are given multiple queries (sstart, sgoal)
where sgoal ∈ G and for each query, we need to compute a
collision-free path connecting sstart to sgoal.

We discretize X into a state lattice S such that any
state s ∈ S is connected to a set of successors via a
mapping Succs: S → 2S and set GS := S ∩ G to be the
states that reside in the goal region. We make the following
assumptions:

A1 GS is a relatively small subset of S. Namely, it is
feasible to exhaustively iterate over all states in GS .
However, storing a path from sstart to each state in GS
is infeasible.

A2 The planner has access to a heuristic function h :
S × S → R which can estimate the distance between
any two states in GS . Moreover the heuristic function
should be weakly-monotonic, meaning that ∀s1, s2 ∈
GS where s1 6= s2 6= sgoal, it holds that,

h(s1, s2) ≥ min
s′1∈Succs(s1)

h(s′1, s2).

Namely, for any distinct pair of states (s1, s2) in GS ,
at least one of s1’s successors (also belonging to GS)
must have a heuristic value less than or equal to its
heuristic value. Note that this assumption does not
imply that G is entirely collision free.

These assumptions allow us to establish strong theoretical
properties regarding the efficiency of our planner. Namely,
that within a known bounded time, we can compute a
collision-free path from sstart to any state in GS . Proofs are
omitted due to lack of space.

B. Key Idea
Our planner comprises of a preprocessing and a query

phase. In the preprocessing phase, GS is decomposed into
two finite sets of (possibly overlapping) subregionsR and R̂.
Subregions in R̂ only contain states that are in collision. Each
subregion Ri ∈ R is a hyper-ball defined using a center
which we refer to as the “attractor state” sattractor

i and a
radius ri. These regions are constructed in such a way that
the following two properties hold

P1 For any goal state sgoal ∈ Ri ∩ GS , a greedy search
with respect to h(s, sattractor

i) over S starting at sgoal
will result in a collision-free path to sattractor

i .

1http://www.willowgarage.com/pages/pr2/overview

G

sattractori

Ri

Frontier states

First state not in Ri

Fig. 2: Visualization of Alg 2. Subregion Ri (green) grown from sattractor
i

in a goal region GS (grey) containing an obstacle (red). Frontier states and
first state not in Ri are depicted by circles and a cross, respectively.

P2 The union of all the subregions completely cover GS .
Namely, ∀s ∈ GS ,∃R ∈ R ∪ R̂ s.t. s ∈ R.

In the preprocessing stage, we precompute a library of
collision-free paths L which includes one path from sstart to
each attractor state. In the query phase, given a query sgoal,
we (i) identify a region Ri such sgoal ∈ Ri (using the pre-
computed radii ri), (ii) run a greedy search towards sattractor

i

by greedily choosing at every point the successor that mini-
mizes h and (iii) append this path with the precomputed path
in L to sstart to obtain the complete plan.

C. Algorithm

1) Preprocessing Phase: The preprocessing phase of our
algorithm, detailed in Alg. 1, takes as input the start state sstart
and the goal region GS and outputs a set of subregions R
and the corresponding library of paths L from each sattractor

i

to sstart.
The algorithm covers GS by iteratively finding a state

s not covered by any region and computing a new region
centered at s. To ensure that GS is complete covered
(property P2) we maintain a set V of valid (collision free)
and a set I of invalid (in collision) states called frontier states
(lines 3 and 4, respectively). We start by initializing V with
some random state in GS and iterate until both V and I are
empty, which will ensure that GS is indeed covered.

At every iteration, we pop a state from V (line 8), and if
there is no region covering it, we add it as a new attractor
state and compute a path πi to sstart (line 11). We then
compute the corresponding region (line 12 and Alg. 2).

As we will see shortly, computing a region corresponds
to a Dijkstra-like search centered at the attractor state. The
search terminates with the region’s radius ri and a list
of frontier states that comprise of the region’s boundary.
The valid and invalid states are then added to V and I ,
respectively (lines 13 and 14).

Once V gets empty the algorithm starts to search for
states which are valid and yet uncovered by growing regions
around the states popped from I (lines 16-20). If a valid
and uncovered state is found, it is added to V and the
algorithm goes back to computing subregions (lines 21-23),
otherwise if I also gets empty, the algorithm terminates and it
is guaranteed that each valid state contained in GS is covered
under at least one subregion.

Reachability Search: The core of our planner lies in the
way we compute the subregions (Alg. 2 and Fig. 2) which

Algorithm 1 Goal Region Preprocessing
Inputs: GS , sstart . goal region and start state
Outputs: R,L . subregions and corresponding paths to sstart

1: procedure PREPROCESSREGION(GS)
2: s← SAMPLEVALIDSTATE(GS)
3: V ← {s} . valid frontier states initialized to a random state
4: I = ∅ . invalid frontier states
5: i← 0 L = ∅ R = ∅ R̂ = ∅

6: while V and I are not empty do
7: while V is not empty do
8: s← V.pop()
9: if @R ∈ R s.t. s ∈ R then . s is not covered

10: sattractor
i ← s

11: πi = PLANPATH(sattractor
i , sstart); L ← L ∪ {πi}

12: (OPEN, ri)← COMPUTEREACHABILITY(sattractor
i)

13: insert Valid(OPEN) in V
14: insert Invalid(OPEN) in I
15: Ri ← (sattractor

i , ri); i← i+ 1 R← R∪ {Ri}

16: while I is not empty do
17: s ← I.pop()
18: if @R ∈ R ∪ R̂ s.t. s ∈ R then . s is not covered
19: (X, r) ← SEARCHVALIDUNCOVEREDSTATES(s)
20: R̂ ← (s, r); R̂ ← R̂ ∪ {R̂} . invalid region
21: if X is not empty then . no valid state found
22: insert X in V
23: break

24: return R,L

we call a “Reachability Search”. The algorithm maintains a
set of reachable states Sreachable for which property P1 holds.
Namely, the greedy successor2 s′ of every reachable state
s ∈ Sreachable is also a reachable state, except for the attractor
state sattractor

i . This will ensure that in the query phase, we can
run a greedy search from any reachable state s ∈ Sreachable
and it will terminate in the attractor state.

The algorithm computes a subregion that covers the max-
imum number of reachable states that can fit into a hyper-
ball defined by h(s, sattractor

i). The search maintains a priority
queue OPEN ordered according to h(s, sattractor

i). Initially, the
predecessors of sattractor

i are inserted in the OPEN (line 3). For
each expanded predecessor, if its valid greedy successor is
in Sreachable, then the predecessor is also labeled as reachable
(lines 10 and 11).

The algorithm terminates when the search pops a state
which is valid but does not have a successor state in Sreachable
(line 12). Intuitively, this corresponds to the condition when
the reachability search exists an obstacle (see Fig. 2). At
termination, all the states within the boundary of radius ri
(excluding the boundary) are reachable.

2) Query Phase: For any query goal state sgoal ∈ GS ,
we find a subregion Ri ∈ R which covers it. Namely, a
region Ri for which h(sgoal, s

attractor
i) < ri. We then run

a greedy search starting from sgoal by iteratively finding
for each state s the successor with the minimum heuristic
h(s, sattractor

i) value until the search reaches sattractor
i . The

traced path is then stitched to the corresponding precomputed
path πi ∈ L. Note that at no point do we need to perform
collision checking in the query phase.

2A state s′ ∈ Succ(s) is said to be a greedy successor according to some
heuristic h(·) if it has the minimal h-value among all successors.

Algorithm 2 Reachability Search
1: procedure COMPUTEREACHABILITY(sattractor

i)
2: Sreachable ← {sattractor

i } . Reachable set
3: OPEN ← {Preds(sattractor

i)} . key: h(s, sattractor
i)

4: CLOSED ← ∅
5: ri ← 0
6: loop
7: s← OPEN.pop()
8: insert s in CLOSED
9: s′g ← argmins′∈Succ(s) h(s

′, sattractor
i) . greedy succesor

10: if s′g ∈ Sreachable and Valid(edge(s,s′g)) then
11: Sreachable ← Sreachable ∪ {s} . s is greedy
12: else if Valid(s) then
13: return ri
14: ri ← h(s, sattractor

i)
15: for each p ∈ Preds(s) do
16: if p /∈ CLOSED then
17: insert p in OPEN with priority h(p, sattractor

i)

PRM (T) PRM (2T) PRM (4T) Our method
Planning time [ms] 20.2 (28.2) 21.8 (34.1) 22.9 (31.9) 0.48 (1.01)
Success rate [%] 92 97 100 100

TABLE I: Experimental results comparing our method with PRM. The table
shows the mean/worst-case planning times and success rates for our method
and for PRM preprocessed with equal, double and quadruple the time that
our method takes in precomputation (T = 984 seconds).

The query time comprises of (i) finding the containing
subregion Ri and (ii) running the greedy search to sattractor

i .
Step (i) requires iterating over all subregions (in the worst
case) which takes O(|R|) steps while step (ii) requires
expanding a number of states which is proportional to ri.
Thus, after the preprocessing stage the maximal query time
can be computed.

III. EVALUATION

We evaluated our algorithm by getting some preliminary
results on the PR2 robot for the single-arm (7 DOF) planning
problem. The task here is to repeatedly pick up objects
from a conveyor belt and put them in a bin. We define the
task-relevant goal region G by bounding the position and
orientation of the end effector.

We compared our approach with the PRM algorithm in
terms of success rate and planning times (see Table I) for
100 uniformly sampled goal states from G. Preprocessing
(Alg. 1) took 984 seconds and returned 1,865 subregions.
For a fair comparision, for PRM the paths from all the nodes
in G to sstart were precomputed. In the query phase if PRM’s
connect operation fails for a given query, we consider it a
failure. We also bootstrap PRM with 20 goal states from G.
Note that the worst-case time for our method shown in these
results (∼1 millisecond) is the empirical one and not the
computed provable time bound which is 4 milliseconds for
this environment.

IV. CONCLUSION

We proposed a preprocessing-based motion planning al-
gorithm that provides provable real-time performance guar-
antees for repetitive tasks and showed preliminary results.
We aim to perform experiments on the hardware with the
conveyor setup to demonstrate the efficiency of our planner
on a real world system. Moreover on the theoretical side, we
aim to provide guarantees on the solution quality.

REFERENCES

[1] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. A robot path
planning framework that learns from experience. In IEEE International
Conference on Robotics and Automation (ICRA), pages 3671–3678,
2012.

[2] Nikolay Jetchev and Marc Toussaint. Fast motion planning from ex-
perience: trajectory prediction for speeding up movement generation.
Autonomous Robots, 34(1-2):111–127, 2013.

[3] Lydia E. Kavraki, Mihail N. Kolountzakis, and Jean-Claude Latombe.
Analysis of probabilistic roadmaps for path planning. IEEE Trans.
Robotics and Automation, 14(1):166–171, 1998.

[4] Lydia E Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H
Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Trans. Robotics and Automa-
tion, 12(4):566–580, 1996.

[5] Sven Koenig and Maxim Likhachev. Real-time adaptive A*. In
International joint conference on Autonomous agents and multiagent
systems, pages 281–288. ACM, 2006.

[6] Sven Koenig and Xiaoxun Sun. Comparing real-time and incremental
heuristic search for real-time situated agents. Autonomous Agents and
Multi-Agent Systems, 18(3):313–341, 2009.

[7] Richard E Korf. Real-time heuristic search. Artificial Intelligence,
42(2-3):189–211, 1990.

[8] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[9] Peter Lehner and Alin Albu-Schaffer. The Repetition Roadmap
for Repetitive Constrained Motion Planning. IEEE Robotics and
Automation Letters, 2018. to appear.

[10] Sean Murray, Will Floyd-Jones, Ying Qi, Daniel J. Sorin, and George
Konidaris. Robot Motion Planning on a Chip. In Robotics: Science
and Systems (RSS), 2016.

[11] Brian Paden, Yannik Nager, and Emilio Frazzoli. Landmark guided
probabilistic roadmap queries. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4828–4834, 2017.

[12] Tansel Uras and Sven Koenig. Feasibility Study: Subgoal Graphs on
State Lattices. In Symposium on Combinatorial Search, SOCS, pages
100–108, 2017.

[13] Tansel Uras and Sven Koenig. Fast Near-Optimal Path Planning on
State Lattices with Subgoal Graphs. In Symposium on Combinatorial
Search, SOCS, pages 106–114, 2018.

[14] Yiming Yang, Wolfgang Merkt, Vladimir Ivan, Zhibin Li, and Sethu
Vijayakumar. HDRM: A Resolution Complete Dynamic Roadmap
for Real-Time Motion Planning in Complex Scenes. IEEE Robotics
and Automation Letters, 3(1):551–558, 2018.

https://ieeexplore.ieee.org/document/6224742/
https://ieeexplore.ieee.org/document/6224742/
https://link.springer.com/article/10.1007/s10514-012-9315-y
https://link.springer.com/article/10.1007/s10514-012-9315-y
https://ieeexplore.ieee.org/document/660866/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=508439
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=508439
https://dl.acm.org/citation.cfm?id=1160682
https://link.springer.com/article/10.1007/s10458-008-9061-x
https://link.springer.com/article/10.1007/s10458-008-9061-x
https://www.sciencedirect.com/science/article/pii/0004370290900544
http://planning.cs.uiuc.edu/
https://ieeexplore.ieee.org/document/8412538/
https://ieeexplore.ieee.org/document/8412538/
http://www.roboticsproceedings.org/rss12/p04.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8206358&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8206358&tag=1
https://aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15808
https://aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15808
https://aaai.org/ocs/index.php/SOCS/SOCS18/paper/view/17956
https://aaai.org/ocs/index.php/SOCS/SOCS18/paper/view/17956
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8110660
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8110660

	Introduction
	Algorithm Framework
	Problem Formulation and assumptions
	Key Idea
	Algorithm
	Preprocessing Phase
	Query Phase

	Evaluation
	Conclusion
	References

