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Abstract— Last-mile delivery systems commonly propose the
use of autonomous robotic vehicles to increase scalability and
efficiency. The economic inefficiency of collecting accurate prior
maps for navigation motivates the use of planning algorithms
that operate in unmapped environments. However, these algo-
rithms typically waste time exploring regions that are unlikely
to contain the delivery destination. Context is key information
about structured environments that could guide exploration to-
ward the unknown goal location, but the abstract idea is difficult
to quantify for use in a planning algorithm. Some approaches
specifically consider contextual relationships between objects,
but would perform poorly in object-sparse environments like
outdoors. Recent deep learning-based approaches consider
context too generally, making them difficult to train. Therefore,
this work proposes a novel formulation of utilizing context for
planning as an image-to-image translation problem, which is
shown to extract terrain context from semantic gridmaps, into a
metric that an exploration-based planner can use. The proposed
framework has the benefit of training on a static dataset instead
of requiring a time-consuming simulator. We demonstrate our
trained algorithm in simulated environments that have similar
structure to real last-mile delivery domains. The robot reaches
its goal 63% faster than with a context-unaware planner.

I. INTRODUCTION

A key topic in robotics is the use of automated robotic
vehicles for first- and last-mile delivery. A standard approach
is to visit and map delivery environments ahead of time, which
enables the use of planning algorithms that guide the robot
toward a specific goal coordinate in the map. However, the
economic inefficiency of collecting and maintaining maps, the
privacy concerns of storing maps of people’s houses, and the
challenges of scalability across a city-wide delivery system are
each important drawbacks of the pre-mapping approach. This
motivates the use of a planning framework that does not need
a prior map. In order to be a viable alternative framework, the
time required for the robot to locate and reach its destination
must remain close to that of a prior-map-based approach.

Consider a robot delivering a package to a new house’s
front door (Fig. 1). Many existing approaches require delivery
destinations to be specified in a format useful to the robot
(e.g. position coordinates, heading/range estimates, target
image), but collecting this data for every destination presents
the same limitations as prior mapping in general. Therefore
the destination should be a high-level concept, like “go to
the front door.” Such a destination is intuitive for a human,
but without actual coordinates, difficult to translate into a
planning objective for a robot. The destination will often
be beyond the robot’s economically-viable sensors’ limited
range and field of view. Therefore, the robot must explore [1],
[2] to find the destination; however, it is well-known that
pure exploration is slow because time is spent exploring areas
unlikely to contain the goal. Therefore, this paper investigates

Aerospace Controls Laboratory, Massachusetts Institute of Technology,
77 Massachusetts Ave., Cambridge, MA, USA. {mfe,jhow}@mit.edu

(a) Oracle’s view (b) Robot’s view (c) Semantic Map

Fig. 1: Robot delivers package to front door. If the robot has no prior
map and does not know where the door is, it must quickly search for its
destination. Context from the onboard camera view (b) can be extracted into
a lower-dimensional semantic map (c), where the white robot can see terrain
within its black FOV.

the problem of efficiently planning beyond the robot’s line-
of-sight by utilizing context within the local vicinity.

Many existing algorithms focus on a single type of context.
Exploration algorithms typically find frontiers in occupancy
gridmaps as a geometric form of context to guide planning [1],
[2]. Object search papers leverage semantic object classifica-
tion to provide context in the form of relationships between
objects, rooms, or places [3]–[11]. Such representations of
context are too specific for environments where the relevant
clues come in a variety of formats. On the other hand, recent
approaches [12]–[19] that use deep learning to directly map
from the current onboard camera image to the optimal action
have the opposite problem: they are too general. Learning to
extract and utilize context in one process requires massive
amounts of task-specific training data (or a photo-realistic
simulator), and significant computation time/resources for
training due to the learning task’s high-dimensionality.

This work proposes a solution to efficiently utilize context
for planning. Scene context is represented in a semantic
map, then a learning algorithm converts context into a search
heuristic that directs a planner toward promising regions in
the map. Semantic gridmaps are sufficiently descriptive to
represent both geometric and semantic context clues, yet
more compact than a time-history of camera images (millions
of pixels), allowing for efficient, context-based learning.
The context utilization problem (determination of promising
regions to visit) is uniquely formulated as an image-to-image
translation task, and solved by a Conditional Generative
Adversarial Network (cGAN) [20] that was previously shown
to be useful for geometric context extraction [21]. By learning
with semantic gridmap inputs instead of camera images,
the planner proposed in this work could be more easily
transferred to the real world without the need for training
in a photo-realistic simulator. Moreover, a standard local
collision avoidance algorithm can operate in conjunction with
this work’s global planning algorithm, making the framework
easily extendable to environments with dynamic obstacles.

The contributions of this work are i) a novel formulation of
utilizing context for planning as an image-to-image translation
problem, which is shown to convert the abstract idea of scene
context into a metric that a planner can use, ii) an algorithm



to efficiently train a cost-to-go estimator on partial semantic
maps of typical environment layouts, which enables a robot
to learn from a static dataset instead of a time-consuming
simulator, and iii) demonstration of a robot reaching its goal
63% faster than a context-unaware algorithm in simulated
environments based on real last-mile delivery domains.

II. RELATED WORK

1) Planning & Exploration: Classical planning algorithms
rely on knowledge of the goal coordinates (A*, RRT) and/or a
prior map (PRMs, potential fields), which are both unavailable
in this problem. Receding-horizon algorithms are ineffi-
cient without an accurate heuristic at the horizon, typically
computed with goal knowledge. Rather than planning to
a destination, the related field of exploration [1], [2] is a
conservative search strategy, and pure exploration algorithms
often estimate information gain of planning options using
geometric context. However, exploration and search objectives
differ, meaning the exploration robot will spend time gaining
information in places that are useless for the search task.

2) Context for Object Search: Leveraging scene context is
therefore fundamental to enable object search that outperforms
pure exploration. Many papers consider a single form of
context. Geometric context (represented in occupancy grids)
is used in [22]–[25], but these works also assume knowledge
of the goal location for planning. Works that address true
object search usually consider semantic object relationships
as a form of context instead. Decision trees and maximum
entropy models can be trained on object-based relationships,
like positions and attributes of common items in grocery
stores [3]. Because object-based methods require substantial
domain-specific background knowledge, some approaches
automate the background data collection process by using
Internet searches [4], [5]. Object-based approaches have
also noted that the spatial relationships between objects are
particularly beneficial for search (e.g. keyboards are often on
desks) [6]–[8], but are not well-suited to represent geometries
like floorplans/terrains. Hierarchical planners improve search
performance via a human-like ability to make assumptions
about object layouts [10], [11]. To summarize, existing uses
of context either focus on relationships between objects or the
environment’s geometry. These approaches are too specific
to represent the combination of various forms context that
are often needed to plan efficiently.

3) Deep Learning for Object Search: Recent works use
deep learning to represent scene context. Several approaches
consider navigation toward a semantic concept (e.g. go to
the kitchen) using only a forward-facing camera. These
algorithms are usually trained end-to-end (image-to-action)
by supervised learning of expert trajectories [12]–[14] or
reinforcement learning in simulators [15]–[19]. Training such
a general input-output relationship is challenging; therefore,
some works divide the learning architecture into a deep
neural network for each sub-task (e.g. mapping, control,
planning) [14], [17], [18].

Still, the format of context in existing, deep learning-
based approaches is too general. The difficulty in learning
how to extract, represent, and use context in a generic
architecture leads to massive computational resource and
time requirements for training. In this work, we reduce the
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Fig. 2: GAN for semantic-to-cost image translation. During training, generator
takes in partial semantic maps (left) and produces cost-to-go maps (middle)
that are supposed to look like the analytical cost-to-go, in order to trick the
discriminator that is trying to determine if an image is real or fake. After
training, the generator alone can be used to translate from semantic maps to
cost-to-go estimates.

dimensionality (and therefore training time) of the learning
problem by first leveraging existing algorithms (semantic
SLAM, image segmentation) to extract and represent context
from images; thus, the learning process is solely focused on
context utilization. A second limitation of systems trained
on simulated camera images, such as existing deep learning-
based approaches, is a lack of transferability to the real world.
Therefore, instead of learning from simulated camera images,
this work’s learned systems operate on semantic gridmaps
which could look identical in the real world or simulation.

4) Reinforcement Learning: Reinforcement learning (RL)
is a commonly proposed approach for this type of prob-
lem [15]–[19], in which experiences are collected in a
simulated environment. However, in this work, the agent’s
actions do not affect the static environment, and the agent’s
observations (partial semantic maps) are easy to compute,
given a map layout and the robot’s position history. RL
is useful when there is a complicated mapping between
observations, actions, and rewards, but is very time-intensive
to train, and is not necessary for this problem.

5) GANs for Context Extraction: This work’s use of
GANs [20], [26], [27] is motivated by experiments that
show GANs can imagine unobserved regions of occupancy
gridmaps, suggesting that they can be trained to extract
significant geometric context in structured environments [21].
However, the focus of that work is on models’ abilities to
encode context, not context utilization for planning.

III. APPROACH

The input to this work’s architecture is a partial semantic
gridmap (from an existing semantic SLAM system), as shown
in Fig. 2. An image-to-image translation model is trained to
estimate the planning cost-to-go given the semantic gridmap.
Then, the estimated cost-to-go is used to inform a frontier-
based exploration planning framework.

A. Training Data
A typical criticism of learning-based systems is the

challenge and cost of acquiring useful training data. This
work has two key features for data generation: recycling
of existing, related data by using a common representation
format, and an automated pipeline to produce (input, output)
training pairs from the common context representation. These
features enable learning of context extraction without the
need of training in a time-consuming environment simulator.

Fortunately, domain-specific data already exists for many
exploration environments (e.g., satellite images of houses,
building floor plans for indoor tasks); however, a robot with
limited sensing would likely use a SLAM algorithm in a
new environment to localize interesting context clues. To
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Fig. 3: Training data creation. A satellite view of a house’s front yard is manually converted to a semantic map (top left), with colors for different
objects/terrain. Dijkstra’s algorithm gives an analytical solution to distance from goal to every point along drivable terrain (bottom left) [28]. This cost-to-go
is represented in grayscale (lighter near the goal), with red pixels assigned to untraversable regions. To simulate partial map observability, dozens of
observation masks (center) are applied to the full images to produce the training set.

accommodate the various typical raw data formats, this work
uses semantic gridmaps as a common representation format.
A set of 41 (25 train, 16 test) semantic maps was manually
created using typical suburban house layouts, but recent
breakthroughs in image segmentation algorithms [29] suggest
semantic map creation could be automated from, for example,
a set of satellite images. Each map yields ∼ 200 training
pairs, due to the various masks applied (explained below),
reducing the number of semantic maps that are needed. An
example semantic map of a suburban front yard is shown in
the top left corner of Fig. 3: red shows the road, blue is the
driveway, magenta is the house, green is grass, and the small
yellow square is the delivery destination (front door).

Algorithm 1 describes the process of automatically gen-
erating training data from a set of semantic maps, S. A
semantic map, S ∈ S, is first separated into traversable
(roads, driveways) and non-traversable (grass, house) regions,
represented as a binary array, Str (Line 4). Then, the shortest
path length between each traversable point in Str and the
goal is computed with Dijkstra’s algorithm [28] (Line 5). The
result, Sc2g , is stored in grayscale (Fig. 3 bottom left: darker
is further from goal). Non-traversable regions are red in Sc2g .

This work assumes the robot starts with no knowledge of a
particular environment’s semantic map; it observes (uncovers)
new areas of the map as it explores the environment. To
approximate the partial maps that the robot will have at each
planning step, full training maps undergo various masks to
occlude certain regions. For some binary observation mask,
M: the full map, S, and full cost-to-go, Sc2g, are masked
with element-wise multiplication as SM = S◦M and SMc2g =
Sc2g ◦M (Lines 7 and 8). The (input, target output) pairs
used to train the image-to-image translator are the set of
(SM ,SMc2g) (Line 9).

B. Image-to-Image Translation

The motivation for using image-to-image translation is
that a) a robot’s sensor data history can be compressed into
an image (semantic gridmap), and b) an estimate of cost-
to-go at every point in the map (thus, an image) enables
efficient use of receding-horizon planning algorithms, given
only a high-level goal (“front door”). Although the task of
learning to predict just the goal location is easier, a cost-to-
go estimate implicitly estimates the goal location and then
provides substantially more information about how to best

Algorithm 1: Automated creation of GAN training data

1 Input: set of semantic maps S
2 Output: set of training image pairs T
3 foreach S ∈ S do
4 Str ← Find traversable regions in S
5 Sc2g ← Compute cost-to-go to goal of all pts in Str
6 foreach M∈M do
7 SMc2g ← Apply observation mask M to Sc2g
8 SM ← Apply observation mask M to S
9 T← {(SM , SM

c2g)} ∪T

reach it. A partial map could be associated with multiple
plausible cost-to-gos (depending on the unobserved parts
of the map), so the generator predicts the most likely cost-
to-go map, with respect to the common structures seen in
training. Learning about common structures is a key insight
that informs goal-directed exploration better than geometric
measures of information gain (e.g. [2], [30]).

The image-to-image translator used in this work is based
on [20], implemented in TensorFlow by [27]. The translator
(generator) is a standard encoder-decoder network with skip
connections between certain encoder and decoder layers
(“U-Net”) [31]. The objective is to supply a 256x256 RGB
image1 (semantic map, S) as input to the encoder, and for the
final layer of the decoder to output a 256x256 RGB image
(estimated cost-to-go map, Ŝc2g).

Standard strategies for training the translator differ in their
loss functions: supervised learning via L2 often leads to blurry
outputs, whereas L1 produces low-frequency outputs [20].
GAN architectures, on the other hand, train a discriminator
to identify whether a given image came from a dataset or
from the generator; the generator is simultaneously trained
to generate images that the discriminator cannot distinguish
from the dataset’s images. As discovered in [20], the GAN
architecture enforces that high-frequency signals (sharp edges)
exist in the generated images, otherwise a simple frequency-
based discriminator would never be tricked. The target
images in this work’s domain are extremely smooth (low
frequency) by definition: neighboring pixels have similar

1Modification of network to accept the domain’s 32×32 semantic maps
performed worse than scaling the grids to 256×256, possibly because fewer
convolutional layers could be used in the encoder-decoder network.



Algorithm 2: DC2G (Deep Cost-to-Go) Planner

1 Input: current partial semantic map S , pose (px, py, θ)
2 Output: action ut

3 Str ← Find traversable cells in S
4 Sr ← Find reachable cells in Str from (px, py) w/ BFS
5 if goal 6∈ Sr then
6 Fr ← Find reachable frontier cells in Sr
7 Ŝc2g ← Query generator network with input S
8 C ← Filter and down-sample Ŝc2g
9 (fx, fy)← Find cell in Fr with max value C

10 ut:∞ ← Backtrack from (fx, fy) to (px, py) w/ BFS

11 else
12 ut:∞ ← Shortest path to goal via BFS

grayscale intensities because, from the planner’s perspective,
they are only 1 step apart in Euclidean distance. Although the
translation results shown in Section IV use a combination of
GAN and L1 loss as recommended in [20], a simple L1 loss
was also able to learn this relatively low-frequency image
translation task.

C. Environment

The custom simulation environment is based on a 32×32-
cell gridworld [32] to approximate a real robotic vehicle
operating in a delivery context. Each grid cell is assigned a
static class (house, driveway, etc.); this terrain information
is useful both as context to find the destination, but also to
enforce the real-world constraint that robots should not drive
across houses’ front lawns. The agent can read the type of any
grid cell within its sensor FOV (to approximate a common
RGB-D sensor: 120◦ horizontal, 8-cell radial range), which
would be done with a terrain classifier on a real robot (e.g.,
[33]). To approximate a SLAM system, the agent remembers
all cells it has seen since the beginning of the episode. At each
step, the agent sends an observation to the planner containing
an image of the agent’s semantic map knowledge, and the
agent’s position and heading. The planner selects one of three
actions: go forward, or turn ±90◦.

We chose to evaluate in a gridworld because it enables the
thorough analysis provided in Section IV, yet is sufficiently
complex to demonstrate the fundamental limitations of a
baseline algorithm. Moreover, the environment and proposed
planning algorithm could be extended to 3D (as in [34]).
To scale to larger domains, a multi-scale approach might
be necessary (as in [18]). Extension to a real-world robot
will involve integration between the proposed algorithm and
state-of-the-art perception and SLAM software [33], [35].

D. Planner

This work’s planner is based on the idea of frontier
exploration [1], where a frontier is defined as a cell in the
map that is observed and traversable, but whose neighbor
has not yet been observed. Given a set of frontier cells,
the key challenge is in choosing which frontier cell to
explore next. Existing algorithms often use geometry (e.g.,
frontier proximity, expected information gain based on frontier
size/layout); we instead use context to select frontier cells
that are expected to lead toward the destination.

The planning algorithm, called Deep Cost-to-Go (DC2G),
is described in Algorithm 2. Given the current partial semantic
map, S , the subset of observed cells that are also traversable
(road/driveway) is Str (Line 3). The subset of cells in Str that
are also reachable, meaning a path exists from the current
position, through observed, traversable cells, is Sr (Line 4).

The planner opts to explore if the goal cell is not yet reach-
able (Line 6). The current partial semantic map, S , is passed
into the image-to-image translator, which produces a 256x256
RGB image of the estimated cost-to-go, Ŝc2g (Line 8). The
raw output from the decoder network is converted to HSV-
space and pixels with high value (not grayscale ⇒ estimated
not traversable) are filtered out. The remaining grayscale
image is scaled down to match the gridmap’s 32×32 size
with a nearest-neighbor interpolation. The value of every grid
cell in the map is assigned to be the saturation of that pixel in
the translated image (high saturation ⇒ “whiter” in grayscale
⇒ closer to goal).

To enforce exploration, only frontier cells, Fr, (reachable,
traversable, and with an unobserved neighbor) are considered
as possible subgoals. The cell in Fr with highest estimated
value is selected as the subgoal (Line 9). Since the graph
of reachable cells was already searched, the shortest path
from the selected frontier cell to the current cell is available
by backtracking through the search tree (Line 10). This
backtracking procedure produces the list of actions, ut:∞
that leads to the selected frontier cell. The first action, ut is
implemented and the agent takes a step, updates its map with
new sensor data, and the sense-plan-act cycle repeats. If the
goal is deemed reachable, exploration halts and the shortest
path to the goal is implemented (Line 12). However, if the
goal has been observed, but a traversable path to it does not
yet exist in the map, exploration continues in the hope of
finding a path to the goal.

The DC2G algorithm as described above requires knowl-
edge of the environment’s dimensions (i.e., 32×32), in order
to produce partial semantic maps with the uncovered regions
in the proper map location. This information might not be
available on a real robot; therefore we evaluated a variant of
our algorithm, DC2G-Rescale, in which the largest square
containing observed cells is up-scaled to the full map size
(32×32), and this up-scaled map is used as the S input to the
generator. Because this variant lacks some information in the
vanilla DC2G algorithm, performance is expected to be worse.
However, in practice, a maximum search area would likely
already be defined relative to the robot’s starting position
(e.g., to ensure operation time less than battery life). This
search boundary could be used as prior knowledge for the
planner, enabling the use of vanilla DC2G.

A key benefit of the DC2G planning algorithm is that it
can be used alongside a local collision avoidance algorithm,
which is critical for domains with dynamic obstacles (e.g.,
pedestrians on sidewalks). This flexibility contrasts end-to-end
learning approaches where collision avoidance either must
be part of the objective during learning (further increasing
training complexity) or must be somehow combined with the
policy in a way that differs from the trained policy.

Moreover, a benefit of map creation during exploration is
the possibility for the algorithm to confidently “give up” if
it fully explored the environment without finding the goal.
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Fig. 4: Trained Generator vs. Truth. Generator output on 6 unseen partial
semantic maps is quite similar to ground truth. Outputs correctly assign red
to untraversable regions, black to unseen regions, and grayscale with intensity
corresponding to distance from goal. Some undesirable features exist, such
as blurring near goal in f). These generated outputs enable planning without
knowledge of the goal’s location.

This idea would be difficult to implement as part of a non-
mapping exploration algorithm, and could address ill-posed
exploration problems that exist in real environments (e.g., if
no path exists to destination).

IV. RESULTS

A. Image-to-Image Translation

Training the cost-to-go estimator took about 2 hours on a
GTX 1060, though this is highly dependent on the number
of training images (6,400). Generated outputs resemble the
analytical cost-to-gos within a few minutes of training, but
images look sharper/more accurate as training time continues.

Fig. 4 shows the generator’s output on 6 partial semantic
maps that were made with worlds and observation masks
that were not seen during training. The similarity to the
ground truth values qualitatively suggests that the generator
successfully learned that: non-traversable regions should be
colored red, unseen areas should be colored black, and cells
in traversable regions should be grayscale with saturation
corresponding to goal proximity. Some undesirable features
exist, like false lightness close to edges. In Fig. 4 c), only
road and grass cells have been observed (very little context);
the output is accordingly inaccurate, with the road on the
middle-left colored much lighter in the output versus the true
target.

In general, measuring the performance of image-to-image
translators is difficult [36]. Common approaches use humans
or pass the output into a segmentation algorithm that was
trained on real images [36]; but, the first approach is not
scalable and the second does not apply here. Unique to this
paper’s domain, for fully-observed maps, ground truth and
generated images can be directly compared, since there is an
analytical solution to each pixel’s target intensity. However, it
is unclear how to compare penalties on undesirable features:
is a too-light pixel worse than a too-dark one? Furthermore,
partially-observed maps lack a ground truth image because
there could be many different map layouts that lead to the
same partial map. An alternative evaluation metric is the
performance of a planning algorithm that uses a particular
generator since this more directly answers the paper’s main
question: how to extract context to improve planning?

It turns out the generators trained with each loss function
(L1 and GAN+L1) produce similar planning performance,

suggesting the discriminator architecture is not necessarily
needed for these low-dimensional environments.

B. Planner Scenario
Next, we tested the proposed DC2G algorithm against

Frontier, a standard algorithm that always plans to the nearest
frontier cell (pure exploration) [1]. Both algorithms start in
the same position in a world that was not seen during training;
several steps are shown in Fig. 5. The top row shows the
partial semantic map at that timestep (observation), the middle
row is the generator’s cost-to-go estimate, and the bottom
shows the agent’s trajectory in the whole, unobservable map.
Both algorithms begin with little context since most of the
map is unobserved. By step 20, DC2G (green box on left)
has found the intersection between road (red) and driveway
(blue): this context causes it to turn up the driveway. By step
51, DC2G has observed the goal cell, so it simply plans the
shortest path to it with BFS, finishing in 59 steps.

Conversely, Frontier (pink box on right) takes much
longer (139 steps) to reach the goal, because it does not
consider terrain context. Although the two algorithms have
similar observations at one point (step 20 of DC2G, step
43 of Frontier), Frontier turns away from the driveway and
continues exploring road regions.

The use of exploration is critical to maintain robustness to
local minima in the cost-to-go estimate. A simpler planning
algorithm, in which a set of motion primitives within the
current FOV are ranked by the lowest estimated cost-to-go,
was observed to often become stuck at local minima. Local
minima in the cost-to-go estimates arise from many sources,
including incomplete context (e.g., only have seen one type of
terrain) and noise in the network approximation. Rather than
try to balance exploration and exploitation by, say, exploiting
until reaching a local minimum, then exploring for some time
period, the DC2G planner explores constantly.

C. Planner Performance
30 trials are run in each test set. The first test set has 6

world layouts: each differs from the training set but maintain
many common structures. In each trial, a world layout and
a random initial position are selected, and each algorithm is
tested on these same conditions. The optimal path is computed
by an oracle with full knowledge of the map ahead of time;
each algorithm’s performance is therefore presented as extra
time to the goal, tegoal = talggoal − toraclegoal ≥ 0, beyond the
oracle’s path.

The results of each algorithm are aggregated in Fig. 6, with
first (most similar to training) test set as the leftmost group.
Vanilla DC2G (green, left) on average takes only 7.8± 7.8
extra steps, whereas the pure frontier exploration (red, right)
takes 75.9± 47.2 extra steps than the oracle. DC2G-Rescale
(dark green, middle), the DC2G variant that lacks knowledge
of the partial map’s location within the true semantic map,
takes 17.1 ± 15.7; it performs slightly worse than DC2G
but still much better than the frontier-based planner. To put
the number of steps in perspective, the oracle averaged a
total path length of 40.0 ± 13.3 steps. Therefore, DC2G’s
trajectories were 63% shorter than Frontier’s.

This result demonstrates a substantial increase in efficiency
by using the DC2G planner’s context-guided exploration in
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Fig. 5: Search experiment with DC2G planner. The top row is the agent’s observed semantic map (generator input); the middle is its current estimate of the
cost-to-go (generator output); the bottom is the trajectory so far. The DC2G agent reaches the goal much faster (59 vs. 139 steps) by using learned context.
At DC2G step 20 and Frontier step 43, the observations are almost identical; yet DC2G chooses to turn up the driveway, whereas Frontier explores the roads.

(a) Examples of cases with varying similarity to the training environment.
Left: very similar; Middle: somewhat similar; Right: very different.

(b) Performance
Fig. 6: Comparison of Planning Algorithms. Three planning algorithms are
tested in three types of environments. For test environments with similar
layouts to the training worlds (leftmost group), DC2G takes near-optimal
paths to the goal, whereas the frontier planner wastes time exploring. DC2G
generalizes to the somewhat similar environments (middle group), but
performance declines as the environment diverges from the training worlds;
the frontier planner is essentially environment agnostic.

structured environments, as opposed to generic exploration.
The frontier-based exploration algorithm spends time explor-
ing regions that are not useful for finding the goal since
its sole objective is to push its frontier forward and lacks
context-awareness.

D. Generalizability
A common criticism of learning-based algorithms is their

lack of ability to generalize to unseen data. This paper
measures the DC2G algorithm’s ability to generalize by
considering performance in various classes of environments,
aggregated in Fig. 6. Above each of the three environment
class groups, an example map is given to convey what is
meant by similarity.

As the test environments diverge from the training set
(middle group), the performance of DC2G (and DC2G-
Rescale) declines: (DC2G: 44.9 ± 28.1, DC2G-Rescale:
50.9±34.2, Frontier: 75.2±52.0 extra steps). This is expected,

since the cost-to-go estimate will be less accurate, and
therefore the learned context is less informative. Importantly,
the DC2G planners still outperform the frontier-based planner
in the middle group. This result suggests the DC2G planner
learned to extract context sufficiently well, such that even in
strange layouts, it could still recognize some context clues
that guide the exploration.

In the extreme case of generalizability, consider the test
set with worlds that do not have anything (except terrain
types) in common with the training set. The performance
is shown in the rightmost group of Fig. 6: the DC2G
planners fail miserably as expected, as many of these worlds
are simply random scribbles. The frontier cell with lowest
estimated cost varies widely each time a new cell is uncovered
since the estimation is mostly noise on untrained inputs.
Therefore, the agent wastes time driving through mapped
regions (uncovering nothing new) from one frontier boundary
of its partial map to another. Interestingly, the frontier-based
planner performs consistently across test cases, indicative of
its total lack of context-awareness.

The overall trend of Fig. 6 demonstrates that DC2G
can provide substantial performance improvement in the
environments that are most similar to its training environments.
In practice, the training environments would be chosen such
that test environments fall in the leftmost category almost all
of the time, with the understanding that even in the occasional
middle category, the algorithm will still perform well.

V. CONCLUSION

This work presented an algorithm for learning to utilize
context in a structured environment in order to inform an
exploration-based planner. The new approach, called Deep
Cost-to-Go (DC2G), represents scene context in a semantic
gridmap, learns to estimate which areas are beneficial to
explore to quickly reach the goal, and then plans toward
promising regions in the map. The efficient training algorithm
requires zero training in simulation: a context extraction model
is trained on a static dataset, and the creation of the dataset
is highly automated. The algorithm outperforms pure frontier
exploration by 63% in structured environments that differ
from the training worlds in specific layout.
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A. Aydemir, P. Jensfelt, C. Gretton, R. Dearden, M. Janicek, et al.,
“Robot task planning and explanation in open and uncertain worlds,”
Artificial Intelligence, vol. 247, pp. 119–150, 2017.

[12] S. Brahmbhatt and J. Hays, “Deepnav: Learning to navigate large
cities,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp.
3087–3096.

[13] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, “Building generalizable agents
with a realistic and rich 3d environment,” CoRR, vol. abs/1801.02209,
2018. [Online]. Available: http://arxiv.org/abs/1801.02209

[14] V. Blukis, N. Brukhim, A. Bennett, R. A. Knepper, and Y. Artzi,
“Following high-level navigation instructions on a simulated quadcopter
with imitation learning,” arXiv preprint arXiv:1806.00047, 2018.

[15] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven Visual Navigation in Indoor Scenes using
Deep Reinforcement Learning,” in IEEE International Conference on
Robotics and Automation, 2017.

[16] Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta, R. Mottaghi,
and A. Farhadi, “Visual semantic planning using deep successor
representations,” arXiv preprint ArXiv:1705.08080, pp. 1–13, 2017.

[17] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox,
and A. Farhadi, “IQA: visual question answering in interactive
environments,” CoRR, vol. abs/1712.03316, 2017. [Online]. Available:
http://arxiv.org/abs/1712.03316

[18] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik,
“Cognitive mapping and planning for visual navigation,” arXiv preprint
arXiv:1702.03920, vol. 3, 2017.

[19] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, “Em-
bodied Question Answering,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[20] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” CVPR, 2017.

[21] A. Pronobis and R. P. Rao, “Learning deep generative spatial models
for mobile robots,” in Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on. IEEE, 2017, pp. 755–762.

[22] C. Richter, J. Ware, and N. Roy, “High-speed autonomous navigation
of unknown environments using learned probabilities of collision,”
in 2014 IEEE International Conference on Robotics and Automation
(ICRA), May 2014, pp. 6114–6121.

[23] C. Richter and N. Roy, “Learning to plan for visibility in navigation
of unknown environments,” in 2016 International Symposium on
Experimental Robotics, D. Kulić, Y. Nakamura, O. Khatib, and
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