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Abstract— We present a neural end-to-end learning approach
for a reach-for-grasp task on an industrial UR5 arm. Our
approach combines the generation of suitable training samples
by classical inverse kinematics (IK) solvers in a simulation
environment in conjunction with real images taken from the
grasping setup. Samples are generated in a safe and reliable way
independent of real robotic hardware. The neural architecture
is based on a pre-trained VGG16 network and trained on our
collected images as input and motor joint values as output.
The approach is evaluated by testing the performance on two
test sets of different complexity levels. Based on our results, we
outline challenges and solutions when combining classical and
neural visuomotor approaches.

I. INTRODUCTION

Reach-for-grasping is a fundamental task in robotics; it
combines the spatial localization of a graspable object from
sensory data and the computation of the inverse kinemat-
ics (IK) to move the end effector into a suitable position
to grasp an object. Neural learning approaches can offer
advantages compared to traditional solutions for grasping:
Object localization and computation of the grasp action
can be learned end-to-end in a neural architecture. Once
trained, the neural network allows robust grasping with fast
and constant computation time. Training a network can be
approached in two ways: Deep reinforcement learning uses
trial and error exploration to gradually improve a policy [1].
While this method is thriving in virtual environments, the
long training times can be problematic for physical robots
[2]. This constraint is overcome by the second approach,
supervised learning, which directly learns from optimally
annotated training samples. However, these samples are not
readily available.

To this end, we present a supervised neural architecture
and an off-line sampling strategy based on prerecorded
images, tag localization and classical inverse kinematics in
a virtual environment to generate suitable training samples.
Samples are annotated independent of the robotic hardware,
saving time and preventing possible damage or wear. The
approach is evaluated on the industrial 6-DoF UR5 robot
arm as it is shown in Figure 1, UR5 reaches for an object
on a table. Our results are compared to a related approach
on a developmental humanoid robot with human-like joint
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Fig. 1. The UR5 robot arm in the experimental setup with an AprilTag-
marked grasp-object. The small picture shows the recreation of the scene
in the Rviz simulation environment. The AprilTag on the object is used to
locate it in the scene. A traditional IK-solver is used to find a suitable joint
configuration for grasping in the simulation to generate training samples.

limits. A critical analysis points to possible challenges when
applying neurocognitive models from a developmental robot
platform to industrial style manipulators.

II. BACKGROUND: GENERATING SAMPLES FOR
(SUPERVISED) NEURAL VISUOMOTOR LEARNING

Reaching for grasp requires to locate the desired object
in a scene, often using visual sensors, and then computing
the inverse kinematics and to move the end-effector into a
grasping position. Deep neural architectures can solve both
tasks in a single processing step, i.e., when feeding an image
of a scene, the network can output a joint configuration that
moves the end effector into a suitable grasping position.

For training such a visuomotor neural architecture, sam-
ples are needed that associate the visual input (an image of
an object in the environment) with the correct joint values
to reach for grasping. These samples can be generated in
various ways: Levine et al. [3] exploit the known forward
kinematics of a secondary robot arm to move an object
through space. While this method does not directly supply
the joint configuration to grasp the object, it enables the
training to take advantage of the full state of the scene
during policy learning. Kerzel and Wermter [4] invert the



grasping task into a placement task that can autonomously
be executed by a humanoid robot in a self-learning cycle and
use the generated samples to train a neural network. This
method, however, relies on an initial manual motor training
of the robot. Hindsight Experience Replay, introduced by
Andrychowicz et al. [5], applies a post hoc manipulation
to random exploration samples during deep reinforcement
learning to turn them into optimal samples.

We extend the state-of-the-art with a novel sampling
method that utilizes a traditional inverse kinematics solver
in a simulation environment to generate correct joint value
annotations for images taken in a real environment. The
samples are used to train the top layers of a pre-trained con-
volutional neural network architecture, which further reduces
training time and increases sample efficiency.

III. METHOD AND EXPERIMENTAL SETUP

In our experimental setup, we use an industrial UR51

arm to reach for a small box on a table. The UR5 has six
rotational degrees of freedom with a working radius of 850
mm. Each joint has a full joint range of [−2π,+2π] radian,
but is further restricted to [−π,+π] in practice. In the case
of fixed end-effector orientation the IK-solver produces 8
different solutions per target in which we reduced it to one
which is the closest to previous one. This approach keeps
the solutions similar to each other and makes the prediction
easier for the network. The target object is a box marked with
an AprilTag for accurate localization, and a ceiling camera
to capture the top surface of the table and the tag easily.

The learning consists of three phases: in the first phase, a
box is placed in various positions on the table and images
are recorded, as shown in figure 1. In the second phase,
the recorded images are annotated with a suitable joint
configuration to grasp the object in the depicted position
using tag-based localization and inverse kinematics in a
virtual environment. In the third phase, the neural network
is trained with the annotated samples.

A. Sample Collection and Annotation

Initially, four thousand images of the grasp-object at 400
different position on the table are collected. Figure 2 shows
the distribution of the object positions in a regular grid. We
use different robotic tools to annotate the collected samples
with a joint configuration suitable for grasping in a safe
and reliable way, independent of real hardware. The setup,
including the robot, the table, and the object to be grasped
were recreated in a MoveIt! [6] planning environment for
collision-aware IK solving. For each collected image, the
exact position of the box was computed using the AprilTag
on the object and a reference tag on the wall. The TracIK
solver for MoveIt! [7] was then used to compute joint
configurations suitable to grasp the object. The final position
for the grasp was added as an annotation to the training
images. For all 4.000 recorded images, a suitable grasp
position was found.

1https://www.universal-robots.com/products/
ur5-robot/

Fig. 2. The arrangement of the two different datasets. Yellow squares
indicate the position of training instances, red squares indicate validation
instances and blue squares represent test instances. The left extrapolation
training set proved to be harder for neural learning than the right interpo-
lation dataset.

B. End-to-End Visuomotor Neural Architecture

Our neural architecture is adapted from Kerzel and
Wermter [4]; it consists of a convolutional part that takes
a raw image as input (224 x 224 pixels), followed by four
dense layers and an output layer for the six joint values.
We evaluate both the use of a randomly initialized stack of
convolution and pooling layers (based a simplified VGG-16
architecture) as well as a pre-trained VGG-16 vision network
[8]. The structure of the pre-trained network is shown in
Figure 3.

Finally, the network is trained with fully annotated samples
consisting of an image, showing the object on the table, and
a suitable joint configuration to grasp the object.

The network is trained with the Adam optimizer at a
learning rate of 10−4. All non-pre-trained layers are ini-
tialized with Glorot uniform; all layers use Rectified Linear
Unit (ReLU) as the activation function. The overall network
architecture was empirically determined and optimized. The
architecture was implemented in Keras [9] with the Tensor-
flow backend [10] using a pre-trained VGG16 network.

IV. RESULTS AND DISCUSSION

To evaluate the sampling method and neural reach-for-
grasp learning, two different training sets were designed.
For the interpolation training set, a split between 60% train,
20% validation and 20% test data was performed, resulting
in neighboring train and test items. In the extrapolation test
set, the training data was selected from the edges of the table,
while validation and test data were selected from the middle
of the table, forcing the neural network to extrapolate from
dissimilar data. Figure 2 illustrates the spatial distribution of
the different datasets.

Figure 4 shows the resulting learning curves (validation
loss) for the two test sets (interpolation and extrapolation)
and the two neural architectures (pre-trained and non-pre-
trained). The curves show the mean squared error for each
joint (in radian) from three repeated training runs. As can be
seen, for both architectures the extrapolation test set yields
higher errors. This can easily be explained by the fact that the
extrapolation of fully unknown positions from a training set
of positions that are clearly different is a very hard task for a
neural network. In contrast, for the interpolation data set, the
network’s ability to generalize from the training data to the
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Fig. 3. Neural architecture. (left) Architecture based on the simplified VGG-16 network. (right) Architecture based on the pre-trained VGG-16 network.
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Fig. 4. Validation loss over 500 training epochs for all four conditions:
interpolation and extrapolation with the non-pre-trained CNN architecture
and the pre-trained VGG16 architecture

closely related validation data leads to a relatively low loss.
As expected, for both training sets the pre-trained networks
converge faster and show a more stable performance with
less variance. The final test errors for all conditions show
a similar distribution as the validation losses. For the pre-
trained, interpolation condition the MSE is 0.078, for the
non-pre-trained-interpolation it is 0.067. The MSE indicates
the error in each joint in radian.

Overall, the method is working as expected but is not on
par with traditional IK and object localization methods and
also falls behind when compared to a related approach on
a developmental humanoid robot [4]. The higher error can
be explained by the typical challenges for neural networks:
The larger joint space of the UR5 robotic arm compared to
the significantly more constrained humanoid robot amplifies
errors of the network in a linear way. These errors, in turn,
can in part be attributed to redundant but inconsistent training
samples in which spatially close or identical positions are
reached for with (vastly) different joint configurations. We
conclude that, avoiding redundant samples and constraining
joint values as much as possible can help to minimize errors
in neural visuomotor learning.

V. CONCLUSION

We have presented a method for off-line generation of
samples for a neural end-to-end learning approach on an
industrial 6-DoF robot arm using established tools from the
robotics community, like state-of-the-art inverse kinematics
solvers and tag-based object localization. We evaluated the
learning results with different neural architectures and could
show that using pre-trained vision components further in-
creases the sample efficiency. Thus, we contribute to the
possibility to apply neural learning methods on robotic
hardware while minimizing physical training times.

We also identify possible challenges when combining
classical robotics methods and neural learning approaches
like the neural network’s sensitivity to redundant solutions.
In future work, we aim to overcome these challenges with
more robust neural visuomotor architectures and improved
sampling strategies.

REFERENCES

[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[2] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in Proceedings of the 2016
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 3406–3413.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[4] M. Kerzel and S. Wermter, “Neural end-to-end self-learning of visuo-
motor skills by environment interaction,” in International Conference
on Artificial Neural Networks (ICANN), 2017 accepted.

[5] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong,
P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba,
“Hindsight experience replay,” CoRR, vol. abs/1707.01495, 2017.
[Online]. Available: http://arxiv.org/abs/1707.01495

[6] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” vol. 19, pp.
18–19, 03 2012.

[7] P. Beeson and B. Ames, “TRAC-IK: An open-source library for
improved solving of generic inverse kinematics,” in Proceedings of the
IEEE RAS Humanoids Conference, Seoul, Korea, November 2015.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[9] F. Chollet et al., “Keras,” https://keras.io, 2015.
[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” arXiv
preprint arXiv:1603.04467, 2016.

http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1409.1556
https://keras.io

	INTRODUCTION
	Background: Generating Samples for (Supervised) Neural Visuomotor Learning
	Method and Experimental Setup
	Sample Collection and Annotation
	End-to-End Visuomotor Neural Architecture

	Results and Discussion
	Conclusion
	References

