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Abstract— Sampling based motion planning algorithms are
widely used due to their effectiveness on problems with large
state spaces by incremental tree growth in conjunction with
uniform, random sampling. The major bottleneck in the per-
formance of such algorithms is the amount of collision checks
performed, which in turns depends on the sampling distribution
itself. In this work, we present a framework to learn an adaptive,
non-stationary sampling distribution which explicitly minimizes
the search effort, given by the amount of collision checks
performed. Our framework models the sequential nature of
the problem by leveraging both the instantaneous search tree
over the robot configuration space, as well as the workspace
environment, by encoding them with a conditional variational
auto-encoder, to learn a stochastic sampling policy. We encode
the workspace environment with a convolutional network,
and the configuration space planning tree with a recurrent
neural network. We introduce an approximate oracle which can
return multiple label samples for a partially solved planning
problem, by forward simulating it. We use an imitation via
iterative supervised learning framework to learn a stochastic
sampling policy. We call this self-supervised imitation of an
oracle generated by forward simulation as self-imitation. We
validate our approach on a 4D kinodynamic helicopter planning
problem with glideslope and curvature constraints, and a 2D
holonomic problem.

I. INTRODUCTION

Sampling based motion planning algorithms are widely

used due to their effectiveness in problems with large state

spaces, via incremental tree growth in conjunction with

uniform, random sampling [1]. Previous work has focused

on their worst case and asymptotic performance guarantees.

However, real life problems are time-constrained, and often

what is needed instead is good finite-time performance [2].

The major bottleneck in the performance of such algorithms

is the amount of collision checks performed, which in

turns depends on the sampling distribution itself. Biasing

the sampling distribution with manually defined stationary

heuristics helps alleviate this to some extent [3, 4]; however

due to the sequential nature of the problem, we expect a

non-stationary, adaptive sampling distribution as the search

tree progresses to perform better intuitively. In this work, we

present a framework to learn such an adaptive distribution

which explicitly minimizes the search effort, given by the

amount of collision checks performed for the feasible path

planning problem.

We formulate the problem as a Markov Decision Process,

where the state space is a concatenation of the workspace
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environment and the planning graph in the configuration

space. The optimal sampling distribution is then a stochastic

policy over the continuous configuration space of the robot,

such that it minimizes the expected number of collision

checks. For sample efficient training, we introduce an ap-

proximate oracle which returns multiple label samples given

a partially solved planning problem, by forward simulating

the problem. Notably, we show that we can improve a single-

query motion planning algorithm, the Rapidly Exploring

Random Trees [5] by forwarding-simulating RRT itself,

akin to the self-supervision paradigm. We use a Conditional

Variational Auto-Encoder (CVAE) [6] to learn this policy

in an imitation learning framework in which we use both

experience replay [7] and dataset aggregation [8]. Our frame-

work is general, and can be applied to other domains to

generate a stochastic oracle by forward simulating environ-

ment dynamics and returning a set of the most promising

actions, and then imitating this oracle in a self-supervised

manner. Hence, the name self-imitation. To imitate the oracle,

our CVAE uses a 2D or 3D Convolutional Neural Network

(CNN) to encode the workspace environment, and an RNN

to encode the instantaneous tree at each time step. Although

in this work, we focus on the feasible path problem by

learning a sampling distributions for RRTs, such a learned

distribution can be wrapped inside any optimal algorithm like

RRT*, Batch Informed Trees (BIT*) or Fast Marching Trees

(FMT*) [9–11].

II. APPROACH

A. Single-query Motion Planning

We start by formally defining the Single-query Motion

Planning (SQMP) framework, as depicted in Alg. 1. Let

W ⊂ R
m (m ∈ 2, 3) be the workspace environment in

which the robot operates. Let C ⊂ R
n be the configuration

space of the robot, and Cobs ⊂ C be the set of invalid

states in collision. The free configuration space is then given

by Cfree = C \ Cobs. Let the start configuration and goal

configurations be given by qstart and qgoal. Initially, the

start configuration as added as the root vertex of the tree,

T (Line 1). Then, a random sample qrand is drawn from

the configuration space (Line 4), and an attempt is made

to add it to T by the Extend function. First, the nearest

node to qrand in T , qnearest is found (Line 10). Then a

local planner given by a Steer function finds a feasible

connection moving from qnearest in the direction of qrand
while respecting the robot’s constraints. If successful, a new

configuration, qnew is added to T , according to a greediness

or growth-factor hyperparameter, ǫ. The previous two steps



are repeated until the goal configuration is reached. Alg 1

essentially defines how RRTs [5] works. Most of the other

single query algorithms are extensions and modifications of

the same, for example including bidirectional search (RRT-

Connect) [12] and optimality by rewiring the tree (RRT*) [9].

B. SQMP as a Markov Decision Process

The problem of biasing the sampling distribution to

minimize the number of expected collision checks can be

interpreted as a sequential decision making problem. The

associated Markov Decision Process (MDP) can be defined

over the intersection of the space of workspace environments

and the space of trees built in the configuration space using

the corresponding planning algorithm.

Formally, at any time step t, the state st ∈ S is given

by the tuple of the workspace environment W (assumed to

be static) and the current planning tree Tt: st = {Tt,W}.

Tt itself is defined by its vertices (nodes) and edge sets:

Tt = {V,E}. Each node’s value is given by vi ∈ Cfree, and

each edge means that there is a feasible connection from

the corresponding parent node to its child node. The action

space A is continuous and is given by the configuration

space itself, C. At any time-step t, the action is given by

a sample: at = qsample ∈ C. A stochastic policy can then

be defined: π(at|st) = π(qsample|{Tt,W}). The transition

dynamics are defined by the Extend function (Line 9,

Alg 1): P (st+1|st, at) = P ({Tt+1,W}|{Tt,W}, qsample).
If a collision free extension is possible while moving from

qnearest to qsample, a qnew is added to Tt (Line 13).

Otherwise, Tt does not change. If qsample ⊂ Cobs, we declare

the action to be invalid and ignore it, moving to the next

iteration (Line 5). It should be noted that one would assign

a high negative reward for such an invalid sample in a

reinforcement learning setting, but in our imitation learning

framework, we ignore negative samples.

Our goal is to find an optimal stochastic sampling pol-

icy π∗, which minimizes the expected number of collision

checks, over a dataset of planning problems with similar

workspaces and the same robot dynamics. We can formalize

this by defining a one-step cost over our MDP, ct(st, at) =
ccollision({Tt,W}, qsample). ccollision is defined as the num-

ber of collision checks performed by the Extend function

while trying to extend qnearest to qnew, both of which are

defined w.r.t the chosen qsample. If a valid qnew is not found

or if the tree does not move to promising directions in the

configuration space, the search effort is essentially wasted,

which is exactly what we want to minimize. The policy can

be then evaluated by the cumulative cost over one episode.

Episodes are ended if goal region is reached qnew ⊂ qgoal,

or the maximum planning time T has elapsed. Note that

even though we use the number of collision checks as the

cost, our formulation is general. One could replace the one

step cost by other metrics, or a combination of thereof. For

instance, another cost worth optimizing is the number of

optimal boundary value problems solved in a kinodynamic

problem by the Steer function [13].

Algorithm 1 Single-query Motion Planning

1: T .init(qstart)
2: done = false

3: while done 6= Reached do
4: qrand 7→Random Config()

5: if qrand ∈ Cobs then
6: continue

7: done = Extend(T , qrand)

8: Return {T ,path(qstart, qgoal) }
9: procedure EXTEND(T , q)

10: qnearest 7→Nearest(q, T )
11: qnew 7→Steer(qnearest, qrand, ǫ)
12: if ObstacleFree(qnearest, qnew) then
13: T .add vertex(qnew)
14: T .add edge({qnearest, qnew})

15: if (qnew = qgoal) then
16: Return Reached

17: else
18: Return Advanced

Given a prior distribution over environments: P (W), and

start and goal states P (qstart, qgoal), we can evaluate our

policy in a manner similar to [14]:

J(π) = E(qs,qg)∼P (qs,qg)
W∼P (W)

[

∑T

t=1EP (st+1|st,π(st)) [ccollision (st, π (st))]
]

(1)

π∗ = argmin
π∈Π

J(π) (2)

Algorithm 2 LaSD

1: Initialize replay memory/dataset aggregator D to capacity N
2: Initialize policy to uniform random: π̂1 = πrandom, β1 = 1
3: Define Approx Oracle’s parameters: nfree, nlabels

4: Initialize π∗

AO = AlmostOracle(nfree, nlabels)
5: for episode i = 1 to M do
6: Sample random workspace environment, W ∼ P (W)
7: Sample start and goal states, (qstart, qgoal) ∼

P (qstart, qgoal)
8: Decay βi

9: Set current mixture policy, πi = βiπ
∗

AO + (1− βi)πi

10: Initialize planning tree, T1 = T .init(qstart)
11: for k = 1 to T do
12: Get sample from current policy, qsample 7→πi(Tk,W)
13: Extend current tree with sample, Extend(Tk, qsample)
14: Invoke AO, q∗

k = π∗

AO.GetLabelSamples(Tk,W, qgoal)
15: Add to replay memory, D = D ∪ ({Tk,W},q∗

k)
16: Sample minibatch, φj = ({Tj ,W}, q∗j ) from D
17: Train policy πi on φj

return Best π̂i on validation dataset.

C. LaSD: Learning Adaptive Sampling Distributions

After formalizing the problem, it is easy to see that

one may use an appropriate model-free RL algorithm like

DDPG [15]. However, such algorithms are known to be

highly sample-inefficient. To address this, previous work has

shown that given an oracle, such algorithms can be reduced

to iterative supervised learning [8, 16]. This then begets two

questions which we address in the next two subsections: what

is the oracle for our problem setting, and if there is one, how

can we imitate it.



Algorithm 3 Approx Oracle

1: Initialize : nfree, nlabels

2: procedure GETLABELSAMPLES(T ,W, qgoal)
3: Initialize priority queue, label samples to

empty
4: while i < nfree do
5: qrand 7→RandomConfig()
6: if qrand ∈ Cfree then
7: qnearest 7→Nearest(q, T )
8: qnew 7→Steer(qnearest, qrand, ǫ)
9: if ObstacleFree(qnearest, qnew) &
GotSolvedWithinBudget(RRT(qrand, qgoal)) then

10: Ccollision = RRT.get last cost()

11: priority queue.push(qrand, Ccollision)
12: i++
13: j = 0
14: while j < nlabels do
15: label samples.push(priority queue.top())

16: priority queue.pop()

17: i++
return label samples

1) Defining an Oracle: To preserve the nature of the

stochastic searched in randomized sampling based algorithm,

our oracle should return labels which are multi-modal in

nature, thereby spanning promising regions of C. We now

briefly highlight two relevant previous works. SAIL (Search

as Imitation Learning) [14] learn heuristics for search based

planners, by learning a deterministic policy over the space

of lists to decide which node to expand, by imitating Q-

values and arg-min regression. However, in our case, we

need to learn stochastic policy imitating multimodal oracle

samples over a continuous action space, a problem to which

the arg-min framework of [14] does not scale. Another

relevant work is [4], who learn a static distribution for

single-query sampling based planning algorithms. However,

they get oracle samples by using the resulting plans of

optimal planners. We argue that this does not leverage the

powerful randomized feature of sampling based planning,

and sampling the optimal path directly can be infeasible in

practice, especially for environments with high clutter.

For our problem, an oracle can be obtained by a visibility

graph over the configuration space. However, the building

the visibility graph in a high dimensional configuration space

is extremely expensive. Instead, we define an oracle which

returns approximately optimal samples, given a partially

solved planning problem, in the form of the instantaneous

tree and workspace environment {T ,W}.

This Approx Oracle (AO) is defined in Alg. 3, and lever-

ages the planning algorithm itself by forward simulating it.

First, it finds nfree number of candidate samples which have

valid, collision free extension to the given T , which can

also solve the forward problem within a fixed time budget,

tAO. It maintains these candidate samples in a priority queue,

where they are ordered by the number of collision checks it

takes the planning algorithm to solve the forward problem:

reaching qgoal. AO then returns a list of the top nlabel label

sample configurations q
∗, which took minimum time while

solving the forward problem. Fig. 1 shows label samples

for an example helicopter planning problems. This is a top

down view of a hilly environment (green denotes regions

with high elevation). The start state is midpoint of bottom

edge of image, while the goal state is midpoint of top edge.

We can see as the tree (in blue) changes, the samples (in

white) change their modes accordingly.

It is worth noting that [17] (Section 8.3) suggest that

the approach taken by SAIL [14] can be extended to learn

sampling distributions by using a backward tree as an or-

acle, however we note that the problem is not symmetric.

Obtaining label samples by forward simulating the partially

solved tree would be more accurate than choosing them from

a backward tree constructed from qgoal to qstart.

2) Imitating the Oracle: We learn this policy by ag-

gregating the dataset in an online fashion and decaying a

mixture policy following Dataset Aggregation [8], as shown

in Alg. 2. We combine the idea of dataset aggregation

with experience replay [7] by maintaining a rolling memory

buffer of state-action tuples from π∗
AO, and random sampling

minibatches from it to train our policy to decorrelate the

chronological memory. The state-action tuples in our case is

the instantaneous planning tree, the occupancy grid of the

environment, and the corresponding target sample location.

We now discuss how we encode the tree and workspace

in our CVAE.

3) Encoding the Tree and Workspace: We follow and

extend the framework proposed by [4] and use a conditional

variational autoencoder [6] to learn a non-stationary policy

that can map from planner state to samples, as shown in

Fig. 3. Here, the planner state is both the environment W
and the instantaneous search tree Tt. For W , we use a 2D

or a 3D convolutional encoder, where we feed in a binary

occupancy grid of the appropriate size.

The next issue lies in encoding the burgeoning tree which

has a variable number of vertices and edges. This is an

open problem being actively worked upon [18–23]. We use

an architecture inspired by GraphRNN [23] which learn

generative models of graphs. Keeping this in mind, we feed

the tree as a sequence of edges into what we call an Edge-

RNN. We represent each node with its n-dimensional state

vector. Then we couple each child node with its parent node,

as a 2× n array (each node has only a single parent as it is

a tree). We feed these edges in the order in which the child

nodes were added to the tree, as visualized in Fig. 2. We

use Gated Recurrent Units [24] with a fixed-size memory

vector, we take the output from the RNN as the encoded

graph feature vector after feeding in all the child-parent edge

pairs. For the root node, we mimic the values for its parent.

This dense graph feature vector is concatenated with the

workspace feature vector from the convolutional workspace

encoder, followed by a dense layer to get the latent space of

the CVAE.

Note: (1) We suspect that tree-LSTMs from the NLP

literature [25], which use LSTM modules chained recursively

in a tree-like topology, when constructed in a breadth-wise

fashion, would perform better than our current approach. (2)

Currently, we use only the node’s state values as the feature



vector. However, these node features can be supplemented by

goal-driven heuristics to improve the sampling distribution.

Fig. 1: Approximate Oracle: The start state is the center

bottom of the image, while the goal is at the top. The

approximately correct label sample for the instantaneous

planning tree (shown in blue) are visualized as arrows. Arrow

heads depict the of the state.

Fig. 2: Encoding graph edges into RNN network. On the left

is the planning graph. The figure on the right demonstrates

how edges are feed into a RNN network which encodes our

graph into the final feature vector fn

Fig. 3: Model used to featurize the conditioning variables for

the CVAE.

III. EXPERIMENTS AND RESULTS

We conduct experiments on datasets from [14, 17]:

1) 2D Holonomic: We validate our method on the dataset

provided by [14], which consists of multiple 2D environ-

ments like single and multiple bugtraps, forest, mazes, etc.

Qualitative results can be inspected in Figure 4 and in videos

available here.

2) 4D Kinodynamic Helicopter: We test our framework

on a helicopter problem with glideslope and curvature con-

straints in the dynamics, as outlined in [26]. The state

space is given by translation and heading: {x, y, z, ψ}. Here,

we use two types of procedurally generated environments

drawn from some parameterized distributions each: canyons

and hills. We use the environment generation code provided

by [17].

We use [4] as a baseline, by only using the convolution

workspace encoder. And similarly, we introduce another

baseline by using only the Edge-RNN encoder. The results

on test data are shown in Table I. All evaluation metrics are

obtained by averaging the result of running each baseline 5
times on a fixed test set of 100 randomly generated environ-

ments, after training each baseline on a training dataset of

100 environments. While we are only explicitly optimizing

for the number of collision checks, we also evaluate the final

path length and the number of samples used to obtain a

feasible path.

Conditioning on only T reduces the number of collision

checks, while conditioning on only on W as done by [4]

reduces the overall path length. Using both T and W further

reduces the number of collision checks as well as path length

compared as compared to uniform sampling. !

IV. SUPPLEMENTARY MATERIAL

Animated versions of the figures in this document are

available here.
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[24] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-

danau, F. Bougares, H. Schwenk, and Y. Bengio,

“Learning phrase representations using rnn encoder-

decoder for statistical machine translation,” arXiv

preprint arXiv:1406.1078, 2014. II-C.3

[25] K. S. Tai, R. Socher, and C. D. Manning, “Im-

proved semantic representations from tree-structured

long short-term memory networks,” arXiv preprint

arXiv:1503.00075, 2015. II-C.3

[26] S. Choudhury, S. Arora, and S. Scherer, “The planner

ensemble and trajectory executive: A high performance

motion planning system with guaranteed safety,” in

AHS 70th Annual Forum, Montreal, Quebec, Canada,

vol. 1, no. 2, 2014, pp. 3–1. III-.2


	I Introduction
	II Approach
	II-A Single-query Motion Planning
	II-B SQMP as a Markov Decision Process
	II-C LaSD: Learning Adaptive Sampling Distributions
	II-C.1 Defining an Oracle
	II-C.2 Imitating the Oracle
	II-C.3 Encoding the Tree and Workspace


	III Experiments and Results
	III-.1 2D Holonomic
	III-.2 4D Kinodynamic Helicopter


	IV Supplementary Material

