
Planning to Poke: Sampling-based Planning with Self-Explored Neural
Forward Models

Lars Henning Kayser∗, Michael Görner∗, Matthias Kerzel, Stefan Wermter, Jianwei Zhang†

Abstract— This work presents a self-supervised robotic
pusher setup that can acquire forward models for pushing
tabletop objects by training neural networks. The resulting
models are used for multi-step path planning. An explicit world
representation allows generating collision-free and feasible ob-
ject trajectories that avoid local minima. Through closed-loop
replanning, the system can generate sequences of pokes that
move objects to specified goal poses.

I. INTRODUCTION & RELATED WORK

Goal-directed pushing has attracted much interest in
robotics research over the years. Mason et al. [1] described
theoretical foundations of two-dimensional push mechanics
and provided the means for analytical approaches to predict
push effects (e.g. [2]). To apply such approaches in practice
though, the models require known friction distributions and
coefficients of pushed objects which are hard to estimate.
Even when key values of the model are approximated from
data, the resulting predictions rely on a number of assump-
tions that are invalid in most situations, e.g., a uniform weight
distribution within the object [3].

Thus, most current research aims to learn to predict
push effects directly [4, 5, 6, 7]. Because it is inherently
unstable to push objects in straight lines with single-contact
pushes, many authors restrict their setups to stable pushes
with multiple contacts or contacting surfaces. In end-to-end
learning frameworks, a robotic pusher can learn policies
to push objects towards goals from raw camera images
[8]. Such approaches demonstrate impressive behavior when
enough training data can be collected. However, the behavior
of the overall system becomes hard to control and multi-step
prediction is infeasible. In contrast, we learn object-centric
push models for a single-contact pusher that can be used
together with traditional planning-based systems to generate
collision-free tentative trajectories.

II. REPRESENTATION

In order to reason about pushes applied to an object,
in contrast to pushes applied to the robot’s environment,
we generate object-centric models that rely on object pose
estimation. To get precise estimations, we utilize fiducial
markers [9] attached to the object in our current experiments
(see Fig. 1). We further assume the object will never tip

∗These authors contributed equally
†All authors are with the University of Hamburg, Germany.
Email 1kayser,goerner,kerzel,wermter,

zhang@informatik.uni-hamburg.de
This research is partially funded by the Horizon2020 RISE project

STEP2DYNA and the German Research Foundation (DFG) and the National
Science Foundation of China in project Crossmodal Learning, TRR-169.

Fig. 1. The robotic setup pushes a target object around on the table. A
rounded cylinder is mounted as push tool to ensure a single tool-object
contact.

Fig. 2. Collision-free sequence of pushes to reach goal (in green) based on
learnt push dynamics. The black graph illustrates the explored state space
during sampling-based planning.

over when pushed, and thus its state can be represented
sufficiently in SE(2). While this, of course, does not hold
in general, it is often justified in contexts with low-friction
surfaces when pushes are applied parallel to the support
surface.

To help select reasonable push candidates, we additionally
require a bounding contour of the object. For a simple box,
the contour can be identical with the shape of the object,
but any reasonably accurate convex contour suffices for our
purposes.

Building on this representation, we can define push can-
didates. These consist of a contact/start point 〈xp, yp〉 on the
contour, a push direction ~vp and a push distance dp. Notice
that ~vp and the normal vector αp of the contour at the contact
point form an angle βp < π

2 rad, so that the pusher moves
towards the object. In contrast to previous research which
parameterized pushes in the center point of the push [8],
this representation allows to easily sample push candidates
which do not start in an object collision also for small push
distances.

III. METHODS

A. Autonomous Exploration

To approximate a model of how objects behave when
pushed, their behavior has to be observed sufficiently often.
To do so, we generate and perform sample pushes which
randomly move the object around on the table. For every
trial, we uniformly sample a contact point on the object
contour and a push vector dp · ~vp, such that the corresponding
|βp| is below some reasonable threshold, 0.5rad in most of
our experiments.

The actual push then comprises a series of robotic motions
towards a pre-push point close to the contact location, a
push-approach and push motion, and finally a retreat away
from the object to ensure the object is visible in the camera
image. The setup is modeled in the MoveIt! planning frame-
work [10] which generates and performs these trajectories
autonomously without unintended collisions.

Longer exploration might eventually move the object off
the table. A common way to prevent this in self-supervised
setups is to enclose the workspace in low walls and use this
same workspace for evaluation. However, in our case this
approach would lead to multiple contacts with the object for
some pushes and the resulting push effects would depend
on the current object location. To learn a push model that is
intrinsic to the object and can be used for planning collision-
free trajectories, we need to keep the object out of contact.

So instead, we define a safe center point in the middle
of the support surface and restrict free exploration within a
radius around it. Whenever the box moves outside after a
push, we restrict the next pushes such that ~vp always points
towards the center point. Assuming a push does not move
the object in the exact opposite direction in our exploration
domain, this effectively moves the object back inside the safe
zone. Additionally, we define a slightly larger emergency-
stop radius and stop exploration if the object ends up outside.

The described setup takes approximately 8 seconds to
perform a push and collect a full sample. A total of 3000
push samples were collected for two different objects each.
While the first object had its weight equally distributed, the
second one was deliberately biased by placing a weight in
one corner.

As we consider only the object, regardless of its pose in the
environment, the amount of samples required to capture the
explored domain is reduced tremendously and the collected
datasets should suffice. Some characteristic samples for each
object are illustrated in Figure 3.

Fig. 3. Illustration of explored push effects on box with uniform weight
distribution (left) and biased weight distribution (right). All depicted pushes
share the same contact point, but vary in push angle and length as indicated
by lines.

B. Forward Model

To feed the samples to a neural network in a sufficiently
simple way, we represent them as 〈xp, yp, αp, βp, dp〉. All
features are min-max normalized. The predictor is trained
to output an SE(2) transform 〈x, y, γ〉 for the object. We
train a small MLP with a single hidden layer of 100 units,
using ReLU activation. In order to account for the type of
the output, we utilize a loss that balances the orientation and
the translation error:

LSE(2) =
√
L2
x + L2

y + η · Lγ1

Eventually, training the network with Adam optimiza-
tion yields a test-set error of 0.006m for the distance
component(x, y only) and 0.022 in SE(2) distance. The
network architecture and hyperparameters were empirically
determined through manual grid search and hyperopt-based
optimization [11]. The resulting test-set error is close to the
accuracy of our perception setup.

C. Integration with Sampling-based Planning

Utilizing the trained forward models, we can apply ar-
bitrary forward-planning methods to generate goal-directed
trajectories. In this work, we employ a variant of the well-
known Rapidly-exploring Random Trees (RRT) [12] algo-
rithm, building on the versatile OMPL planning infrastructure
[13]. The traditional algorithm plans trajectories in the state
space of object poses by sampling random (goal-biased)
target poses and extending the closest explored state towards
the target. An accurate inverse dynamics model could be used
to extend this mechanism to include control. On the other
hand, due to the sampling-based nature of the algorithm, it
is sufficient for the sampled controls to move the object in
the approximate direction of the target. To achieve this, we
sample a small number of valid controls and weight them
according to our forward model.

This approach also allows us to put external restrictions
on the controls to apply by restricting the sample generation.
As pushes with a very big normal offset βp cause only
minimal displacement of the object, we restrict candidates
to −0.5 < βp < 0.5 in practice. Additionally, we aim

1η = 0.5 in the experiments

to generate push sequences with short movements for the
robotic arm and smooth execution. To this end, we prefer
controls with contact points in the vicinity of the contact
point of the previous control.

To detect states which would collide with the known
environment during planning, we utilize MoveIt!’s collision
checking capabilities and its Planning Scene world represen-
tation.

Figure 2 illustrates a planning result, including the spanned
tree, generated with the described system.

Due to the known inaccuracies in the forward model and
stochastic variations during execution, the generated plan
cannot be performed successfully without feedback. Instead,
we follow the idea of model-predictive control (MPC), using
the planning system as the model. MPC usually replans after
each execution step, thus assigning particular importance to
the first step of each plan. However, with sampling-based
single-shot planners, the first action of a solution is not
necessarily a correct step towards the goal. To reduce this
problem, our execution pipeline tracks the current object pose
and only replans when the real pose differs from the plan by
more than some threshold. This helps to stabilize execution,
effectively following a plan as long as it reflects the current
world state.

IV. CONCLUSION & OUTLOOK

We presented an autonomous robotic setup to explore the
effects of pushes on specific objects. After learning forward
models from the collected data with neural networks, we
utilize them in traditional sampling-based motion planning
algorithms to generate collision-free sequences of pokes and
move the object to arbitrary goal poses.

Thus, we contribute an integration of self-supervised
forward-model learning and sampling-based planning,
demonstrating its feasibility. The complete system can uti-
lize adequate forward models without analytical restrictions
and can overcome local minima. It is an example of how
learning-based approaches can complement traditional plan-
ning systems.

Future research aims to explore more natural objects,
removing the need for fiducial markers by neural-network-
based state estimation. To generate smoother and coherent
sequences of pushes even with sampling-based planning, we
will consider optimizing planners and trajectory optimization
as a post-processing step. Additionally, it has been demon-
strated recently that push dynamics involving the interaction
with predictable contacts can be learned successfully [7]. A
similar approach might enable us to plan not only collision-
free trajectories but could also allow specified contacts with
environment surfaces.

REFERENCES

[1] Matthew T. Mason. “Mechanics and Planning of Ma-
nipulator Pushing Operations”. In: The International
Journal of Robotics Research 5.3 (Sept. 1986).

[2] Kevin M. Lynch and Matthew T. Mason. “Stable
Pushing: Mechanics, Controllability, and Planning”.
In: The International Journal of Robotics Research
15.6 (Dec. 1996), pp. 533–556.

[3] Federico Ruiz-Ugalde, Gordon Cheng, and Michael
Beetz. “Fast adaptation for effect-aware pushing”. In:
2011 11th IEEE-RAS International Conference on
Humanoid Robots. IEEE, Oct. 2011.

[4] Manfred Lau, Jun Mitani, and Takeo Igarashi. “Au-
tomatic learning of pushing strategy for delivery of
irregular-shaped objects”. In: 2011 IEEE International
Conference on Robotics and Automation. IEEE, May
2011.

[5] T. Hermans et al. “Learning Stable Pushing Loca-
tions”. In: IEEE International Conference on Devel-
opment and Learning and Epigenetic Robotics (ICDL-
EPIROB. 2013.

[6] Haolin Yang, Fuchun Sun, and Di Guo. “Pushing op-
eration of manipulator based on experience learning:
Position prediction of an object and pushing analysis”.
In: 2014 International Conference on Multisensor
Fusion and Information Integration for Intelligent
Systems (MFI). IEEE, Sept. 2014.

[7] Marek Kopicki et al. “Learning modular and trans-
ferable forward models of the motions of push ma-
nipulated objects”. In: Autonomous Robots 41.5 (June
2017), pp. 1061–1082. ISSN: 1573-7527.

[8] Pulkit Agrawal et al. “Learning to Poke by Poking:
Experiential Learning of Intuitive Physics”. In: CoRR
abs/1606.07419 (2016). arXiv: 1606.07419.

[9] John Wang and Edwin Olson. “AprilTag 2: Efficient
and robust fiducial detection”. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Oct. 2016.

[10] David Coleman et al. “Reducing the Barrier to Entry
of Complex Robotic Software: a MoveIt! Case Study”.
In: Journal of Software Engineering for Robotics 5.1
(May 2014), pp. 3–16. URL: http://moveit.
ros.org.

[11] J. Bergstra, D. Yamins, and D. D. Cox. “Making a Sci-
ence of Model Search: Hyperparameter Optimization
in Hundreds of Dimensions for Vision Architectures”.
In: Proceedings of the 30th International Conference
on International Conference on Machine Learning -
Volume 28. ICML’13. Atlanta, GA, USA: JMLR.org,
2013, pp. I-115–I-123.

[12] J.J. Kuffner and S.M. LaValle. “RRT-connect: An effi-
cient approach to single-query path planning”. In: Pro-
ceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065). IEEE.

[13] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki.
“The Open Motion Planning Library”. In: IEEE
Robotics & Automation Magazine 19.4 (Dec. 2012).
http://ompl.kavrakilab.org, pp. 72–82.

