
Deep sequential models for sampling-based planning

Yen-Ling Kuo, Andrei Barbu, and Boris Katz

Abstract— We demonstrate how a sequence model and a
sampling-based planner can influence each other to produce
efficient plans and how such a model can automatically learn
to take advantage of observations of the environment. Sampling-
based planners such as RRT generally know nothing of their
environments even if they have traversed similar spaces many
times. A sequence model, such as an LSTM, guides the search
for good paths. The resulting model, called DeRRT∗, observes
the state of the planner and the local environment to bias
the next move and next planner state. The neural-network-
based models avoid manual feature engineering by co-training
a convolutional network which processes map features and
observations from sensors. We incorporate this sequence model
in a manner that combines its likelihood with the existing bias
for searching large unexplored Voronoi regions. This leads to
more efficient trajectories with fewer rejected samples even
in difficult domains such as when escaping bug traps. The
techniques presented here are general and can be adapted to
a range of planners.

This extended abstract is a significantly shortened version of
the accepted IROS 2018 paper with the same name omitting
technical details, extensions, and results.

I. INTRODUCTION

When you navigate an environment containing new agents,
obstacles, and goals, you can rely on previous experiences
to guide your actions. Having seen similar agents before
allows you to predict the motions of the ones you encounter
in the future. Having seen obstacles, whether static or
dynamic, allows you to efficiently navigate around them. Your
expectations about the future of the plan are conditioned on
your previous experiences, current plan, and local observations
to help you navigate. This is the process we are modeling
here.

Existing sampling-based planners have difficulty taking
advantage of such information. Most planners, like RRT∗ [1],
sample uniformly and take no heed of the environment.
RRT∗, Rapidly-exploring Random Tree, is part of a family
of algorithms [2, 3, 4, 5] that explore a configuration space
by sampling moves while avoiding invalid states. Dynamic
environments, in particular, pose many challenges. They
combine uncertain sensing of the position of obstacles
and agents with uncertainty about the future path of those
obstacles and the actions being performed by other agents.
To improve planning in these domains, we adopt a set of
techniques from computer vision. We bias the growth of the
RRT∗ search tree [6, 7] given prior experience and a sensed
environment. Hidden Markov Models [8], and stacked LSTMs
[9] are powerful activity recognizers [10, 11, 12] but so far

This work was supported by the Center for Brains, Minds and Machines,
NSF STC award 1231216, the Toyota Research Institute, CBMM-Siemens
Graduate Fellowship, and the MIT-IBM Brain-Inspired Multimedia Compre-
hension project.

Computer Science and Artificial Intelligence Laboratory, MIT
{ylkuo,abarbu,boris}@mit.edu

Fig. 1. A DeRRT∗-based planner starts at the red square and tries to reach
the green square while escaping from a bug trap. The search tree, shown as
blue circles, is mirrored by a sequence model, an HMM or LSTM. When
expanding the tree, a free-space sample is drawn, steered toward, and the
resulting node, shown as a red circle, is used to find the closest node in the
tree; as in RRT. The sequence model, with state corresponding to that closest
node, observes this free-space sample, the path leading to this node, along
with local visual or map features, shown in gray, and predicts a modified
direction, shown in green, which is then connected to the search tree. A new
state for the sequence model is also predicted and connected. This process
incorporates the bias to explore free space of RRT-based planners with a
co-evolving sequence model and observations of the environment.

they have seen little use in improving robotic planning. We
demonstrate how to adapt such sequence models to robotic
planning using a general approach that can employ either
graphical models or neural networks.

A sequence model co-evolves alongside a sampling-based
planner as shown in Fig. 1. At each planning step, both the
planner and the sequence model are stepped forward while the
next sample from the planner is conditioned on the sequence
model. That sequence model can observe local features of
the environment as well as the current plan to provide good
samples. Moreover, we can avoid feature engineering and
learn the relevant features of the environment by co-training
a convolutional network (CNN) with the LSTMs. We refer
to this algorithm as DeRRT∗, for deep RRT∗, although the
techniques presented here can be adapted to other sampling-
based planners.

II. PLANNING WITH SEQUENCE MODELS

DeRRT∗ combines a sequence model with a sampling-
based planner, RRT∗. RRT-based algorithms create a tree
which explores a configuration space. Given an initial state,
RRT∗ samples locations uniformly and then attempts to
connect them to that original node. The tree reaches outward
to cover the configuration space with a bias for large
unexplored Voronoi cells to find the goal state. See algorithm 1
for a prototypical RRT.



Algorithm 1 A prototypical RRT algorithm.
1: V ← {xinit};E ← ∅
2: for 1 . . . n do
3: xrand ← SampleFree()
4: xnearest ← Nearest(G = (V,E), xrand)
5: xnew ← Steer(xnearest, xrand)
6: if ObstacleFree(xnearest, xnew) then
7: V ← V ∪ {xnew}
8: E ← E ∪ {(xnearest, xnew)}
9: return G = (V,E)

At each iteration of the RRT algorithm, we simultaneously
extend the tree and a sequence model. Just as RRT trees
have a branching structure, the sequence model will have that
same branching structure. This conditions future states of the
sequence model on past states for that particular hypothesized
plan. Fig. 1 shows an example of this process. As a node is
expanded, the precise position in the configuration space of a
new candidate node is sampled from the sequence model. To
implement this, we modify the steering function to move in
a direction given by the sequence model while conditioning
it on the current state, the desired free space direction, and
observations of the local environment around the current state.

While several extensions to RRT consider changing the
sampling function, here we instead change the steering
function. This distinction is important and we take this
approach for several reasons.

1) It preserves the most desirable property of RRT, its bias
for large Voronoi regions. Exploring novel regions helps
in difficult domains where simply attempting to directly
reach the goal is unlikely to succeed.

2) There is no need to change the sampling function. If
the sequence model for the steering function has high
confidence, the random sampled direction in free space is
irrelevant. Intuitively, the sequence model controls how
much exploration vs. exploitation is occurring based on
its confidence in the next direction.

3) We would like to take advantage of local observations
to help guide the algorithm. To do this, we allow the
sequence model to learn the nature of the features from
local observations. Steering moves are small, making
local decisions about the direction of motion, while free
space-sampling controls the overall direction of motion.
Local features are far more informative for small moves
than for deciding what the overall direction across an
entire map or maze might be.

We keep the overall structure of RRT∗[1] unchanged
modifying two of its component functions, Steer and
Rewire. We modify the Steer to guide the planner toward a
direction informed by the sequence model instead of just
minimizing the distance to the uniformly sampled node
xrand. For performance reasons, this necessitates an update
to Rewire to cache the state of the sequence model when a
node changes its parent.

When steering, one starts from node xnearest and heads in
the direction of the sampled point xrand. The end node of
a single step of the steering function, xnew, lies within a

distance r of xnearest, within a sphere Bxnearest,r. In the original
RRT∗, xnew is chosen to minimize the distance to xrand. We
replace this function with SteerWithModel, as shown in
algorithm 2.
SteerWithModel proceeds as follows. First, we find µ,

the optimal point according to the original RRT∗ algorithm.
Next, we sample a point within steering distance r of xnearest
conditioned on the sequence model, λ, along with any
observations from available sensors, Obs. When the sequence
model allows for efficient conditioning of the samples based
on this sphere and sensor data, we can directly sample from
the posterior. Most models do not allow for this. We instead
sample a fixed number of points, k, compute the likelihood
of each, and sample proportionally to those likelihoods.

Algorithm 2 SteerWithModel(xnearest, xrand)

1: µ← argmin
z∈Bxnearest,r

‖z − xrand‖

2: P ← ∅
3: for 1 . . . k do
4: xnext ← SampleUniform(xnearest, µ, r)
5: pnext ← P (xnext, µ, Obs|λ, xinit, . . . , xnearest)
6: S ← S ∪ {(xnext, pnext)}
7: (xnew, pnew)← Sample(S)
8: return xnew

Intuitively, when the sequence doesn’t provide any infor-
mation about the configuration space, it can learn to simply
provide high likelihood when the hypothesized direction xnext
is close to µ. This reverts the steering function to the one
from the original RRT∗. At the other extreme, the sequence
model may choose to disregard the free space samples if the
future path is clear.

Using recurrent networks to approximate complex prob-
ability distributions is not new. For example, Le et al. [13]
show that probabilistic programs can be compiled into neural
networks that take observations as input and learn to perform
inference. We consider classes of recurrent models such as
RNNs [14], LSTMs [9], and GRUs [15] to approximate the
likelihood of the sampled points.

At each time step, models observe the difference between
the hypothesized direction, xnext, and the optimal direction
according to the original RRT∗. The recurrent networks take a
local observation around the current point, the current position,
and the current optimal direction to compute a likelihood for
each direction in the steering function. Local observations
and map features are embedded into a fixed-dimensional
input vector. Convolutional layers can be co-trained with the
recurrent model to take input images of the map or any other
perceptual information. This eliminates the need for feature
engineering and provides robustness to perceptual uncertainty.
In addition, at each time step, the previous state is propagated
and both a new state and a new direction are produced.

The recurrent models can in principle directly score a
future state. In practice, we found that having an explicit
mixture model that combines the optimal direction per the
original RRT∗ with the direction preferred by the LSTM
results in models which are easier to train. At each time step,



we use the recurrent network, a step of which is evaluated
by the function η, to produce a mean and covariance matrix
for a normal distribution from which new directions can be
sampled. The likelihood of a steering move is computed as a
mixture of

q(xt|η(xt−1, st−1, Obs, φ)) (1)

and the likelihood of following the RRT∗ direction, µ, is
computed as a normal distribution N(µ, σ) where q is normal
proposal distribution, η is the recurrent model (a function
returning a mean direction and a covariance matrix), s is
the state vector of the model, Obs is an embedding of
the observation vector, and φ are the parameters of the
recurrent model. For efficiency, we store the current state of
the recurrent network at each node in the search tree and
incrementally compute the likelihood of a path.

At training time, the network is supplied with a series of
traces of successful plans. At each time step during training,
stochastic gradient descent is used to maximize the likelihood
shown in equation 1. In essence, we have samples from an
n-dimensional normal distribution, where n is the size of the
configuration space, along with the network which produced
the mean and covariance matrix from which these samples
were drawn at each time step. We then train this network to
maximize the likelihood of the observed sequences.

III. EXPERIMENT RESULTS

The sequence models described above were implemented
in PyTorch and integrated with the Open Motion Planning
Library [16], using the provided Python bindings. We tested
DeRRT∗ in the bug trap environment.

Bug trap requires that a 2D robot escape from an inner
chamber through a narrow passage and then reach a goal in
a large free space; see Fig. 2(a). This is made particularly
hard by the shape of the exit which includes two dead ends.
Most samples in the free space will lead to steering into these
areas.

To quickly escape, one has to recognize not just the
presence of a gap but the particular features of the central
channel. In this experiment, we cotrain the convolutional
layers of sequence models to learn to recognize the presence
of relevant map features in order to reach a goal. This
eliminates the need for feature engineering or any other
annotation aside from a series of prior plans.

We randomly rotated and translated the trap and randomly
sampled the starting position inside the trap and the goal
configuration outside the trap to ensure that the training and
test data are disjoint. Training samples were provided by
running RRT∗ for 10000 planning steps on each problem
instance. In total, we collected 1000 training sequences.

We take as an observation 21×21 local patch centered at the
current node from a 110×110-sized map. We trained a GRU
with a two-layer convolutional network, each layer containing
a convolution followed by max polling. The convolutions used
3×3 filters with 32 and 64 output channels respectively. Max
pooling used a 2× 2 window with step size 2.

Fig. 3 shows the solution length as a function of the number
of samples drawn. Already by 4000 samples the sequence-
model guided planner is performing as well as RRT∗ with

(a) Bug trap

(b) DeRRT∗ (c) RRT∗

Fig. 2. (a) The default bug trap example with its start and end position.
Note the difficult central passage and dead-ends on either side of it. (b) A
heat map of the DeRRT∗/GRU search tree. It learns to exit the trap and
focuses on sweeping in large arcs to locate the goal. (c) A heat map of
the RRT∗ search tree. It spends more time in the trap and less time on
finding the goal in the free space. Pure black represents allocating 0.2% of
the samples inside the cell with linear interpolation to pure white.

Fig. 3. Solution length as a function of the number of samples. DeRRT∗

is both more efficient and more stable.

twice the number of samples. The colored regions show
95% confidence intervals. When considering more complex
scenarios, such as an articulated robot with a complex mesh,
this can have an even more significant impact as the more
expensive collision checking can become a dominant concern
in the runtime of sampling-based planners. Figs. 2(b) and
2(c) show heat maps where intensity is proportional to the
density of nodes.

IV. CONCLUSIONS

We have introduced DeRRT∗, a sampling-based planner
extending RRT∗ with a neural network in order to learn to plan
more efficiently. This opens the door to using models that are
successful in other areas, for example, compositional models
in vision or sequence-to-sequence models in natural language.
In the future, we expect that planners which understand more
about their environments, perhaps by incorporating existing
CNNs trained on large vision corpora, will navigate more
efficiently. Similarly, sequence models which can capture
existing knowledge about an environment and reason about
the consequences of actions may be better suited to carrying
out complex tasks.



REFERENCES
[1] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[2] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” IEEE Access, 2014.

[3] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (BIT∗): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in ICRA, 2015.

[4] F. Burget, M. Bennewitz, and W. Burgard, “BI2 RRT∗: An efficient
sampling-based path planning framework for task-constrained mobile
manipulation,” in IROS, 2016.

[5] O. Adiyatov and H. A. Varol, “A novel RRT∗-based algorithm for
motion planning in dynamic environments,” in International Conference
on Mechatronics and Automation, 2017.

[6] C. Urmson and R. Simmons, “Approaches for heuristically biasing
RRT growth,” in IROS, 2003.

[7] S. R. Lindemann and S. M. LaValle, “Incrementally reducing dispersion
by increasing voronoi bias in RRTs,” in ICRA, 2004.

[8] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state markov chains,” The annals of mathematical
statistics, vol. 37, no. 6, pp. 1554–1563, 1966.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[10] N. Siddharth, A. Barbu, and J. Mark Siskind, “Seeing what you’re
told: Sentence-guided activity recognition in video,” in CVPR, 2014.

[11] H. Yu, N. Siddharth, A. Barbu, and J. M. Siskind, “A compositional
framework for grounding language inference, generation, and acquisi-
tion in video,” Journal of Artificial Intelligence Research, vol. 52, pp.
601–713, 2015.

[12] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent
convolutional networks for visual recognition and description,” in
CVPR, 2015.

[13] T. A. Le, A. G. Baydin, and F. Wood, “Inference compilation and
universal probabilistic programming,” in Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, 2017.

[14] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[15] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder–decoder approaches,”
Syntax, Semantics and Structure in Statistical Translation, p. 103, 2014.

[16] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012.


	INTRODUCTION
	PLANNING WITH SEQUENCE MODELS
	EXPERIMENT RESULTS
	CONCLUSIONS

