
BAgger: A Bayesian Algorithm for Safe and Query-efficient
Imitation Learning

Constantin Cronrath1, Emilio Jorge2,3, John Moberg2,3, Mats Jirstrand2,3 and Bengt Lennartson1

Abstract— Safety and query efficiency may present a chal-
lenge when learning a robot control policy with Dataset Aggre-
gation (DAgger). We propose BAgger, an Imitation Learning
algorithm that, using a Bayesian approach, aims to mitigate
those challenges by predicting state novelty and policy error.
In BAgger, the expert is queried only when there is a significant
risk of not being able to imitate the expert, e.g. in novel parts
of the state space. We present empirical results indicating that
BAgger is, both, safer than DAgger and SafeDAgger on a robot
control task, while still being query-efficient.

I. INTRODUCTION

Imitation Learning (IL) has been proven an effective way
to learn control policies in robotics. For instance, IL has been
applied to autonomous driving [1]–[4], robotic grasping in
cluttered environments [5], and inserting surgical needles [6].
The goal of IL is to train a novice controller to imitate the
behaviour of an expert, which, for example, may be a human
or an expensive algorithm. One way of doing this is through
the Dataset Aggregation (DAgger) algorithm [7].

DAgger trains a novice controller online by applying a
supervised learning algorithm to an aggregated set of state
observations, each of which is labelled with the expert’s
control action. The expert’s control of the task is annealed
and the novice is given successively more control. The
expert then labels all observations with the optimal control
action in retrospect, which is used to update the learner.
Although DAgger is popular as a benchmark in IL literature,
because of its simplicity, in practice it has two limitations.
First, performance, and hence safety, is only guaranteed
asymptotically, and not during training. Second, each state
observation must be labelled by the expert. This may be
prohibitively expensive, e.g. in the case of a human expert.

These limitations, safety and query efficiency, have been
addressed previously in literature such as [2], [6], [8]. Section
IV provides more details on related work. We propose
Bayesian dataset Aggregation (BAgger), an extension of
DAgger that aims to address the aforementioned problems of
safety and query-efficiency. BAgger trains a Gaussian Pro-
cess (or, alternatively, a Bayesian Neural Network (BNN))
to predict the expected error between the novice and expert

*This work was financed by The Swedish Foundation for Strategic
Research, through the Smart Assembly 4.0 project, within the Winquist
Laboratory and Fraunhofer Cluster of Excellence Cognitive Internet Tech-
nologies. The support is gratefully acknowledged.

1Electrical Engineering, Chalmers University of Technology, Gothenburg,
Sweden {cronrath, bengt.lennartson}@chalmers.se

2Fraunhofer-Chalmers Centre for Industrial Mathematics,
Gothenburg, Sweden {emilio.jorge, john.moberg,
mats.jirstrand}@fcc.chalmers.se

3Fraunhofer Center for Machine Learning

0 20 40 60 80 100
Episodes

100

80

60

40

20

0

R
ew

ar
d 

pe
r 

ep
is

od
e

DAgger
SafeDAgger
BAgger

Fig. 1. Results on the OpenAI Reacher-v2 environment, averaged over 15
evaluations. Our algorithm, BAgger, is compared to two baseline methods.
Note that BAgger’s performance is consistently high throughout training.

policies for any given state. The expert policy is only queried
in states where there is a significant risk of not being able to
safely imitate the expert. As illustrated in Fig. 1, our results
indicate a better safety and query efficiency. BAgger achieves
consistently expert-like performance – while requiring less
than 40% of the queries required by DAgger.

Section II introduces the notation used throughout this
paper. Section III presents the BAgger algorithm, followed by
a brief discussion on related work in Section IV. Empirical
results of BAgger are documented in Section V, while
Section VI provides some concluding remarks.

II. PRELIMINARIES

We consider a sequential decision making problem with
Markovian dynamics. Following the notation of [9], the
learner encounters states s ∈ S, takes actions a ∈ A, and
thereby influences the distribution of next states s′. A policy
π ∈ Π is a mapping of states to actions (π : S → A). We
denote the policy of the expert with π∗, and the policy of
the novice with π̂. A roll-out is the application of a policy
π to sample a T -step trajectory of state-action pairs 〈s, a〉.

III. ALGORITHM

DAgger randomly blends the expert and novice policies
during training. For that reason, the novice might be given
control in states that are unsafe. Following [6], a state is
considered unsafe, if it is novel (unseen) to the novice, or if
π̂i deviates too far from π∗. We formally define the deviation
of the two policies as

ε(s) := ‖π̂i(s)− π∗(s)‖ ∀s ∈ S



where ‖ · ‖ may be any error metric, e.g. the L2-norm. To
obtain an estimate of the expected error also in novel states
without querying the expert, we fit a function ψ̂(s) to the
error. ψ̂(s) will help us decide whether we can trust the
novice or need to query the expert during roll-out. In low-risk
states, the novice can be given control, and the expert must
not demonstrate the optimal action. Therefore, it is crucial
for safety to be able to assess the confidence in the expected
error prediction – especially when in novel states. Regular
Neural Networks (NNs) tend to be overly confident when
extrapolating to novel states and only provide an estimate
of the mean [10]. We therefore utilise a Gaussian Process
[11], or respectively its approximation as a Bayesian Neural
Network (BNN), for the implementation of ψ̂.

Gaussian Processes (GP) take a Bayesian approach to
supervised learning. Instead of providing only the mean
of a prediction, a GP also gives a normal distribution of
possible values. The variance of this distribution can be
interpreted as the confidence in a prediction and depends on
the evidence observed in that region. Predictions in known
state regions, with plenty of evidence, are expected to exhibit
lower variance than predictions far into novel state regions.
The variance in the error prediction can, thus, also serve as
a proxy measure for the novelty of a state.

The mean µ̂ε(s) and the variance σ̂2
ε (s) of the error in

some state s are estimated by the corresponding sample
statistics applied to a sample from ψ̂(s) of size M . With
these, we define the BAgger policy:

π(s) =

{
π̂i(s) if µ̂ε(s) + 2σ̂ε(s) ≤ τ ,
π∗(s) otherwise.

Assuming a normally distributed predicted error1, an upper
confidence bound of the confidence interval µ̂ε(s) + 2σ̂ε(s)
covers over 97% of the confidence interval. An UCB below
a given safety threshold τ hence indicates a safe state, in
which the expert must not be queried to improve sample
efficiency. Vice versa, a UCB above τ implies an unsafe state,
either due to a large mean error (novice and expert policy
deviate too much in that state), or due to a high variance
(the state may be novel). In such states, the expert is queried
for the optimal, safe action. Therefore, the safety threshold
parameter τ needs to be chosen to strike a good balance
between safety and query efficiency.

Having defined the BAgger policy, the full BAgger algo-
rithm is presented in Algorithm 1. Additions to the original
DAgger algorithm are highlighted in blue for clarity.

IV. RELATED WORK

Safety and query efficiency have been addressed in prior
work. Chernova and Velosa fit Gaussian Mixture Models
(GMM) over the actions [12]. Each state is classified as
belonging to one particular action. If the confidence, given
by the GMM, is below a given threshold, the expert is

1While the error is strictly positive this is still an acceptable approxima-
tion since the important cases are where the error is large.

Algorithm 1 BAgger
Require: τ

Initialise D ← ∅
Initialise π̂1 to any policy in Π
Initialise ψ̂1

for i = 1 to N do
Let π be the BAgger policy
Sample T -step trajectory using π
Get D′i ← {〈s, a〉|µ̂ε(s) + 2σ̂ε(s) > τ ∧ a← π∗(s)}
Aggregate datasets: D ← D ∪D′i
Train π̂i+1 on D
Train ψ̂i+1 on {〈s, ε(s)〉|s ∈ D}

end for
return best π̂i on validation.

queried for the optimal action. Unlike BAgger, this approach
is limited to discrete action spaces.

Query efficiency also motivates Disturbances for Aug-
menting Robot Trajectories (DART) [13]. It is argued that
in DAgger, the novice may wander off into irrelevant state
regions. Therefore, the expert’s actions are perturbed with
noise to force the expert to demonstrate correcting behaviour
around the optimal trajectory. The novice policy is only
used to estimate the noise parameter, but not for control
in the environment. Similarly reasoned is Maximum Mean
Discrepancy Imitation Learning (MMD IL) [1]. MMD IL
trains multiple, local policies for sub-regions of the state
space. In each state, the MMD-closest policy is selected from
all previously trained policies. If that policy is far from the
current state, the expert is queried and it is decided whether
to go with expert or novice policy. However, the novice
remains in control in unsafe, but known states.

Lee et al present an offline IL algorithm for model predic-
tive control (MPC) in autonomous driving. The algorithm is
paired with Reinforcement Learning to learn the uncertainty
threshold for switching from novice to expert controller
[3]. The states visited during roll-out are not taken into
account when training the novice. As pointed out by [3],
the algorithm is strictly speaking not DAgger-like. An MPC
expert for autonomous driving is also used by Sampled-
DAgger [14]. After the first DAgger iteration, control is
given to the novice. The expert generates in parallel a
trajectory with lower sample frequency. If the Euclidean
distance between the trajectory generated by the novice and
the one of the expert becomes too large, the expert labels the
observed states and expands the novice’s training set. Control
is not returned to the expert in cases of large deviation.

Closest to our work are the DAgger extensions SHIV [6]
and SafeDAgger [2]. SHIV (SVM-based reduction in Human
InterVention) trains two one-class SVMs as decision policies.
One classifies novel states, while the other classifies states
that have been misclassified in the previous iteration. Taken
together, the SVMs decide on the safety of a state. As the
name suggests, this approach is limited by the capabilities
of SVMs. Similar to BAgger, SafeDAgger [2] trains, in



addition to the novice policy, a binary classifier as a safety
policy. A state is classified unsafe if the error between
expert and novice policy for a state is above a selected
threshold. The expert is then only queried for states that
the safety policy classified as unsafe. Unlike our approach,
SafeDAgger performs the classification prior to training the
safety policy. No explicit assumptions are made about the
safety of novel states. Although the softmax-classification
provides predictive probabilities, they can not be interpreted
as model confidence [10]. Instead, SafeDAgger relies on the
availability of a pre-trained, good safety policy. Pre-training
in SafeDAgger requires an additional dataset Dsafe, col-
lected using π∗. This essentially trades off query-efficiency
for safety in SafeDAgger. A variation of SafeDAgger is
DropoutDAgger [8]. The novice policy is here implemented
as a BNN. In states of high uncertainty in the novice
policy, control is given to the expert. Query efficiency is
not accounted for – the expert is queried for every state.

V. EXPERIMENTAL RESULTS

We present empirical evaluations of BAgger on two envi-
ronments of the OpenAI Gym [15] built on top of MuJoCo
[16]. For comparison, we report the performance of DAgger
[7] and SafeDAgger [2] in the same environment.

A. Reacher-v2

The goal in Reacher is to control an articulated robot
arm with two degrees of freedom in a 2-dimensional plane.
For each episode, a new goal location is given, which is
to be reached by the tool centre point. The state space is
continuous and S ⊂ R

11. The action space contains the
torques of the two joints, hence A ⊂ R2.

The GP in BAgger is approximated by a BNN imple-
mented as a NN with a dropout rate of 0.2, motivated by
[10]. A sample size M = 32 was used for the sample mean
and variance. An informal hyperparameter search found τ =
0.15 to strike a good balance between safety and query
efficiency. Both the novice policy and the error predictor
were represented by NNs with 2 hidden layers consisting
of 16 ReLU units each. We used L2 regularization with
λ = 0.01 and Adam [17] for optimization.

Fig. 1 shows the reward per episode for DAgger, SafeDAg-
ger, and BAgger during the course of 100 episodes. While
all algorithms eventually learn how to solve the task, only
BAgger manages a consistently high reward. In a safety-
critical application, it is clear that this is a non-negotiable
quality. Fig. 2 shows how the ratio of expert queries, aver-
aged over 15 evaluations, changes over time. We see that
BAgger initially makes extensive use of the expert, but the
expert ratio eventually approaches 0 as the novice learns how
to perform the task safely. Note that while DAgger has a
decreasing expert ratio, it still queries the expert for each
step to label the data.

In Table I we can compare the amount of queries to the
expert for each algorithm. Both SafeDAgger and BAgger
have a significantly lower amount of queries compared
with DAgger. While SafeDAgger has a slightly lower query

0 20 40 60 80 100
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

er
t r

at
io

DAgger
SafeDAgger
BAgger

Fig. 2. Average ratio of control by the expert policy during roll-out in
Reacher-v2. All algorithms eventually give full control to the novice.

TABLE I
AVERAGE QUERY EFFICIENCY AND CUMULATIVE REWARD

Environment Algorithm Avg. Queries Avg. Cum. Reward

Reacher-v2
DAgger 5000 -14.8k

SafeDAgger 1656 -46.7k
BAgger 1872 -0.8k

Hopper-v2
DAgger 25355 98.4k

SafeDAgger 9980 100.2k
BAgger 8293 110.9k

footprint compared to BAgger it is not enough to motivate
the difference in safety observed in Figure 1.

B. Hopper-v2

The goal of Hopper is to control a simplified figure to
hop forward. The state and action spaces are S ⊂ R11 and
A ⊂ R3. We choose a NN with 2 hidden layers of 32 units
with ReLU activation for the novice policy. For BAgger, we
set τ = 0.5 and train a GP for ψ̂, using the implementation
of [18]. All other settings are shared with Subsection V-A.

Table I contains averaged results over 5 evaluations of 30
episodes each. Again, we observe a significant improvement
in query efficiency for SafeDAgger and BAgger compared
to DAgger. The increase of average cumulative reward, as a
proxy for safety, however, is less stark than in Reacher-v2.
Whereas in Reacher, the design of the task requires visiting
novel state regions frequently, a good policy in Hopper
periodically visits similar states. This facilitates IL without
a strong novelty detection.

VI. CONCLUDING REMARKS

Our results indicate that estimating state safety and nov-
elty, through a Gaussian Process that learns the policy error,
makes BAgger safer and more query-efficient than other IL
algorithms. Especially in tasks like Reacher, in which visit-
ing novel state regions is frequently required, the confidence
estimates of the GP prove to be valuable for safety. How
prior knowledge about the properties of the error function ε
can facilitate setting τ and improve query efficiency further,
will be addressed in future work.



REFERENCES

[1] B. Kim and J. Pineau, “Maximum Mean Discrepancy Imitation
Learning,” Workshop on Robot Learning, ICML, 2013. [Online].
Available: http://roboticsproceedings.org/rss09/p38.pdf

[2] J. Zhang and K. Cho, “Query-Efficient Imitation Learning for End-to-
End Autonomous Driving,” in Proceedings of the 31st AAAI Confer-
ence on Arificial Intelligence (AAAI-17), 2 2017, pp. 2891 – 2897.

[3] K. Lee, K. Saigol, and E. Theodorou, “Safe end-to-end
imitation learning for model predictive control,” in Proceedings
of Robotics: Science and Systems (RSS), 2018. [Online]. Available:
http://arxiv.org/abs/1803.10231

[4] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile Off-Road Autonomous Driving Using End-to-End
Deep Imitation Learning,” CoRR, 9 2017. [Online]. Available:
http://arxiv.org/abs/1709.07174

[5] M. A. Rana, M. Mukadam, S. R. Ahmadzadeh, S. Chernova, and
B. Boots, “Learning Generalizable Robot Skills from Demonstrations
in Cluttered Environments,” in Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), 10 2018.
[Online]. Available: http://arxiv.org/abs/1808.00349

[6] M. Laskey, S. Staszak, W. Yu, S. Hsieh, J. Mahler, F. T.
Pokorny, A. D. Dragan, and K. Goldberg, “SHIV: Reducing
Supervisor Burden in DAgger using Support Vectors for Efficient
Learning from Demonstrations in High Dimensional State Spaces,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 5 2016, pp. 462–469. [Online]. Available:
http://ieeexplore.ieee.org/document/7487167/

[7] S. Ross, G. J. Gordon, and J. A. Bagnell, “A Reduction of
Imitation Learning and Structured Prediction to No-Regret Online
Learning,” in Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2011, vol. 15, 2011,
pp. 627–635. [Online]. Available: http://arxiv.org/abs/1011.0686

[8] K. Menda, K. Driggs-Campbell, and M. J. Kochenderfer,
“DropoutDAgger: A Bayesian Approach to Safe Imitation Learning,”
9 2017. [Online]. Available: http://arxiv.org/abs/1709.06166

[9] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
MIT Press, 1998.

[10] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in Proceedings
of the 33rd International Conference on Machine Learning
(ICML-16), 6 2016, pp. 1050–1059. [Online]. Available:
http://proceedings.mlr.press/v48/gal16.html

[11] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for
machine learning. MIT Press, 2006.

[12] S. Chernova and M. Veloso, “Confidence-based policy learning from
demonstration using Gaussian mixture models,” in Joint Conference
on Autonomous Agents and Multi-Agent Systems, 2007.

[13] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg, “DART:
Noise Injection for Robust Imitation Learning,” in 1st Conference
on Robot Learning (CoRL 2017), 3 2017. [Online]. Available:
http://arxiv.org/abs/1703.09327

[14] L. Sun, C. Peng, W. Zhan, and M. Tomizuka, “A Fast
Integrated Planning and Control Framework for Autonomous
Driving via Imitation Learning,” CoRR, 7 2017. [Online]. Available:
http://arxiv.org/abs/1707.02515

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” 2016.

[16] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 5026–5033.

[17] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” 12 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine Learning in {P}ython,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.


